Krean Chem. Eng. Res., Vl. 45, N. 3, June, 2007, pp. 209-214 1utanl ethylene glycll mk i Sr heaaluminatem n Š i mi i Çk m* r q l v 561-756 r rte v v 1 664-14 * 305-701 re 373-1 (2006 10 10p r, 2006 12 26p }ˆ) A Study n Physical Prperties and Catalytic Cmbustin f Methane f Sr Heaaluminate Prepared using 1utanl and Ethylene Glycl Jung Min Shn and Seng Ihl W* Department f Mineral Resurces & Energy Engineering, 664-14, Duckjin-dng, Duckjin-gu, Jenju, Jenbuk 561-756, Krea *Department f Chemical & Bimlecular Engineering and Center fr Ultramicrchemical Prcess Systems, Krea Advanced Institute f Science and Technlgy, 373-1 Guseng-dng, Yuseng-gu, Daejen 305-701, Krea (Received 10 Octber 2006; accepted 26 December 2006) k Sr heaaluminate(sr 1- -α )m alkide r ~, 1utanl ethylene glyclp n n sl-gel p m. n l Sr heaaluminatep r p TG/DTA, XRD N 2 adsrptinp pn l m. s e l l p 1utanlp n n l heaaluminatem, ethylene glyclp n pn n n p p dehydrylatin pp l, r m d m. Dehydrylatin p r m p dp heaaluminatep p e p rp pp l. ˆl l pp r p l m p tlpp p m. h Abstract Sr heaaluminate(sr 1- -α ) were prepared by sl-gel methd f metal alkide with 1utanl r ethylene glycl as a slvent. The physical prperties f prepared heaaluminates were eamined by TG/DTA, XRD and N 2 adsrptin. When ethylene glycl was used as a slvent, the decmpsitin reactin and dehydrylatin reactin was bserved abve 400 C and the temperature f the frmatin f a crystal structure f heaaluminate was als increased resulting in small specific surface area and lw catalytic activity f methane cmpared t Sr-heaaluminate with 1utanl. Key wrds: Heaaluminate, Methane Cmbustin, Thermal Decmpsitin, 1utanl, Ethylene Glycl 1. l p l l vp l v qp prp pnp sp l e l edš p m l rk l. l p v p l l p p l pp p p l edšp [1]. l l m ˆ dp pp lp eˆ p p mr l l p ˆ T whm crrespndence shuld be addressed. E-mail: jmshn@chnbuk.ac.kr m r rp. l sp l rl n rp ~w rml slp p, w p l mll kr l pp, w sp l r NO m ml k l s lp l NO p eˆ p p. l l p l p lp [1, 2], sl m 600~800 Cp rn m q d } l l p np p. d, p, afterburner p m, k l m l p p p pp en l l p. m l p er pnl pl lr kr p p 209
210 r Ën p vp p q tn r r p p 1,200 C p m mll sp l p pl p. m l l rrp pp pl p m mlp p r~ p mlp l p. np q n alumina vv~ tep m l p vveˆ p l v l m [3-12]. q vp l p v l v p, alumina vv~l ~ l aluminap ml p r qp p vle m l p p. Ba Srp ~ heaaluminate s 1,200 C p p ml q p l p v p p., heaaluminate sl Mn p rp p eˆp f ml n p m. pm, p ~ lp aluminap rs s r ~p s p m l p e v lm. Mizukami [13] p alkide pn alumina rse n n l alumina p pm kv ppp m. Vannice [14] p aluminap r ~p α-diaspre p rp α-alumina rs m m. l l, alkide pn heaaluminate rse n n rs l m l m l p m. Heaaluminate s r tp s kk TG/DTAm r p XRD r p N 2 adsrptin p p n m. rs p p ˆl p p m. 2. 