Supporting Information: Expanding the Armory: Predicting and Tuning Covalent Warhead. Reactivity.

Σχετικά έγγραφα
Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Supporting Information for: electron ligands: Complex formation, oxidation and

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Table of Contents 1 Supplementary Data MCD

Electronic Supplementary Information

difluoroboranyls derived from amides carrying donor group Supporting Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

ELECTRONIC SUPPORTING INFORMATION

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

SUPPLEMENTARY INFORMATION

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Butadiene as a Ligand in Open Sandwich Compounds

Electronic Supplementary Information:

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Supporting Information

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Supporting Information

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

of the methanol-dimethylamine complex

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Oxazines: A New Class Of Second-Order Nonlinear Optical Switches Supporting Information

Supporting Information

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Supplementary Information

Supporting Information

Supporting Information

Fused Bis-Benzothiadiazoles as Electron Acceptors

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supporting Information

Electronic Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003 Chem. Eur. J Supporting Information. for

Supplementary materials

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

Supporting Information

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Supporting Information

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Synthesis and Photophysical Properties of Novel Donor- Acceptor N-(Pyridin-2-Yl) Substituted Benzo(thio)amides and Their Difluoroboranyl Derivatives

Supporting Information

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

January 22, University of Minnesota, Minneapolis, Minnesota , USA

Electronic Supplementary Information (ESI)

Supporting Information: Design principles for α-tocopherol analogues

Structural Expression of Exo-Anomeric Effect

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supplementary Information for

Electronic structure and spectroscopy of HBr and HBr +

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

phase: synthesis of biaryls, terphenyls and polyaryls

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Electronic Supplementary Information

Supporting Information

* To whom correspondence should be addressed.

Supporting Information

Electronic Supplementary Information

Electronic Supplementary Information for

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Electronic Supplementary Information

Switching of the Photophysical Properties of. Bodipy-derived Trans Bis(tributylphosphine) Pt(II) bisacetylide Complexes with Rhodamine

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Synthesis of α-deoxymono and -Difluorohexopyranosyl. 1-Phosphates and Kinetic Evaluation with Thymidylyl- and. Guanidylyltransferases

Supporting Information. for. Fe L-edge XAS studies of K 4 [Fe(CN) 6 ] and K 3 [Fe(CN) 6 ]: a direct probe of back-bonding

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Supporting Information. Experimental section

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

Uncovering the impact of capsule shaped amine-type ligands on. Am(III)/Eu(III) separation

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Molecular Tweezers with Varying Anions - A Comparative Study

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Transcript:

Supporting Information: Expanding the Armory: Predicting and Tuning Covalent Warhead Reactivity. Richard Lonsdale, Jonathan Burgess, Nicola Colclough, Nichola Davies, Eva M. Lenz, Alexandra L. Orton and Richard A. Ward* Chemistry and DMPK, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK * Richard.A.Ward@astrazeneca.com Contents Table S1. GSH t 1/2 data for compounds 1, 3 and 8-52.... S3 Table S2. Experimental pk a values for Compounds 3a, 8a-17a, 19a, 25a-34a, 37a, 55a-57a.... S4 Table S3. GSH t 1/2 and QM data for compounds 56-86 containing a 2-chloroacetamide covalent warhead.... S5 Table S4. QM energies of compounds (E C ), Me-S adducts (E Add ), transition states (E TS ) and LUMO (E LUMO ) for 8-23. All energies calculated in Hartree at the M06-2X/6-31+G(d,p)-IEF-PCM level.... S6 Figure S1. Geometries and energies of (a) transition state and (b) adduct formed during model reaction of 12 with MeS-. Calculated at the M06-2X/6-31+G(d,p)-IEF-PCM level relative to separate reactants.... S7 Figure S2. Plot of GSH half-life of aryl acrylamide compounds 8-23 against LUMO energy. Energies were calculated at the M06-2X/6-31+G(d,p)-IEF-PCM level.... S7 Figure S3. Plot of GSH half-life of aryl acrylamide compounds 3 and 8-52 against LUMO energy. Energies were calculated at the M06-2X/6-31+G(d,p)-IEF-PCM level.... S8 Figure S4. Lowest unoccupied molecular orbital (LUMO) of 24... S8 Figure S5. Plot of GSH t 1/2 against 13 C NMR chemical shift (in ppm) for compounds 8-17 and 19.... S9 Figure S6. Plot of GSH t 1/2 against 1 H NMR chemical shift (in ppm) for compounds 8-17 and 19.... S9 Figure S7. Plot of GSH t1/2 against adduct formation energy for compounds 8-17 and 19. Energies were calculated at the M06-2X/6-31+G(d,p)-IEF-PCM level.... S10 Figure S8. Plot of measured against calculated 13 C chemical shifts for C b of compounds 8-17 and 19.... S10 S1

