Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Σχετικά έγγραφα
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Section 8.3 Trigonometric Equations

Reminders: linear functions

Homework 3 Solutions

Introductions to EllipticThetaPrime4

Example Sheet 3 Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

2 Composition. Invertible Mappings

Partial Differential Equations in Biology The boundary element method. March 26, 2013

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Matrices and Determinants

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Trigonometric Formula Sheet

A summation formula ramified with hypergeometric function and involving recurrence relation

Math221: HW# 1 solutions

SPECIAL FUNCTIONS and POLYNOMIALS

D Alembert s Solution to the Wave Equation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

CRASH COURSE IN PRECALCULUS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 9.2 Polar Equations and Graphs

Sampling Basics (1B) Young Won Lim 9/21/13

derivation of the Laplacian from rectangular to spherical coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

PARTIAL NOTES for 6.1 Trigonometric Identities

Approximation of distance between locations on earth given by latitude and longitude

Inverse trigonometric functions & General Solution of Trigonometric Equations

Areas and Lengths in Polar Coordinates

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Differential equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

If we restrict the domain of y = sin x to [ π 2, π 2

Second Order Partial Differential Equations

Trigonometry Functions (5B) Young Won Lim 7/24/14

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Areas and Lengths in Polar Coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Fundamentals of Signals, Systems and Filtering

CORDIC Background (4A)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

4.6 Autoregressive Moving Average Model ARMA(1,1)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Homework 8 Model Solution Section

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Solutions to Exercise Sheet 5

Spectrum Representation (5A) Young Won Lim 11/3/16

Parametrized Surfaces

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Every set of first-order formulas is equivalent to an independent set

CORDIC Background (2A)

Uniform Convergence of Fourier Series Michael Taylor

Differentiation exercise show differential equation

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Commutative Monoids in Intuitionistic Fuzzy Sets

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

EE512: Error Control Coding

MathCity.org Merging man and maths

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Spherical Coordinates

Partial Trace and Partial Transpose

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Second Order RLC Filters

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

The k-bessel Function of the First Kind

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Distances in Sierpiński Triangle Graphs

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Chapter 6 BLM Answers

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

the total number of electrons passing through the lamp.

The Pohozaev identity for the fractional Laplacian

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Computing the Macdonald function for complex orders

Lecture 26: Circular domains

RF series Ultra High Q & Low ESR capacitor series

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Transcript:

KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values at fixed points 03.5.03.000.0 kei0 Values at infinities 03.5.03.000.0 lim keix 0 x 03.5.03.0003.0 lim keix x General characteristics Domain and analyticity kei is an analytical function of, which is defined over the whole complex -plane. 03.5.0.000.0 kei

http://functions.wolfram.com Symmetries and periodicities Mirror symmetry 03.5.0.000.0 kei kei ;, 0 Periodicity No periodicity Poles and essential singularities The function kei has an essential singularity at. At the same time, the point is a branch point. 03.5.0.0003.0 ing kei, Branch points The function kei has two branch points: 0,. At the same time, the point is an essential singularity. 03.5.0.000.0 kei 0, 03.5.0.0005.0 kei, 0 log 03.5.0.0006.0 kei, log Branch cuts The function kei is a single-valued function on the -plane cut along the interval, 0 where it is continuous from above. 03.5.0.0007.0 kei, 0, 03.5.0.0008.0 lim keix Ε keix ; x x 0 Ε0 03.5.0.0009.0 lim keix Ε keix beix ; x x 0 Ε0 Series representations Generalied power series Expansions at generic point 0

