Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Σχετικά έγγραφα
A Method for Determining Service Level of Road Network Based on Improved Capacity Model

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Quantum annealing inversion and its implementation

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

Power allocation under per-antenna power constraints in multiuser MIMO systems

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

High order interpolation function for surface contact problem

Prey-Taxis Holling-Tanner

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

35 90% %

Υποέργο 2 - Δράση 2.2 Μέθοδοι Χαλάρωσης στις Διεπαφές (ΜΧΔ)

Vol. 15 No. 6 Jun JOURNAL OF MANAGEMENT SCIENCES IN CHINA CAPM F J xmu. edu.

V. Finite Element Method. 5.1 Introduction to Finite Element Method

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

ΙΑΧΕΙΡΙΣΗ ΠΟΡΩΝ. Συμεών Παπαβασιλείου Επίκ. Καθηγητής ΕΜΠ

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

A research on the influence of dummy activity on float in an AOA network and its amendments

Applying Markov Decision Processes to Role-playing Game

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

ECON 381 SC ASSIGNMENT 2

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

«Σενάρια ήπιας κινητικότητας για μια βιώσιμη πόλη»

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Research on model of early2warning of enterprise crisis based on entropy

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Quick algorithm f or computing core attribute

EE512: Error Control Coding

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: Mετακύλιση τιμών βασικών προϊόντων και τροφίμων στην περίπτωση του Νομού Αιτωλοακαρνανίας

Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή εργασία

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Assalamu `alaikum wr. wb.

A Multi2commodity Flow Supply Chain Network Equilibrium Model with Stochastic Choice

Διαχείριση ενεργειακών πόρων & συστημάτων Πρακτικά συνεδρίου(isbn: )

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Context-aware και mhealth

Probabilistic Approach to Robust Optimization

Vol. 37 No. 6 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY. Jun %

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

Numerical Analysis FMN011

Identification of Inactive Constraints for SCED Model Considering Uncertain Power Injection

α & β spatial orbitals in

ΙΑΧΕΙΡΙΣΗ ΠΟΡΩΝ. Αναπληρωτής Καθηγητής ΕΜΠ Συμεών Παπαβασιλείου

Homomorphism in Intuitionistic Fuzzy Automata

Multi-dimensional Central Limit Theorem

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Homework 3 Solutions

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Derivation for Input of Factor Graph Representation

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

EQUIVALENT MODEL OF HVDC-VSC AND ITS HYBRID SIMULATION TECHNIQUE

Durbin-Levinson recursive method

Bayesian modeling of inseparable space-time variation in disease risk

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Global energy use: Decoupling or convergence?

Ηλεκτρονικοί Υπολογιστές IV

Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

Βέλτιστο Χαρτοφυλάκιο μετοχών του δείκτη FTSE/ΧΑΑ20 στο Χρηματιστήριο Αθηνών για τα έτη

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Stabilization of stock price prediction by cross entropy optimization

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

On the Galois Group of Linear Difference-Differential Equations

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Homework 8 Model Solution Section

C.S. 430 Assignment 6, Sample Solutions

Transcript:

Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,, O-D Logt, O-D,,. Frank-Wolfe,..,. : 212-9-26 : 212-12-4 (712171). : (198 ),,,, :.

76 Vol. 4 2 G = (N, A), N, A, R, S, R S ; A ; (r, s) r, s O-D ; P rs O-D (r, s).,, : Ω = x fp rs p P rs mn x Ω = q rs, f rs p xa t a (ω)dω r R s S qrs B(ω)dω, (2.1) }, x a = fp rs δap, rs x a C a, a, p, r, s. (2.2) r R s S p P rs : x a a, x = (, x a, ) T ; fp rs O-D (r, s) p, f = (, fp rs, ) T ; t a (x a ) a, x a, t(x) = (, t a (x a ), ) T ; C a a, C = (, C a, ) T ; q rs O-D (r, s) ; q rs = D rs (u rs ) O-D (r, s), (r, s) u rs, u rs, q = (, q rs, ) T ; u rs = B rs (q rs ) = D 1 (q rs ). O-D (r, s) p a, δap rs = 1,., (2.1) (2.2) (x, q ). K-K-T, (2.1) (2.2) ( t a (x a)δap rs u rs )fp rs =, t a (x a)δap rs u rs, fp rs, (2.) qrs(u rs B rs (qrs)) =, u rs B rs (qrs), qrs, (2.4) d a (x a C a ) =, x a C a, d a, (2.5) t a (x a ) = t a (x a ) + d a, Lagrange u rs, d a O-D (r, s) a,., d a, t a (x a ),,,,, x a > C a, d a d a, d a = d a d a >,,, UE.,, Lagrange d a [1]. Sheff UE [7], Frank-Wolfe. UE

