Proposal of Flux-Weakening Control for SPMSM Based on Final State Control Considering Voltage Limit

Σχετικά έγγραφα
Proposal of Torque Feedforward Control with Voltage Phase Operation for SPMSM

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

HDD. Point to Point. Fig. 1: Difference of time response by location of zero.

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

AC Servo Motor Based Position Sensorless Control System Making Use of Springs

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Gain self-tuning of PI controller and parameter optimum for PMSM drives

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

DC SERVO MOTORS. EC057B Series Salient Characteristics E E

EL 625 Lecture 2. State equations of finite dimensional linear systems

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ.

ΑΚΑΓΗΜΙΑ ΔΜΠΟΡΙΚΟΤ ΝΑΤΣΙΚΟΤ ΜΑΚΔΓΟΝΙΑ ΥΟΛΗ ΜΗΥΑΝΙΚΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ

Assignment 1 Solutions Complex Sinusoids

DATA SHEET Surface mount NTC thermistors. BCcomponents

Thermistor (NTC /PTC)

Metal Oxide Varistors (MOV) Data Sheet

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

5V/9V/12V Output QC2.0+USB Auto Detect+USB-PD Type-C Application Report ACT4529

FP series Anti-Bend (Soft termination) capacitor series

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

SCOPE OF ACCREDITATION TO ISO 17025:2005

Instruction Execution Times

38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS

DC SERVO MOTORS Previous N23XX Series. EC057C Series Salient Characteristics

SMD Power Inductor-VLH

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Harmonic analysis of armature current for high speed permanent magnet synchronous motor

Bulletin 1489 UL489 Circuit Breakers

555 TIMER APPLICATIONS AND VOLTAGE REGULATORS

15W DIN Rail Type DC-DC Converter. DDR-15 series. File Name:DDR-15-SPEC

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Computation Method to Improve Three-phase Voltage Imbalance by Exchange of Single-phase Load Connection

MAX-QUALITY ELECTRIC CO; LTD Thin Film Precision Chip Resistors. Data Sheet

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

TRC ELECTRONICS, INC LED Driver Constant Voltage 45W MEAN WELL IDLV-45 Series

Digital motor protection relays

SMD Power Inductor-VLH

Buried Markov Model Pairwise

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

15W DIN Rail Type DC-DC Converter. DDR-15 s e r i e s. File Name:DDR-15-SPEC

SMD Transient Voltage Suppressors

Input Ranges : 9-75 VDC

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC

Comparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

No-load iron loss of permanent magnet synchronous motors

IDPV-45 series. 45W PWM Output LED Driver. File Name:IDPV-45-SPEC S&E

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Rotor Design and Analysis of 4/2 SRMs to Produce Continuous Torque using Finite Element Method

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

MICROMASTER Vector MIDIMASTER Vector

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Expansion formulae of sampled zeros and a method to relocate the zeros

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

E62-TAB AC Series Features

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

OWA-60E series IP67. 60W Single Output Moistureproof Adaptor. moistureproof. File Name:OWA-60E-SPEC

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

[1] P Q. Fig. 3.1

Monolithic Crystal Filters (M.C.F.)

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Second Order RLC Filters

Current Sense Metal Strip Resistors (CSMS Series)

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Utkin Walcott & Zak ¼


Prey-Taxis Holling-Tanner

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

DC040B Series Salient Characteristics

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA

60W AC-DC High Reliability Slim Wall-mounted Adaptor. SGA60E series. File Name:SGA60E-SPEC

Quartz Crystal Test Report

6.003: Signals and Systems. Modulation

Output Power: W. Exclusively distributed by Powerstax

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

SMC SERIES Subminiature Coaxial Connectors

Transcript:

SPC-11-8 SPMSM Proposal of Flux-Weakening Control for SPMSM Based on Final State Control Considering Voltage Limit Takayuki Miyajima (Yokohama National University) Hiroshi Fujimoto (The University of Tokyo) Masami Fujitsuna (DENSO CORPORATION) Abstract SPMSMs (Surface Permanent Magnet Synchronous Motors) are employed for many industrial applications. SPMSM drive systems should achieve fast torque response and wide operating range. In this paper, in order to fulfill fast response, flux-weakening control based on final state control (FSC) is proposed. FSC settles state variables in final states with feedforward input during finite time. Previously, FSC considering input limit with linear matrix inequality was proposed. It is adapted to two input and two output system as SPMSM in this paper. Finally, simulations and experiments are performed to show that proposed method can achieve fast flux-weakening control. PWM (SPMSM, voltage limit, PWM hold model, final state control, linear matrix inequality ) 1. (SPMSM) d, q (1) PWM () (FF) (3) (4) FF d, q FF (5) (6) (7) (8) (9) (1) (11) (FB) FF (1) (FSC) (13) (14) (LMI) (15) SPMSM d, q FF PWM. SPMSM dq 1 SPMSM dq SPMSM dq y = x = ] T, u = v d v q ] T (1), (), (3) ] } T ẋ(t)=a c(ω e)x(t)b c {u(t) ω ek e (1) y(t)=c c x(t) () ] R 1 ω Ac(ω L e L e) B c := ω e R 1 L L (3) C c I v d, q : d, q R: L: ω e :, q : d, q K e : T (4) T = K mt (4) K mt = P K e, P : 1/6

qaxis Decoupling Control max T T k] Current Reference Generator i dk] i qk] C d z] C q z] T u T u T d k] T q k] SVM θ ek] θ ek] i u k] SPMSM i w k] uw θ e k] INV dq k] k] min K mt daxis 1 1 Fig. 1. Block diagram of conventional method 1 Fig.. Point at the intersection of voltage limit circle with constant torque line PWM V k], ±E(E: ) () PWM (5) (6), (7) ON T k] ẋ(t) = A c x(t) B c u(t), y(t) = C c x(t) (5) xk 1] = A s xk] B s T k], yk] = C s xk] (6) A s := e AcTu, B s := e AcTu/ B c E, C s := C c (7) 1 (6), (7), E E T k] 3 SPMSM PWM (1) PWM 1 ω ek e T u E = ( : PWM (8), (9), (1) T = T d ) xk 1] = A s (ω e )xk] B s (ω e ) T q ] T ( T d, q : d, q ON { T k] ] } T ω e K e T u (8) yk] = C sxk] = C cxk] (9) A s (ω e ) := e A c(ω e )T u, B s (ω e ) := e A c(ω e ) Tu Bc (1) SPMSM (16) 3. 3 1 1 1 1 (11), (1) FB (13) PI C d, q (s) T u Tustin C d, q z] vd v V q > V max(v max := 3 dc : ) C d, q z] v ref d k]=v d ref k] ω e k]l q k] (11) vq ref k]=v qref k] ω ek](l d k] K e) (1) C d, q (s)= L d, qs R, τ = 1T u (13) τs (T : ) d, q i d, i q (14), (15), (16), (17) i dk] = ω ek e L R ωel (i q max )(i q min ) (14) max if T k] > K mt max i qk] = min elseif T k] < K mt min (15) otherwise T k] K mt max := ω ek e R V a R ω el R ω el (16) min := ω ek e R V a R ω el R ω el (17) V a i dk] > i dk] = (Space Vector Modulation: SVM) θ e (=.5ω e T u ) (17) (18) T T k] k] = T k] Tmax if T k] > Tmax (18) T k] otherwise T k] = T d k] T q k]] T (19) 3 T T max (:= 3 u ): dq ON T a T k]: 3 3 3 /6