http://functions.wolfram.com 3 03.5.06.000.0 kei kei 0 arg 0 arg 0 arg 0 arg 0 bei 0 arg 0 bei 0 ber 0 kei 0 ker 0 arg 0 0 ber 0 ber 0 ker 0 ker 0 0 ; 0 03.5.06.000.0 kei k 0 0 k kei k k 0 03.5.06.0003.0 kei k 0 k G 3,7 3,3 0, ; arg 0 k, k, 3k k, k, k, 0,,, 3 0 k ; arg 0 03.5.06.000.0 kei k 0 k 3k k k j 0 k j k kei jk 0 k arg 0 arg 0 bei k j 0 k ker jk 0 k arg 0 arg 0 ber k j 0 k k j 0 j k kei jk 0 k arg 0 arg 0 bei jk 0 k ker jk 0 k arg 0 arg 0 ber jk 0 0 k 03.5.06.0005.0 kei kei 0 arg 0 Expansions on branch cuts arg 0 bei 0 O 0 kei 03.5.06.0006.0 arg x arg x beix keix argx bei x ber x kei x ker x x berx ber x kerx ker x x ; x x x 0

http://functions.wolfram.com 03.5.06.0007.0 kei k 0 k 3k k k j 0 k j k kei jk x k arg x bei k j x k ker jk x k arg x ber k j x k k j 0 j k kei jk x k arg x bei jk x k ker jk x k arg x ber jk x x k ; x x 0 kei 03.5.06.0008.0 k 0 k arg x, G x,6, k, 3k k, 0,,, 3, k G 3,3 x 3,7, k, k, 3k k, k, k, 0,,, 3 x k ; x x 0 03.5.06.0009.0 arg x kei keix beix O x ; x x 0 Expansions at 0 For the function itself 03.5.06.000.0 kei 8 6 7 56 log 8 576 3 686 00 6 356 37 60 8 ; 0 8 000 03.5.06.00.0 kei k k k 0 k k Ψ k k k 0 k log k k k 0 k 03.5.06.00.0 kei 0 F 3 ;,, ; 56 log 0F 3 ;, 3, 3 ; 56 k 0 k Ψ k k k 03.5.06.003.0 kei 8 I 0 J 0 I 0 J 0 log k 0 k Ψ k k k 03.5.06.00.0 kei O O log O ; 0

http://functions.wolfram.com 5 03.5.06.005.0 kei O log O log O For small integer powers of the function kei 03.5.06.006.0 3 log6 6 log log 3 8 log6 5 6 8 log log3 8 log log log 5 8 log 096 9 56 log log 3 log log log 3 536 8 3 log log log log 3 8 6 log log08 3 8 log096 6 8 log log096 6 log 8 80 log 7 680 05 log 0 log 7 838 log 80 log 0 log 80 7 8 6 8 6 3 000 3 7 0 800 log log 7 log log 630 8 ; 0 86 60 log 60 log 60 73

http://functions.wolfram.com 6 kei 03.5.06.007.0 6 k k 6 k 0 k 3 k 3 k k 3 log log Ψk 3 Ψk 5 6 Ψ k 3 k k 0 k 3 6 k k 3 k 0 k k3 Ψ k log6 log 3 Ψk Ψ k log 8 8 log 8 log 3 Ψk log8 8 log 3 Ψk 3 Ψ k Ψ k k k k 3 6 k k k 0 3 3 k k 8 log Ψk log Ψ k log Ψ k log Ψ k 3 log 3 9 Ψk 9 Ψ k Ψ k 3 Ψ k 3 Ψ k Ψk 3 Ψ k 3 Ψk 9 Ψk Ψ k 3 Ψ k Ψ k 3 Ψ k Ψ k 3 Ψ k Ψ k 3 3 Ψ k 3 Ψ k Ψ k Ψ k 3 03.5.06.008.0 kei 6 log O Asymptotic series expansions Expansions for any in exponential form Using exponential function with branch cut-free arguments

http://functions.wolfram.com 7 kei 03.5.06.009.0 8 3 3 3 3 3 log 3 log 3 3 log log O 3 8 3 3 3 log log 3 3 8 log log O 9 8 3 3 log log 3 3 3 log 3 log O 75 0 3 3 8 log log 3 3 3 log log 3 O ;