Figure S9. Plot of measured against calculated pka for compounds 3a, 8a-17a, 19a, 25a-33a, 36a and 53a-55a.... S11 Figure S10. Plot of GSH half-life of parent acrylamide X against calculated pk a of stripped acrylamide Xa for vinyl sulphonamides... S11 Figure S11. Plot of GSH t 1/2 against Hammett parameter σ ind for aromatic 6-membered 2- chloroacetamides.... S12 Cartesian coordinates [in Å] of QM optimized geometry of compound 12 (optimized at the IEF-PCM- M06-2X/6-31+G(d,p) level)... S13 Cartesian coordinates [in Å] of QM optimized geometry of the adduct of compound 12 with MeS- (optimized at the IEF-PCM-M06-2X/6-31+G(d,p) level)... S14 Cartesian coordinates [in Å] of QM optimized geometry of the transition state to adduct formation of compound 12 with MeS- (optimized at the IEF-PCM-M06-2X/6-31+G(d,p) level)... S15 References... S16 S2

Table S1. GSH t 1/2 data for compounds 1, 3 and 8-52. Cpd SMILES GSH t 1/2 [min] 1 Fc1c(cc(cc1)Nc2ncnc3c2cc(c(c3)O[C@@H]4COCC4)NC(=O)\C=C\CN(C)C)Cl 25 3 n1(nc(c2c1ncnc2n)-c3ccc(cc3)oc4ccccc4)[c@h]5cn(ccc5)c(=o)c=c 1180 8 C=CC(=O)Nc1ccc(cc1)N 816 9 C=CC(=O)Nc1ccc(cc1)F 323 10 C=CC(=O)NCc1ccccc1 2940 11 CN(c1ccccc1)C(=O)C=C 436 12 C=CC(=O)Nc1ccccc1 299 13 Cc1ccccc1NC(=O)C=C 428 14 COc1ccc(cc1)NC(=O)C=C 524 15 C=CC(=O)Nc1ccccc1C#N 37.2 16 C=CC(=O)Nc1cccc(c1)F 145 17 Cc1ccc(cc1)NC(=O)C=C 361 18 C=CC(=O)Nc1ccccn1 22 19 C=CC(=O)Nc1ccc(cc1)C#N 32.9 20 CC(=C)C(=O)NC(C)(C)c1ccccc1 >8640 21 CC(=C)C(=O)Nc1ccccc1 >10 000 22 CC(=CC(=O)Nc1ccccc1)C >10 000 23 C=CC(=O)Nc1ccc(cc1)N >10 000 24 Fc1c(cccc1Nc2ncnc3c2cc(c(c3)OC)OC4CCN(CC4)C(=O)C=C)Cl 1640 25 s2c1ncnc(c1cc2-c3n(cnc3-c4ccccc4)cc5n(ccc5)c(=o)c=c)n 1700 26 N3(CCc1c(nc(nc1)NC2CCOCC2)C3)C(=O)C=C 252 27 N1([C@@H](CCC1)C(=O)Nc3c(cc2ncc(c(c2c3)Nc4cc(ccc4)CC)C(=O)N)OC)C (=O)C=C 211 28 n1(ncc(c1)-c2nc(c(nc2)n)-n3nnc4c3cccc4)c5ccn(cc5)c(=o)c=c 949 29 Ic1c(cc(c(c1)NCC(=O)N2CCN(CC2)C(=O)C=C)O)Cl 367 30 Clc1c(cc(c(c1)NCC(=O)N2CCN(CC2)C(=O)C=C)OC)Cl 400 31 N1(CCN(CC1)C(=O)C=C)c2ncc(cn2)-c3ccccc3 691 32 Fc1ccc(cc1)S[C@@H]2CN([C@@H](C2)C(=O)NCc3ccc(cc3)F)C(=O)C=C 90.8 33 2850 34 Clc1c(nc(nc1)Nc2c(ccc(c2)NC(=O)\C=C\CN(C)C)OC)-c3c4n(nc3)cccc4 352 35 Clc1ccc(cc1)C=CS(=O)(=O)N2CCN(CC2)C(=O)C=C 283 36 N(C(C(O)c1cc(ccc1)OC)(C)C)C(=O)C=C 3160 37 S(=O)(=O)(N1C4CCC1c2c([nH]nc2-c3cc(ncc3)C)C4)C=C 49 38 [nh]1nc(c2c1ccc(c2)nc(=o)c#c)-c3ccncc3 <52 39 S(=O)(=O)(Nc1ccc(cc1)NC(=O)C)C=C 28.7 40 S(=O)(=O)(Nc1c(cccc1C)C)C=C 181 41 Clc1ccc(cc1)NS(=O)(=O)C=C 22.2 42 N(c1cnc(cc1)OC)C(=O)C#C 14.8 43 S(=O)(=O)(N2Cc1ncccc1C2)C=C 10.5 44 S(=O)(=O)(N1CCC(CC1)Nc2nc(ccn2)-c3n(c(nc3)C)C(C)C)C=C 49.5 45 Fc1c(cccc1Nc2ncnc3c2cc(c(c3)OC)OC4CCN(CC4)S(=O)(=O)C=C)Cl 55.7 46 Clc1c(cc(c(c1)OCC(=O)N2CCC(CC2)NS(=O)(=O)C=C)O)Cl 180 47 Clc1c(cc(c(c1)NCC(=O)N2CCN(CC2)S(=O)(=O)C=C)OC)Cl 17.5 S3