2-1. { Heaaluminate vv~(sr 1- -α ) metal alkidep hydrlysis p m [4]. Aluminum isprpide(p AIP, Aldrich 99.99%) 10 g s l Sr (Aldrich, 99%) p n 100 mll v v 5e l n m. n n l n r n l mlecular sieve l 3p k l p r m. n k m n 1utanl(Aldrich 99.8% HPLC grade) ethylene glycl(aldrich 99.8% anhydrus)p. p nkl Mn nitrate(wak)m nitrate (YAKURI PURE CHEMICALS 6-Hydrate) nkp }} ~ eˆ hydrlysis pp v e. nkp t l 80 C v p 12e (aging) e. eˆ p rtary vacuum evapratrl se. s k p l k 50~100 meshp e. p 500 Cl e ˆ l l 1,000 C, 1,200 C, 1,400 Cl 5e k e. e dm 2 C/minp. p p 20 ml/minp BROOKS mass flw cntrller rl m. n n l rs s e pl (1utanl)m -e(ethylene glycl) l m. 45 3 2007 6k 2-2. { Š TG/DTA(thermgravimetric analysis) TG/DTA92 thermanalyzer (SETARAM, France) pn m. s e 20 mgp Pt n l p, Ar(30 ml/min)p, 10 C/minp dm 1,000 C v m v m l v p m. Cu Kα X-ray tube q X-ray diffractmeter(riguku C.) n l r s m. p rk r 35 kv, 15 map p XRD spectra eml m. r rp ASAP 2000(micrmeritics)p n m. r r e 0.5~0.6 gp 300 Cl 2e r v l v p r m. 2-3. { m heaaluminatep ˆp l p e p k l m. l ˆ 1 vl%m 99 vl% l n m, p 50 ml/minp. p BROOKS mass flw cntrller sr m. n p kp 0.2 gp. n p n 10 mmp quartz rq m. l d p vr peˆ p r~ l r q m l re l l q l p K-type thermcuple m r m. pp d ice-ethanl trapp ~ p r, n-line gas chrmatgraphy(hp5840a, clumn: prapak Q; Detectr: TCD) pn m. pe p space velcity 20,000 h -1 r m. p p ˆp r pp 10% m (T 10% )m ˆ p r pp 90% m (T 90% ) ˆ l m, T 10% p l pp e m p }, T 90% l p p mr p lv m p } n p p. 3. s llv gelp rp heaaluminate rp v p. gel l rs e n n, r ~l p nitrate m ˆ p sq p. rl p p m l l ˆ r, l m l idep p eq v llv pqp mrphlgy,, r s l vr rp m p t., TG/DTA dm r tp v m l vp p p f llv heaaluminatep p l r m p. n e 1utanl ethylenep n l s heaaluminate r ~ n m. Heaalmintep s p e Sr 0.5 p. Fig. 1p Sr 0.5 (A)m Sr 0.5 -e(b)p TG/DTA prfilep. Sr 0.5 p n v p p l v pl. r 100 Cl 200 C v v p mll p l peak p p, p gel p k m n p v p p, p r~ v p k 40 wt% m. 200 C p l 2 p l peak p, 200 Cl ˆ peak sp
1utanl ethylene glyclp pn l Sr heaaluminatep r ˆ l pl l 211 Fig. 1. TG/DTA prfile f Sr 0.5 (A) and Sr 0.5 -e (B) precursr. peak p, p k 5 wt% p v p pl. p 250~350 C mll l peak ˆ p. p p v k 15 wt% r m. 2 p l peak gel r ~ l rp nitrate p l pp p r. p 1,000 C v v lp pr v p v p. p l Sr 0.5 r ~ 400 C p l r ~p p r l p. Sr 0.5 -ep n 200 C v v kp prfile p ˆ, p gel l sq p v p. p, k 25 wt%p v pl. 300 Cm 400~500 C l 2 p l peak, p k m, peak ˆ m 100 C d, peakp p n lv p p p. p gel p p p p pl m n krpp lt p. p m k 30 wt%p v pl p. p, 300~400 Cm 800 C l 2 p l peak ˆ p. 800 Cl p l p n pn k p rs tl [13], p behmite pl Al qm p hydryl grupp l p dehydrylatin p p. k 500 C v v p lp p 1utanl p n n n 100 CC r d p. Ethylene glyclp qlr m k 410 CC 500 C p l v q ethylene glyclp qlr p l p pp p. m l heaaluminate s l vv~ rs l l l m p p p p [11]. m p aging e, p e ~ p k[3], m, k m n p s p. Fig. 2(A) 1,200 Cl, Sr p s l Sr 1- p XRD diffractin(q )p. 1,000 C l p heaaluminate peak l. m l n heaaluminate p n heaaluminate r p p rp r r n p. Sr p n, XRD l 1,200 C 1,000 Cl heaaluminate r peak pnl peak sp peak k 1~2 p vrl, p p rp q p p. p peak 1,400 C l n ˆ p 2 p r p sq p. p Fig. 2. XRD spectra f Sr 1- G(A) and Sr 1- -e (B) calcined at 1,200 C. (a) =1 (b) =0.8 (c) =0.5 (d) =0.2 (e) =0. Krean Chem. Eng. Res., Vl. 45, N. 3, June, 2007