http://functions.wolfram.com 8 kei 03.5.06.000.0 8 3 3 n k k k 0 k k 3 3 3 k 3 3 3 3 3 log log k log 3 log 3 n k k k 0 k k 3 3 3 k 3 3 3 3 3 log log k log 3 log ; n

http://functions.wolfram.com 9 kei 03.5.06.00.0 8 3 3 3 3 3 log 3 log 3 3 log log 8 F 3 8, 8, 3 8, 3 8, 5 8, 5 8, 7 8, 7 8 ;,, 3 6 ; 3 8 3 3 3 log log 3 3 8 log log 3 8F 3 8, 3 8, 5 8, 5 8, 7 8, 7 8, 9 8, 9 8 ;, 3, 5 6 ; 9 8 3 3 log log 3 3 3 log 3 log 5 8F 3 8, 5 8, 7 8, 7 8, 9 8, 9 8, 8, 8 ; 3, 5, 3 6 75 ; 0 3 3 8 log log 3 3 3 log log 3 7 8F 3 8, 7 8, 9 8, 9 8, 8, 8, 3 8, 3 8 ; 5, 3, 7 6 ; ;

http://functions.wolfram.com 0 kei 03.5.06.00.0 8 3 3 3 3 3 log 3 log 3 3 log log O ; 03.5.06.003.0 kei 58 38 58 3 arg ; arg 3 True Residue representations 03.5.06.00.0 kei res s j 0 s s s s j j 0 res s s s s s j Integral representations On the real axis Contour integral representations Limit representations Generating functions Differential equations Ordinary linear differential equations and wronskians 03.5.3.000.0 w w 3 3 w w w 0 ; w c ber c bei c 3 ker c kei

http://functions.wolfram.com 03.5.3.000.0 W ber, bei, ker, kei 03.5.3.0003.0 g g 3 w g 3 g 3 g g g w 3 g g 6 g g g g g 3 g 5 g g g w g g 6 g g g g g 3 g 3 g 6 g g g g 0 g 3 g g 3 g 5 g 3 g 3 w g g 7 w 0 ; w c berg c beig c 3 kerg c keig 03.5.3.000.0 W berg, beig, kerg, keig g 6 03.5.3.0005.0 g g g 3 h w g 3 g h g 3 g g g g h h 3 w 3 g g g 6 g g g g g 3 g 5 g g h 6 g g h g g h g 3 g h g h g g h h w g g 6 g g g g g 3 g 3 g 6 g g g g 0 g 3 g g 3 g 5 g 3 g 3 h 3 g g h g 3 g h g 3 g g h 3 3 h g g g 9 g h h g 3 g 5 g h g h g g h h g g h g 3 g h g h g 3 g 3 h 3 hw g h g 7 g h 36 h h h 8 h h 3 h h 6 h h h g 3 g 3 h g 3 g g 6 h 3 6 h h h h h 3 g g h h h h g 6 g g g g g 3 g 5 g g g g h 3 h g 6 g g g g g 3 g 3 g 6 g g g g 0 g 3 g g 3 g 5 g 3 g 3 w 0 ; w c h berg c h beig c 3 h kerg c h keig 03.5.3.0006.0 W h berg, h beig, h kerg, h keig h g 6 03.5.3.0007.0 g w 6 r s 3 w 3 r s r 6 s s 7 w r s s s r s w a r r s r s 3 r s w 0 ; w c s bera r c s beia r c 3 s kera r c s keia r 03.5.3.0008.0 W s bera r, s beia r, s kera r, s keia r a r 6 r s6 03.5.3.0009.0 w logr logs w 3 log r 6 logs logr 3 log s w logr logs log s logr logs w a log r r log s logr log 3 s log r log s w 0 ; w c s bera r c s beia r c 3 s kera r c s keia r 03.5.3.000.0 W s bera r, s beia r, s kera r, s keia r a r s log 6 r