48 Clc1c(cc(c(c1)NCC(=O)N2CCC(CC2)NC(=O)C#C)OC)Cl 77.4 49 Clc1c(cc(c(c1)NCC(=O)N2CCN(CC2)C(=O)C#C)OC)Cl 24.1 50 Clc1c(cc(c(c1)NCC(=O)N2[C@@H]3CN([C@H](C2)C3)S(=O)(=O)C=C)OC)C l 33.3 51 N(c1onc(c1)-c2ccccc2)C(=O)C=C 4.09 52 s1c(nc(c1)-c2ccccc2)nc(=o)c=c 4.38 Table S2. Experimental pk a values for Compounds 3a, 8a-17a, 19a, 25a-34a, 37a, 55a-57a. Cpd SMILES Exp pk a B1 Source 3a c1ccc(cc1)oc2ccc(cc2)c3c4c(ncnc4n(n3)[c@@h]5cccnc5)n 8.79 Internal 8a c1cc(ccc1n)n 6.16 1 9a c1cc(ccc1n)f 4.64 2 10a c1ccc(cc1)cn 9.40 3 11a CNc1ccccc1 4.85 4 12a c1ccc(cc1)n 4.60 5 13a Cc1ccccc1N 4.57 5 14a COc1ccc(cc1)N 5.25 6 15a c1ccc(c(c1)c#n)n 1.80 7 16a c1cc(cc(c1)f)n 3.59 2 17a Cc1ccc(cc1)N 5.08 6 19a c1cc(ccc1c#n)n 1.74 8 24a COc1cc2c(cc1OC3CCNCC3)c(ncn2)Nc4cccc(c4F)Cl 9.47 Internal 25a c1ccc(cc1)c2c(n(cn2)c[c@h]3cccn3)c4cc5c(ncnc5s4)n 8.49 Internal 26a c1c2c(nc(n1)nc3ccocc3)cncc2 4.95 Internal 27a CCc1cccc(c1)Nc2c3cc(c(cc3ncc2C(=O)N)OC)NC(=O)[C@@H]4CC CN4 8.25 Internal 28a c1ccc2c(c1)nnn2c3c(ncc(n3)c4cnn(c4)c5ccncc5)n 9.08 Internal 29a c1c(c(cc(c1i)cl)o)ncc(=o)n2ccncc2 7.82 Internal 30a COc1cc(c(cc1NCC(=O)N2CCNCC2)Cl)Cl 7.91 Internal 31a c1ccc(cc1)c2cnc(nc2)n3ccncc3 8.65 Internal 32a c1cc(ccc1cnc(=o)[c@@h]2c[c@@h](cn2)sc3ccc(cc3)f)f 7.08 Internal 33a 9.45 Internal 36a CC(C)([C@H](c1cccc(c1)OC)O)N 9.25 Internal 53a c1ccc(cc1)c(c2ccccc2)n 8.15 Internal 54a c1cc2c(cc1[n+](=o)[o-])nccn2 2.97 Internal 55a CS(=O)(=O)c1ccc(cc1)c2ccc(nc2)N3CCNCC3 8.72 Internal S4