No. 4 : 761 : (2.1) qrs B(ω)dω = Drs(u rs ) Drs(u rs ) B(ω)dω B(ω)dω, (.1) q rs (.1),, u rs (r, s). e rs = D rs (u rs) q rs, Drs(u rs ) ers B rs (ω)dω = B rs (D rs (u rs) ω)dω = W rs (ω)dω, q rs D rs(u rs ) qrs W rs (ω) = B rs (D rs (u rs) ω). O-D (r, s), e rs, W rs (e rs ), UE : mn (x,e) Ω xa t a (ω)dω + r R s S ers W rs (ω)dω, (.2) Ω = (x, e) fp rs p P rs + e rs = D rs (u rs), e rs, x Ω, r, s }. (.).1 N O-D,, O-D A ( O-D, = 1, 2,, N ), d a d a, t a (x a ) = t a (x a ) + d a, p ( = 1, 2,, N). p A, A ; A, p m p m p + 1. O-D, α 2,,,...2 α k O-D, Frank- Wolfe O-D, O-D. : k p k t p k A k, α k = max exp( θt p k ) m p exp( θt p ), ζ, (.4) p A k θ Logt, A k k, O-D ( p k ), t p p, m p,

762 Vol. 4, p. O-D p A k m p = k. (.4) ζ ε,,.. O-D, O-D N, O-D, O-D, ;, k = 1, O-D A = ; ε >, O-D, t k x k t k, d k a t a (C a ), x a > C a, a = d k a, a A;,, O-D A (A O-D, = 1, 2,, N), m p k = 1. 1 t k+1 a = t k a + d k a, O-D p k+1 ; p k+1 A, A := A p k+1, p k+1 m p k+1 = 1, A, m p k+1 = m p k + 1. O-D, f k, ẽ k. (.4) α k+1 O-D, A : f k+1 = α k+1 e k+1 = α k+1 ẽ k + (1 α k+1 )e k. 2 ;. x k+1, e k+1 t k+1, max xk+1 a x k a + max =1,2,,N ek+1 d k+1 a = a A, k := k + 1, 1..4 e k+1 d k a + d k a, x k+1 a C a,,, + max xk+1 a C a < ε, d k+1 a = max, d k a + 1 k + 1 (xk+1 a C a )},, f k + (1 α k+1 )f k, Ω D (u ) < ( = 1, 2,, N), ε >, ζ,.,, a, x k+1 a x k a < ε, ek+1. x k+1 a x k a < ε, k. O-D, e k < ε, max, xk+1 a C a } < ε, k, M = max p P exp( θt p)}, m = mn p P exp( θt p)},

No. 4 : 76 P O-D, exp( θt p k ) m p exp( θt p ) p A k M p A m m k M m 1, k. k k, α k = ζ, ζ = ε N A q, A p, fp k+1 = α k+1 f p k + (1 α k+1 )fp k = fp k + α k+1 ( f p k fp k ), f k+1 p f k p = α k+1 f p k f k p q α k+1 = q ζ, k, q O-D. O-D, k A, a, x a = δ ap fp k+1, p A x k+1 a x k a δ ap fp k+1 fp k p A A q ζ ε, k. e k+1 e k+1 ε, k. e k O-D, e k+1 = α k+1 ẽ k + (1 α k+1 )e k, e k+1 e k = α k+1 ẽ k e k α k+1 q = q ζ ε, k. max, x k+1 a C a } < ε, k. k max, x k+1 a C a } > ε, a, k x k a C a > ε >, dk a, d k a d k a, t k a, k, a p f p k =, fp k+1 = α k+1 f p k + (1 α k+1 )fp k = (1 α k+1 )fp k = (1 ζ )fp k, k. x k+1 a = p P δ apfp k+1, k, x k+1 a C a > ε,.,,,.,,.,. Lagrange,,,. 4, : 4 O-D : 1-12 9-4 12-1 4-9, O-D d rs = D rs exp(.5(1 urs u rs )), u rs O-D (r, s) ; D 1,12 = 46, D9,4 = 4,