http://functions.wolfram.com Transformations Transformations and argument simplifications Argument involving basic arithmetic operations 03.5.6.000.0 kei kei bei log log 03.5.6.000.0 kei kei ber log logbei 03.5.6.0003.0 kei kei ber log logbei 03.5.6.000.0 kei kei ber bei log 3 log 03.5.6.0005.0 kei 3 kei bei log log 03.5.6.0006.0 kei 3 kei ber bei log 3 log 03.5.6.0007.0 kei kei bei log log ber Addition formulas 03.5.6.0008.0 kei ber k kei k bei k ker k ; k 03.5.6.0009.0 kei ber k kei k bei k ker k ; k Multiple arguments 03.5.6.000.0 k kei k k 0 k cos 3 k kei k ker k sin 3 k ; Related transformations Involving ker

http://functions.wolfram.com 3 03.5.6.00.0 kei ker J 0 log log Y 0 03.5.6.00.0 kei ker K 0 I 0 log log Differentiation Low-order differentiation 03.5.0.000.0 kei kei ker 03.5.0.000.0 kei ker ker Symbolic differentiation 03.5.0.0003.0 n kei 3 n n n n k 0 n k n kei kn n ker kn n n k 0 k n ker kn n kei kn ; n n kei n 03.5.0.000.0 3 n n n n k 0 k n k n k n kei kn n ker kn n k n kei kn n ker kn ; n 03.5.0.0005.0 n kei n G 3,3 3,7, n, n, 3n n, n, n, 0,,, 3 ; n Fractional integro-differentiation 03.5.0.0006.0 Α kei k k k log Ψ k Α k Α k 0 k k Α 3 Α k k Α log, k Α k k k k k k 0 k k 0 k k Α

http://functions.wolfram.com Α kei Α 03.5.0.0007.0 7 Α log Α F 5 Α 3 3 Α F 5, 3 ;, Α, Α, 3 Α k k k Ψ k Α k k 0 k k Α 3 3, 5 ; 3, 3 Α, Α, 5 Α, 3 Α, Α Α ; 56 k 0 ; 56 k k Α log, k k k Integration Indefinite integration 03.5..000.0 keia 6 G 3, a,5, 3 0,,,, 0 Definite integration 03.5..000.0 0 t Α p t keitt 3 Α3 p Α 3 Α p Α cos Α F 3 6 cos Α F 3 Α p Α cos Α sin Α F 3 Α F 3 Α 3, Α 3, Α 5, Α 5 ; 5, 3, 7 ; p, Α, Α 3, Α 3 ;, 3, 5 ; p Α, Α, Α, Α ; 3, 5, 3 ; p, Α, Α, Α ;,, 3 ; p ; ReΑ 0 Rep Integral transforms Laplace transforms 03.5..000.0 t keit 3F,, ; 3, 5 ; cos tan sin tan ; Re Mellin transforms

http://functions.wolfram.com 5 03.5..000.0 t keit sin ; Re 0 Representations through more general functions Through hypergeometric functions Involving hypergeometric U 03.5.6.000.0 kei 3 U,, 3 U,, 8 log log 0 F ; ; 8 log log3 0 F ; ; Through Meijer G Classical cases for the direct function itself 03.5.6.000.0 kei G 3,0 0, 56 Classical cases for powers of kei 0,,, 0 ; arg kei 03.5.6.0003.0 6,0 G 0, 6 0, 0, 0, 8 5,0 G,6 6, 3 0, 0, 0,,, Brychkov Yu.A. (006) 03.5.6.000.0 kei 6,0 G 0, 6 0, 0, 0, 8 5,0 G,6 6, 3 0, 0, 0,,, ; arg Brychkov Yu.A. (006) Classical cases involving bei bei 03.5.6.0005.0 kei 8,0 G 0, 6 0, 0, 0, 8 3, G,6 6, 3 0, 0,, 0,, Brychkov Yu.A. (006) 03.5.6.0006.0 bei kei 8,0 G 0, 6 0, 0, 0, 8 3, G,6 6, 3 0, 0,, 0,, ; 0 arg