T k] T k] Current i k] Reference Generator C1z] B 1 s (ωe)as(ωe)ˆxk] B 1 s (ωe)i k] ωeketu/vdc] T T ffk] T ffk] T k] ˆxk] Pnz] 3 Tu I Vdc Cz] ek] ik] HPWM (SVM) θek] θek] θek] dq uw Fig. 3. Block diagram of conventional method Current Reference Generator Fig. 4. i k] C 1z] 4 T ffk] T k] H PWM (SVM) T ffk] ˆxk] P nz] T u I C z] ek] θ ek] θ ek] ik] θ ek] dq uw Block diagram of proposed method SPMSM INV S (Tu) S (Tu) SPMSM INV FF C 1z] FB C z] (8) () T ff k]=b 1 (ω e)a(ω e)ˆxk]b 1 (ω e)x dk 1] ] T ω ek et u V () dc FF C 1 z] FF C 1z] ˆxk] := î d k] î qk]] T 1 i k1] (18) FB C z] C z] 1 FB C d z], C qz] 1 3 3 FF C 1z] 4, 5 FF () FF FSC FF FB 3 3 1 SPMSM LMI LMI (8) SPMSM PWM i k] 5 Fig. 5. FSC Trajectory Generator Eq. () B 1 s (ωe)as(ωe)ˆxk] B1 s (ωe)i k] ω ek et u/] T C 1z] C 1 z] T ffk] Feedforward controller C 1 z] of proposed method k =, 1,, N 1 (1) ω e = const. Y = ΣU (1) Y := xn] A N d x] ΣU EMF () ] Σ := A N1 d B d A N d B d B d (3) T U := T T ] T T 1] T T N 1]] (4) U EMF := ω ek e T ] T u 1 1 (5) (1) FF U (6) J = E T QE, Q > (6) E := e1] T e] T en] T ] T (7) ek] := i xk] = i d i q] T xk] (8) ] T A := A d A d A N d (9) B d A d B d B d B :=........ (3) A N1 d B d A N d B d B d I := (i ) T (i ) T (i ) T T (31) E (3) E = I Ax] B (U U EMF ) (3) Σ ΣΣ =, ΣΣ = I Σ R N (N), Σ R N (33) Ũ U := Σ Σ ]Ũ (33) (33) (1) Y = I ]Ũ q R (N) 1 ] T Ũ = Y q (34) (6) (3), (33), (34) (35) 3/6

1 SPMSM Table 1. Parameters of SPMSM Inductance L 1.8 mh] Resistance R.157 mω] Pairs of poles P 4 Back EMF constant K e 74.6 mv/(rad/s)] J = R(q) S(q) T QS(q) (35) ) Z := I Ax] B (Σ Y U EMF (36) R(q) := Z T QZ Z T QS(q) (37) S(q) := BΣ q (38) γ J < γ LMI (39) (14) ] γ R(q) S(q) T > (39) S(q) Q 1 LMI SPMSM (4) T T k] T k] = Td k] Tq k] Tmax (k =, 1, N 1) (4) g(i) R N (i := k 1) 1 i i 1 1 g(i) g(i) (41) kt u T k] T k] = g(i)u(q) (41) g(i) (4) (4) {g(i)u(q)} T (g(i)u(q)) Tmax (4) (4) N LMI (43) ] I g(i)u(q) (43) U(q) T g(i) T T max i = k 1, k =, 1, N 1 (39), (43) γ q SPMSM PWM x] xn] N FF U PWM FF 4. SPMSM 1 T u =.1 ms], =36 V] 1 rpm] 6 V a V a =.95V max dq ON T a, dq ON ( )δ (44), (45) T a = T d T q (44) δ = tan 1 T d T q (45) 6(c), 6(g), 6(k) T max 1 ( ) FB FB FF 1 Q = I N N = 38 FSC q d d d q FB FF 5. 1 rpm] = 8 V] n 36 V] n / θ =.9ω et u 7 d 1 FB FF 1 N = 38 FSC 4/6