212 r Ën p p ~ Mnl p 2 v heaaluminate p p. Machida [12]p p heaaluminate r p Mnp s p p heaaluminate rp l p m. s p heaaluminate rp p rp p p ml p kr p k v p m p. Mnp s p p heaaluminate rp Sr p r. p s l lp p heaaluminate 1,000 C l rp lpp p l. p p ~ p p r p Srp l pl p p, mr np heaalminate r SrO 6Al 2 p v kpp lt p. 1,200 Cl heaalminatep Sr p s l XRD patternp, 2θ =32, 34, 36 p p t peakp q ˆ p p p. heaaluminate rl 2θ =32 (110), 2θ =34 (107), 2θ =36 (114) p rp ˆ p. s p 0.2m 0.5p n XRD pattern p p ˆ p p. Sr p sq Sr, 2θ =32p (110) p r qp p l. p p 0.5 p p n, 2θ =34p (107) p r qp p p ƒvl r rp lr ppp p., 2θ =36p (114) p r q lr l, Sr p nm, mr r q ˆ p p. p r q p p 1,400 C l r p heaaluminate p p p. Fig. 2(B) ethylene glyclp n l 1,200 Cl heaaluminatep XRD peak lt p. Ethylene glyclp n n n, 1utanlp n n nm 1,000 C XRDl heaaluminate r s peak v k. n n ethylene glyclp p -OH p v dil alkide l sq n, sl-gel p. p p p sl-gel p t heaaluminate pq t p p p lv p. p p heaaluminate rp m kv pp p. 1,200 Cl, llv e Sr p s l l p SrO 6Al 2 p r s p pl. 1utanlp n n l rs heaaluminatem Sr p s l lp XRDl peakp pattern p p dp m. XRD r n l lp 1,200 Cl m heaaluminate rp p p plp, 1utanlp n n ethylene glyclp n heaaluminate p r m kp, Sr rn m de p r s p p., alkide v hydrlysis p n sl-gel p p f p pn l heaaluminate Grppi [5]l p t p p v kk. Fig. 3p Sr 1- p m l r m 1,200 Cl Sr 1- -ep rp ˆ l. rp n m m l p m. Sr p n, 1,000 Cl 44 m /g 2 Sr 1- - bt q p rp mp, 1,200 Cl rp l 8.6 m /gp 2 l. p XRDl p p 45 3 2007 6k Fig. 3. Surface areas f Sr 1- and Sr 1- -e. Sr 1- calcined at 1,000 C, GSr 1- calcined at 1,200 C, Sr 1- calcined at 1,400 C, Sr 1- -e calcined at 1,200 C. l } 2 p r p p. 0.2 1p l 1,000 Cm 1,200 Cl n, = 0.5l p p ˆp p p. 1,400 Cl l =0.2 q p p pp, ~ k 5 m 2 /g r p d p p p. p ~ p f heaaluminate p rp lp Sr p p, q p r p m > 0.5p n rp m. Sr 1- -ep n, Srp s l lp p s p Sr 1- l n p p p p. r~rp 5 m 2 /gp p p rp p p. p 1,400 Cl Sr 1- p r d p. XRDl p r s p heaaluminate rp p p plp heaaluminate r p m m} k r lr lp ll. p s heaaluminate gel r ~ t heaaluminate rp r rl n p s vl l} t gelp m p p m p. TG/DTA m XRD r l n l rp p p. Jhnsn[15]p k pq qp pr pq pl l rp k hydryl grupp p l p r dehydrylatinl p v m. p p, pq p pq q rp plv m. p rp l l} t dehydrylatinp lr lk. TG/DTAp ethylene glyclp n n p n, 800 C l dehydrylatinl p p p l peak l, ml v v l. p p pq q p v l, p p ethylene glyclp n n heaaluminatep rp 1utanlp n l heaaluminatel p p pp p. Heaaluminatep l} tl dehydrylatinp p pp l Wang [16]l p p.