Table S3. GSH t 1/2 and QM data for compounds 56-86 containing a 2-chloroacetamide covalent warhead. Cpd SMILES GSH t ½ [min] LUMO [Hartree] C-Cl distance [Å] 56 c1cc(ccc1nc(=o)ccl)[n+](=o)[o-] 78-0.094 1.819 Y 57 CC(=O)c1ccc(cc1)NC(=O)CCl 110-0.066 1.820 Y 58 c1cc(cc(c1)f)nc(=o)ccl 153-0.031 1.822 Y 59 c1cc(ccc1nc(=o)ccl)br 164-0.033 1.821 Y 60 Cc1ccc(cc1)NC(=O)CCl 219-0.023 1.823 Y 61 CCOc1ccc(cc1)NC(=O)CCl 235-0.019 1.823 Y 62 Cc1ccccc1NC(=O)CCl 337-0.026 1.825 Y 63 c1ccc(c(c1)c(f)(f)f)nc(=o)ccl 449-0.040 1.822 Y 64 ClCC(=O)Nc1ccc(cc1)Cl 168 nd nd nd 65 ClCC(=O)Nc1c(cccc1)C(=O)NCc2cccc c2 370 nd nd nd 66 ClCC(=O)Nc1c(cccc1)C=O 157 nd nd nd 67 FC(F)(F)c1cc(ccc1)NC(=O)CCl 155 nd nd nd 68 ClCC(=O)Nc1ccc(cc1)S(=O)(=O)NCC O 108 nd nd nd 69 [N+](=O)([O-])c1cc(ccc1)NC(=O)CCl 122 nd nd nd 70 ClCC(=O)Nc1ccc(cc1)SC 186 nd nd nd 71 ClCC(=O)Nc1ccc(cc1)CO 172 nd nd nd 72 ClCC(=O)Nc1c(cccc1)OC 321 nd nd nd 73 ClCC(=O)Nc1ccc(cc1)C(=O)N(C)C 179 nd nd nd 74 c1ccc2c(c1)ccn2c(=o)ccl 20.9-0.043 1.832 N 75 c1cc(ccc1/c=c/s(=o)(=o)n2ccn(cc 2)C(=O)CCl)Cl 37.1-0.068 1.828 N 76 c1ccc2c(c1)nc(nn2)nc(=o)ccl 41.3-0.106 1.819 Y 77 Cc1csc(c1C#N)NC(=O)CCl 47.2-0.058 1.816 Y 78 c1ccc(cc1)n2ccn(cc2)c(=o)ccl 51.3-0.004 1.805 N 79 CN(Cc1ccccc1)C(=O)CCl 57-0.009 1.806 N 80 C(C(=O)Nc1c(c(nc(c1F)F)F)F)Cl 102-0.060 1.818 Y 81 CN(c1ccccc1)C(=O)CCl 145-0.020 1.804 N 82 Cc1ccc(cc1NC(=O)CCl)C#N 193-0.053 1.824 Y 83 c1ccc(cc1)nc(=o)ccl 199-0.025 1.823 Y 84 COc1ccc(c(c1)NC(=O)CCl)OC 258-0.027 1.822 Y 85 c1ccc(cc1)ccnc(=o)ccl 615-0.005 1.824 Y 86 CC(C)(CNC(=O)CCl)c1ccccc1 667-0.005 1.826 Y C-Cl parallel to N-H? S5