http://functions.wolfram.com 6 Brychkov Yu.A. (006) Classical cases involving ber ber 03.5.6.0007.0 kei 8,0 G 0, 6 0,, 0, 0 8 3, G,6 6, 3 0,,, 0, 0, Brychkov Yu.A. (006) 03.5.6.0008.0 ber kei 8,0 G 0, 6 0,, 0, 0 8 3, G,6 6, 3 0,,, 0, 0, ; 0 arg Brychkov Yu.A. (006) Classical cases involving powers of ker kei 03.5.6.0009.0 ker 8 Brychkov Yu.A. (006),0 G 0, 6 0, 0, 0, kei 03.5.6.000.0 ker 5,0 G,6 6, 3 0, 0, 0,,, Brychkov Yu.A. (006) 03.5.6.00.0 kei ker 8,0 G 0, 6 0, 0, 0, ; arg Brychkov Yu.A. (006) 03.5.6.00.0 kei ker 5,0 G,6 6, 3 0, 0, 0,,, ; arg Brychkov Yu.A. (006) Classical cases involving ker kei 03.5.6.003.0 ker 8 5,0 G,6 6, 3 0, 0,,,, 0 Brychkov Yu.A. (006)

http://functions.wolfram.com 7 03.5.6.00.0 kei ker 8 G 5,0,6 6, 3 0, 0,,,, 0 ; arg Brychkov Yu.A. (006) Classical cases involving ber, bei and ker bei 03.5.6.005.0 kei ber Brychkov Yu.A. (006) ker,0 G 0, 6 0, 0, 0, bei 03.5.6.006.0 kei ber Brychkov Yu.A. (006) ker 5 3, G,6 6, 3 0, 0,, 0,, ber 03.5.6.007.0 kei bei Brychkov Yu.A. (006) ker 5 3, G,6 6, 3 0,,, 0, 0, bei 03.5.6.008.0 ker ber Brychkov Yu.A. (006) kei,0 G 0, 6 0,, 0, 0 03.5.6.009.0 bei kei ber ker,0 G 0, 6 0, 0, 0, ; arg Brychkov Yu.A. (006) 03.5.6.000.0 bei kei ber ker 5 3, G,6 6, 3 0, 0,, 0,, ; arg Brychkov Yu.A. (006) 03.5.6.00.0 ber kei bei ker 5 3, G,6 6, 3 0,,, 0, 0, ; arg Brychkov Yu.A. (006)

http://functions.wolfram.com 8 03.5.6.00.0 bei ker ber kei Brychkov Yu.A. (006),0 G 0, 6 0,, 0, 0 ; arg 3 3 arg arg Classical cases involving Bessel J 03.5.6.003.0 J 0 kei 8,0 G 0, 6 0, 0, 0,,0 G 0, 6 0,, 0, 0 3, G,6 6, 3 0,,, 0, 0, 3, G,6 6, 3 0, 0,, 0,, ; arg Classical cases involving Bessel I 03.5.6.00.0 I 0 kei 8,0 G 0, 6 0, 0, 0,,0 G 0, 6 0,, 0, 0 3, G,6 6, 3 0, 0,, 0,, 3, G,6 6, 3 0,,, 0, 0, ; arg Classical cases involving Bessel K K 0 03.5.6.005.0 kei 6,0 G 0,, 0, 0, 0, 8 6,0 G,6,, 3 0, 0, 0,,, ; arg 0 Classical cases involving 0 F 0F ; ; 03.5.6.006.0 kei 8,0 G 0, 6 0, 0, 0,,0 G 0, 6 0,, 0, 0 3, G,6 6, 3 0, 0,, 0,, 3, G,6 6, 3 0,,, 0, 0, 03.5.6.007.0 0F ; ; kei 8,0 G 0, 6 0, 0, 0,,0 G 0, 6 0,, 0, 0 3, G,6 6, 3 0, 0,, 0,, 3, G,6 6, 3 0,,, 0, 0, ; arg Generalied cases for the direct function itself