1utanl ethylene glyclp pn l Sr heaaluminatep r ˆ l pl l 213 Fig. 4. Pre size distributin f Sr (A) and Sr 0.5 (B) calcined at (a) 1,000 C, (b) 1,200 C, (c) 1,400 C. Fig. 4(a)m Fig. 4(b) Sr m Sr 0.5 p m l p l t p. 1,000 C l Sr m Sr 0.5 ˆ p lt p. Sr p n, 10 nm p l p mp, Sr 0.5 1 nm p micrpre mll p p p., 10 nmp l p p sq ˆ p p. p rp vv~ 2 p p p v bimdal ˆ v k r p [17]. yp p pq pp l p ˆ p, qp yp p pq l r p. m kvl p p Ž, p m p v k k r p. p p p l q ˆ p. 1,200 Cl p m (Table 1). p 10 nm p p p p pp k p. Fig. 5. Catalytic cmbustin f methane ver Sr 1- calcined at 1,000 C(A) and Sr 1- and Sr 0.5 -e calcined at 1,200 C(B). 1,200 C p p 10 nm p p v p m pq q p l p p pl, p p rp lp p p., p m d l Sr p n, Sr 0.5 p n v m. Sr 1- p m l ˆl pl ˆ p r pp Fig. 5l ˆ l. 1,000 Cl p n, q p rm (T 10% )p p p Sr 0.8 0.2 m. p p T 10% p 443 C pl. np p T 10% p k 460 C r d p m. 1,200 Cl, 1,000 Cl nm p p, p l Sr 0.5 q p T 10% p p p. Table 1. Pre vlume and avg. pre diameter f Sr (A) and Sr 0.5 (B) calcined at varius temperatures Sr Sr 0.5 Calcinatin temperature( C) 1,000 1,200 1,400 1,000 1,200 1,400 Ttal pre vlume(cm 3 /g) 0.3 0.037 0.022 0.13 0.057 0.026 Avg. pre diameter(nm) 17.8 17.7 8.8 11.8 14.6 15.4 Krean Chem. Eng. Res., Vl. 45, N. 3, June, 2007
214 r Ën p T 10% =0.5<1<0.8<0<0.2 kr. 1,000 C l q p rm p m Sr 0.8 0.2 1,200 Cl q p p p p., Sr 0.5 p n 1,000 Cl e m 1,200 Cl e pp T 10% p 6 C l p v kk m p dp p r (33.8 m 2 /g -> 17.5 m 2 /g)l r pv k p. p np m d l 1,000 Cl e l T 10% p 16 C( )l 71 C(Sr 0.8 0.2 ) kr. pp pp e rmmll p Sr p s l p p pp eq 650 C p l r p 2 p p ~ v } p. p p p Sr 0.5, m Sr 0.2 0.8 p r p kv, Sr m Sr 0.8 0.2 p r p kr. r p 90%l m p T 90% Sr m Sr 0.8 0.2 690 Cp, Sr 0.5,, Sr 0.2 0.8 675 C k 15 Cp p p. r T 10% p, q p rp p Sr 0.5 T 10% p q kp, pnp nl r p p pv k p. 1,200 Cl Sr 0.5 -ep n(fig. 5(B) Ì), 1,200 Cl Sr 1- p r p lt p. p Sr 1- l n p rp p p. 4. 1utanl ethylene glyclp n n l Sr-heaaluminate p r ˆ l p p p p ll. (1) Hydrlysis p pn sl-gel l n heaaluminate p r l m p tl. Ethylene glyclp n pn l heaaluminate 1utanlp n pn l heaaluminatel 400 C p p ml l dehydrylatin pp l, heaaluminate r 1,200 C l p pl. (2) 1utanl heaaluminatep rp Sr p l lp ethylene glycl p m l heaaluminatel p p m. p ethylene glyclp n heaaluminatep n, 1utanlp n heaalminatel l} t pq p dehydrylatin pl p heaaluminate r p vl p p. (3) 1utanl heaaluminate ethylene glycl p m l heaaluminatel ˆ p l p T 10% m T 90% mp, p heaalminate pp r pl p p. (4) rp l l 1utanlp n heaalminate ethylene glyclp n heaaluminatel m l} p lkr ˆ p m. 45 3 2007 6k y 1. Trimm, D. L., Catalytic Cmbustin, Applied Catalysis, 7, 249-282(1983). 2. Arai, H. and Machida, M., Recent Prgress in High-temperature Catalytic Cmbustin, Catalysis Tday, 10,G81-95(1991). 