764 Vol. 4 1: D 12,1 = 44, D4,9 = 42; 4,,, BPR : t a (x a ) = t a ()(1 +.5( xa C a ) 4 ), C a a. O-D, W rs () = B rs (D rs (u rs)) = u rs. x a, 1 ( ε = 1, ). 1: a (1,2) (1,5) (2,1) (2,) (2,6) (,2) (,4) (,7) (4,) (4,8) (5,1) (5,6) (5,9) (6,2) (6,5) (6,7) (6,1) x a 218.88 176.15 215.54 256.51 22.95 256.69 196.21 16.6 199.89 26.28 164.18 277.46 25.21 199.44 276.67 299.78 165.57 a (7,) (7,6) (7,8) (7,11) (8,4) (8,7) (8,12) (9,5) (9,1) (1,6) (1,9) (1,11) (11,7) (11,1) (11,12) (12,8) (12,11) x a 156.55 299.61 285.49 21.44 195.7 284.2 17.22 194. 24.21 161.45 27.92 174.25 199. 17.84 248.84 16.74 246.2 1,,,,, (6,7) 299.78,. e 1,12 = 59.86, e 9,4 = 59.99, e 12,1 = 55.9, e 4,9 = 64.86. 2: : (1,2) 2,, 528, (1,2), 1. 5, Frank-Wolfe,.,. O-D, ( )

No. 4 : 765,.,. [8]. [1] Yang H, Huang H. Mathematca and economc theory of road prcng [M].Amsterdam: Elsever, 25. [2] Chou S W. A novel algorthm for area traffc capacty control wth elastc travel demands [J]. Appled Mathematcal Model, 211, 5: 65 666. [] Frederc B, Jean P.V. An effcent method to compute traffc assgnment problems wth elastc demands [J]. Transportaton Scence, 28, 42(2): 249 26. [4] Larsson T, Patrksson M. An augmented Lagrangan dual algorthm for lnk capacty sde constraned traffc assgnment problems [J]. Transportaton Research, 1995, 29: 4 455. [5] Ne Y, Zhang H M. Models and algorthms for the traffc assgnment problem wth lnk capacty constrants [J]. Transportaton Research, 24, 8: 285 12. [6] Xu Y D, L S J, Teo K L. Vector network equlbrum problems wth capacty constrants of arcs [J]. Transportaton Research Part E, 212, 48: 567 577. [7] Sheff Y. Urban transportaton networks: equlbrum analyss wth mathematcal program methods [M]. New Jersey: Prentce-Hall, Inc, Englewood Clffs, 1985. [8],. [J]., 212, 2(1): 152 156. APPROXIMATE ALGORITHM FOR ELASTIC DEMAND TRAFFIC EQUILIBRIUM ASSIGNMENT PROBLEM WITH LINK CAPACITY CONSTRAINTS LIU Bng-quan 1,2, HUANG Chong-chao 1 (1.School of Mathematcs and Statstcs, Wuhan Unversty, Wuhan 472, Chna) (2.School of Math. and Inform. Sc., Wenan Normal Unversty, Wenan 714, Chna) Abstract: Ths paper studes the elastc demand traffc equlbrum assgnment problem wth lnk capacty constrants. We analyze the dfferences of lnk travel tme and traffc demand between the lnk capacty constrants model and the one wth lnk capacty unconstrant. The elastc demand model s transformed as fxed one accordng to excess demand formulaton and we propose an approxmate algorthm for the model to crcumvent the costly soluton of the constraned assgnment problem. The algorthm ensures gradually the lnks flow lower than correspondng capacty and trends to generalzed elastc demand user equlbrum by approxmatng actual lnk travel tme and adaptvely regulatng the delay and error factors n each teraton. It s superor to stochastc equlbrum methods by avodng paths numeraton. Both the convergence result and the numercal example show the algorthms are effectve and effcent. Keywords: equlbrum traffc assgnment; elastc demand; capacty constrants; approxmate algorthm 21 MR Subject Classfcaton: 9B2