Table S4. QM energies of compounds (E C ), Me-S adducts (E Add ), transition states (E TS ) and LUMO (E LUMO ) for 8-23. All energies calculated in Hartree at the M06-2X/6-31+G(d,p)-IEF-PCM level. Cpd E C E Add E TS E LUMO 8-533.519612-971.684934-971.680349-0.025 9-577.387051-1015.555853-1015.550010-0.029 10-517.471063-955.635186-955.632336-0.017 11-517.455696-955.626958-955.619201-0.026 12-478.176191-916.344682-916.338913-0.029 13-517.475112-955.643819-955.637670-0.029 14-592.659622-1030.826255-1030.821269-0.026 15-570.395715-1008.571451-1008.562628-0.045 16-577.387853-1015.559736-1015.552813-0.032 17-517.474889-955.642318-955.637024-0.028 18-494.219927-932.391978-932.384519-0.035 19-570.398385-1008.573337-1008.564214-0.045 20-635.362570-1073.518253-1073.514498-0.006 21-517.475109-955.638178-955.634141-0.026 22-556.776120-994.935553-994.930844-0.018 23-517.478269-955.642203-955.637399-0.023 S6

Figure S1. Geometries and energies of (a) transition state and (b) adduct formed during model reaction of 12 with MeS-. Calculated at the M06-2X/6-31+G(d,p)-IEF-PCM level relative to separate reactants. Figure S2. Plot of GSH half-life of aryl acrylamide compounds 8-23 against LUMO energy. Energies were calculated at the M06-2X/6-31+G(d,p)-IEF-PCM level. S7

Figure S3. Plot of GSH half-life of aryl acrylamide compounds 3 and 8-52 against LUMO energy. Energies were calculated at the M06-2X/6-31+G(d,p)-IEF-PCM level. Figure S4. Lowest unoccupied molecular orbital (LUMO) of 24 S8

Figure S5. Plot of GSH t 1/2 against 13 C NMR chemical shift (in ppm) for compounds 8-17 and 19. Figure S6. Plot of GSH t 1/2 against 1 H NMR chemical shift (in ppm) for compounds 8-17 and 19. S9

Figure S7. Plot of GSH t1/2 against adduct formation energy for compounds 8-17 and 19. Energies were calculated at the M06-2X/6-31+G(d,p)-IEF-PCM level. Figure S8. Plot of measured against calculated 13 C chemical shifts for C b of compounds 8-17 and 19. S10

Figure S9. Plot of measured against calculated pka for compounds 3a, 8a-17a, 19a, 25a-33a, 36a and 53a-55a. Figure S10. Plot of GSH half-life of parent acrylamide X against calculated pk a of stripped acrylamide Xa for vinyl sulphonamides S11

Figure S11. Plot of GSH t 1/2 against Hammett parameter σ ind for aromatic 6-membered 2- chloroacetamides. S12

Cartesian coordinates [in Å] of QM optimized geometry of compound 12 (optimized at the IEF-PCM- M06-2X/6-31+G(d,p) level) 20 Compound 12 C 0.68200-0.29730-0.00060 N -0.67370-0.67990-0.00120 C 1.63130-1.32990 0.00070 C 1.11160 1.03620-0.00140 C -1.78730 0.11080 0.00010 C 2.98990-1.03700 0.00120 C 2.47980 1.31240-0.00090 C -3.06890-0.65700-0.00110 O -1.75320 1.33870 0.00190 C 3.42470 0.28950 0.00040 C -4.23690-0.01660 0.00070 H -0.83690-1.67840-0.00210 H 1.29890-2.36470 0.00140 H 0.38810 1.83840-0.00250 H 3.70890-1.85020 0.00220 H 2.80330 2.34890-0.00160 H -3.02080-1.74300-0.00330 H 4.48500 0.51950 0.00080 H -5.17690-0.55710-0.00010 H -4.26600 1.06930 0.00290 S13