http://functions.wolfram.com 9 03.5.6.008.0 kei G 3,0 0,, 0,,, 0 Generalied cases for powers of kei 03.5.6.009.0 kei 6,0 G 0,, 0, 0, 0, G 5,0 7,6,, 3 0, 0, 0,,, Brychkov Yu.A. (006) Generalied cases involving bei 03.5.6.0030.0 bei kei 8,0 G 0,, 0, 0, 0, 8 3, G,6,, 3 0, 0,, 0,, Brychkov Yu.A. (006) Generalied cases involving ber 03.5.6.003.0 ber kei 8,0 G 0,, 0,, 0, 0 8 3, G,6,, 3 0,,, 0, 0, Brychkov Yu.A. (006) Generalied cases involving powers of ker 03.5.6.003.0 kei ker 8,0 G 0,, 0, 0, 0, Brychkov Yu.A. (006) 03.5.6.0033.0 kei ker G 5,0,6,, 3 0, 0, 0,,, Brychkov Yu.A. (006) Generalied cases involving ker 03.5.6.003.0 kei ker 8 G 5,0,6,, 3 0, 0,,,, 0 Brychkov Yu.A. (006) Generalied cases involving ber, bei and ker

http://functions.wolfram.com 0 03.5.6.0035.0 bei kei ber ker,0 G 0,, 0, 0, 0, Brychkov Yu.A. (006) 03.5.6.0036.0 bei kei ber ker Brychkov Yu.A. (006) 3, G,6,, 3 0, 0,, 0,, 03.5.6.0037.0 bei ker ber kei Brychkov Yu.A. (006) 3, G,6,, 3 0,,, 0, 0, 03.5.6.0038.0 bei ker ber kei,0 G 0,, 0,, 0, 0 Brychkov Yu.A. (006) Generalied cases involving Bessel J 03.5.6.0039.0 J 0 kei 8,0 G 0,, 0, 0, 0,,0 G 0,, 0,, 0, 0 3, G,6,, 3 0,,, 0, 0, 3, G,6,, 3 0, 0,, 0,, Generalied cases involving Bessel I 03.5.6.000.0 I 0 kei 8,0 G 0,, 0, 0, 0,,0 G 0,, 0,, 0, 0 3, G,6,, 3 0, 0,, 0,, 3, G,6,, 3 0,,, 0, 0, Generalied cases involving Bessel K K 0 03.5.6.00.0 kei 6,0 G 0,, 0, 0, 0, 8 6,0 G,6,, 3 0, 0, 0,,, ; arg 3

http://functions.wolfram.com Generalied cases involving 0 F 03.5.6.00.0 0F ; ; kei 8,0 G 0,, 0, 0, 0,,0 G 0,, 0,, 0, 0 3, G,6,, 3 0, 0,, 0,, 3, G,6,, 3 0,,, 0, 0, Representations through equivalent functions With related functions 03.5.7.000.0 kei K 0 Y 0 log log bei ber 03.5.7.000.0 kei 8 K 0 Y 0 log log I 0 log log J 0 kei 03.5.7.0003.0 I 0 3 J 0 K 0 K 0 J 0 Y 0 Y 0 3 arg True 03.5.7.000.0 kei ker log log J 0 Y 0 03.5.7.0005.0 kei ker 3 J 0 Y 0 Y 0 J 0 3 arg True 03.5.7.0006.0 kei ker I 0 log log K 0 03.5.7.0007.0 kei ker I 0 K 0 K 0 3 arg True Theorems History

http://functions.wolfram.com Copyright This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/notations/. Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example: http://functions.wolfram.com/constants/e/ To refer to a particular formula, cite functions.wolfram.com followed by the citation number. e.g.: http://functions.wolfram.com/0.03.03.000.0 This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com. 00-008, Wolfram Research, Inc.