3. W, S. I., Kang, S. K. and Shn, J. M., Effect f Water Cntent in the Precursr Slutin n the Catalytic Prperty and Stability f Sr 0.8 0.2 High-temperature Cmbustin Catalyst, Applied Catalysis B: Envirnmental, 18, 317-324(1998). 4. Shn, J. M., Kang, S. K. and W, S. I., Catalytic Prperties and Characterizatin f Pd Supprted n Heaaluminate in High Temperature Cmbustin, J.G Mlecular Catalysis A: Chemical, 186, 135-144(2002). 5. Grppi, G., Belltt, M., Cristiam, C., Frzatti, P. and Villa, P. L., Preparatin and Characterizatin f Heaaluminateased Materials fr Catalytic Cmbustin, Applied Catalysis A:General, 104(2), 101-108(1993). 6. Erssn, A. G., Jhanssn, E. M. and Jaras, S. G., Techniques fr Preparatin f Manganese-substituted nthanum Heaaluminates, Studies in Surface Science and Catalysis, 118, 601-608(1998). 7. Euzen, P., Le Gal, J. H., Reburs, B. and Martin G., Deactivatin f Palladium Catalyst in Catalytic Cmbustin f Methane, Catalysis Tday, 47(1-4), 19-27(1999). 8. Grppi, G., Belltt, M., Cristiani, C., Frzatti, P. and Villa, P. L., Thermal Evlutin Crystal Structure and Catin Valence f Mn in Substituted Baeta-Al 2 Prepared via Cprecipitatin in Aqueus Medium, J. Materials Science, 34(11), 2609-2620(1999). 9. Lee, S. G., Lee, H., Lee, C. H., Kwn, J. Y., Park, H. C., Hng, S. S. and Park, S. S., Synthesis and Catalytic Prperties f Barium Heaaluminates Incrprated with Chrmium and nthanum, Reac. Kin. & Catal. Lett., 86(2), 299-306(2005). 10. Yeh, T.-F., Lee, H. G., Chu, K. S. and Wang, C. B., Characterizatin and Catalytic Cmbustin f Methane ver Heaaluminates, Mat. Sci. & Eng. A, 384(1-2), 324-330(2004). 11. Machida, K., Eguchi, K. and Arai, H., Preparatin and Characterizatin f rge-surface-area BaO 6Al 2, Bull. Chem. Sc. Jpn., 61, 3659-3665(1988). 12. Machida, M., Eguchi, K. and Arai, H., Effect f Structural Mdificatin n the Catalytic Prperties f Mn-Substituted Heaaluminates, J. Catalysis, 123(2) 477-485(1990). 13. Maeda, K., Mizukami, F., Niwa, S., Tba, M., Watanabe, M. and Masuda, K., Thermal Behaviur f Alumina frm Aluminium Alkide Reacted with Cmpleing Agent, J. Chem. Sc., Faraday Trans., 88(1), 97-104(1992). 14. Ma, C.-F., Vannice, M. A., High Surface Area α-alumina. I.: Adsrptin Prperties and Heats f Adsrptin f Carbn Mnide, Carbn Diide, and Ethylene, App. Catal. A: General, 111(2), 151-173(1994). 15. Jhnsn, M. F. L., Surface-area Stability f Aluminas, J. Catalysis, 123, 245-259(1990). 16. Wang, J., Tian, Z., Xu, J., Xu, Y., Xy, Z. and Lin, L., Preparatin f Mn Substituted -heaaluminate Catalysts by Using Supercritical Drying, Catalysis Tday, 83, 213-222(2003). 17. Satterfield, C. N., Hetergeneus catalysts in industrial practices, 2 nd ed., McGraw-Hill, New Yrk, NY(1991).