Cartesian coordinates [in Å] of QM optimized geometry of the adduct of compound 12 with MeS- (optimized at the IEF-PCM-M06-2X/6-31+G(d,p) level) 25 Compound 12 SMe adduct S 4.23460-0.08380 0.38860 C 3.03090-0.45000-1.02000 C 1.71810-0.98630-0.62070 C 0.59390-0.16810-0.56560 O 0.52150 1.05740-0.88630 N -0.59360-0.81240-0.10050 C -1.89210-0.34610-0.01000 C -2.30310 0.95870-0.35440 C -3.64050 1.32850-0.21800 C -4.60540 0.43880 0.25420 C -4.20290-0.85510 0.59490 C -2.87520-1.24210 0.46650 C 3.20470 1.04180 1.36540 H 2.91550 0.49160-1.56360 H 3.61930-1.13830-1.63530 H 1.65060-2.02090-0.29410 H -0.47120-1.78040 0.16320 H -1.56550 1.65810-0.72030 H -3.92830 2.34070-0.49050 H -5.64210 0.74290 0.35420 H -4.92860-1.57330 0.96630 H -2.58120-2.25330 0.73800 H 3.66370 1.16520 2.34770 H 3.11610 2.01650 0.88070 H 2.21110 0.59880 1.47630 S14

Cartesian coordinates [in Å] of QM optimized geometry of the transition state to adduct formation of compound 12 with MeS- (optimized at the IEF-PCM-M06-2X/6-31+G(d,p) level) 25 Compound 12 SMe transition state S -4.22810-0.49880 0.31870 C -2.95320 0.93560-0.97930 C -1.73300 1.27420-0.39920 C -0.58080 0.44450-0.60280 O -0.56290-0.59700-1.28910 N 0.58060 0.89300 0.03410 C 1.86370 0.34630 0.04100 C 2.20340-0.88410-0.54800 C 3.51790-1.34650-0.47470 C 4.51300-0.61750 0.17380 C 4.17440 0.60370 0.76100 C 2.87100 1.08020 0.69620 C -2.94060-0.95250 1.50960 H -2.92720 0.25530-1.82320 H -3.73340 1.68700-1.01980 H -1.66150 2.11420 0.28620 H 0.48470 1.76310 0.54000 H 1.44160-1.45920-1.05340 H 3.76040-2.29960-0.93620 H 5.53050-0.99080 0.22240 H 4.92940 1.19260 1.27320 H 2.62030 2.03300 1.15590 H -3.28940-0.83310 2.53780 H -2.59870-1.98110 1.36960 H -2.08300-0.27780 1.35650 S15

References 1. Willi, A. V., Die Substituentenwirkung der NH3+-Gruppe auf die Ionisationskonstante einer aromatischen Base. Z. Phys. Chem. 1961, 27, 233-238. 2. Biggs, A. I.; Robinson, R. A., The ionisation constants of some substituted anilines and phenols: a test of the Hammett relation. J. Chem. Soc. 1961, 0, 388-393. 3. Mayer, J. M.; Testa, B.; van der Waterbeemd, H.; Bornand-Crausaz, A., Deviations in the Log-P of Protonated Arylalkylamines and in their Apparent Log-P. Eur. J. Med. Chem. 1982, 17, 461-466. 4. Horrobin, S., The hydrolysis of some chloro-1,3,5-triazines: mechanism: structure and reactivity. J. Chem. Soc. 1963, 4130. 5. Bolton, P. D.; Hall, F. M., Thermodynamic functions of ionization of the Anilinum and Toluidinium Ions. Australian J. Chem. 1967, 20, 1797. 6. Willi, A. V.; Meier, W., Die Hammett'schen σ-werte der Gruppen [BOND]NH2 und [BOND]NH3+. Zwitterionen-Bildungsgleichgewichte in Lösungen aromatischer Aminosäuren. Helv. Chim. Acta 1956, 39, 318-322. 7. Vandenbelt, J. M.; Henrich, C.; Vanden Berg, S. G., Comparison of pká Values Determined by Electrometric Titration and Ultraviolet Absorption Methods. Anal. Chem. 1954, 26, 726-727. 8. Fickling, M. M.; Fischer, A.; Mann, B. R.; Packer, J.; Vaughan, J., Hammett Substituent Constants for Electron-withdrawing Substituents: Dissociation of Phenols, Anilinium Ions and Dimethylanilinium Ions. J. Am. Chem. Soc. 1959, 81, 4226-4230. S16