1 1 (a) (Conventional1) 1 (e) (Conventional) (i) (Proposed) 14 1 1 8 6 4 14 1 1 8 6 (b) (Conventional1) 4 14 1 1 8 6 (f) (Conventional) 4 (j) (Proposed) 6 Fig. 6. FSC FF N () FF d q d q 38 6. PWM N FB FB d, q FB Amplitude of input ms] Amplitude of input ms] Amplitude of input ms].8.75.7.65.6 (c) T a (Conventional1).8.75.7.65.6 (g) T a (Conventional).8.75.7.65.6 Simulation results (k) T a (Proposed) Angle of Input rad] Angle of Input rad] Angle of Input rad].8.6.4...8.6.4. (d) δ (Conventional1)..8.6.4. (h) δ (Conventional). (l) δ (Proposed) FB 1 H. Fujimoto, Y. Hori, and A. Kawamura: Perfect Tracking Control based on Multirate Feedforward Control with Generalized Sampling Periods, IEEE Trans. Ind. Eletron., Vol. 48, No. 3, pp. 636 644, 1. K. P. Gokhale, A. Kawamura, and R. G. Hoft: Deat beat microprocessor control of PWM inverter for sinusoidal output waveform synthesis, IEEE Trans. Ind. Appl., Vol. 3, No. 3, pp. 91 91, 1987. 3 T. Miyajima, H. Fujimoto, and M. Fujitsuna: Control Method for IPMSM Based on Perfect Tracking Control and PWM Hold Model in Overmodulation Range, IPEC-Sapporo 1, pp. 593-598, 1. 4 T. Miyajima, H. Fujimoto, and M. Fujitsuna: Control Method for IPMSM Based on PWM Hold Model in Overmodulation Range -Study on Robustness and Comparison with Anti-Windup Control-, IEE of Japan Technical Meeting Record, SPC-1-9, pp. 53 58, 1 (in Japanese). 5 J.-K. Seok, J.-S. Kim, and S.-K. Sul: Overmodulation Strategy for High-Performance Torque Control, IEEE Trans. Power Electronics, Vol. 13, No. 4, pp. 786 79, 1998. 6 B.-H. Bae and S.-K. Sul: A Novel Dynamic Over- 5/6

5 1 5 1 (a) (Conventional1) 5 1 (e) (Conventional) (i) (Proposed) 15 1 5 15 1 5 (b) (Conventional1) 15 1 5 (f) (Conventional) (j) (Proposed) Fig. 7. 7 modulation Strategy for Fast Torque Control of High- Saliency-Ratio AC Motor, IEEE Trans. Ind. Appl., Vol. 41, No. 4, pp. 113 119, 5. 7 S. Lerdudomsak, S. Doki, and S. Okuma: Novel Voltage Limiter for Fast Torque Response of IPMSM in Voltage Saturation Region, T.IEEJapan, Vol. 18-D, No. 1, pp. 1346 1347, 8 (in Japanese). 8 K. Kondo, K. Matsuoka, Y. Nakazawa, and H. Shimizu: Torque feed-back control for salient pole permanent magnet synchronous motor at weakening flux control range, T.IEEJapan, Vol. 119-D, No. 1, pp. 1155 1164, 1999 (in Japanese). 9 T.-S. Kwon, G.-Y. Choi, M.-S. Kwak, and S.-K Sul : Novel Flux-Weakening Control of an IPMSM for Quasi-Six-Step Operation, IEEE Trans. Ind. Appl., Vol. 44, NO. 6, pp. 17 173, 8. 1 H. Nakai, H. Ohtani, E. Satoh, and Y. Inaguma: Development and Testing of the Torque Control for the Permanent-Magnet Synchronous Motor, IEEE Trans. Ind. Electron., Vol. 5, No. 3, pp. 8 86, 5 11 K. Ohi, K. Tobari, and Y. Iwaji: High Response Feild Weakening Control by Voltage Phase Operation, T.IEEJapan, Vol. 19-D, No. 9, pp. 866 873, 9 (in Japanese). 1 T. Miyajima, H. Fujimoto, and M. Fujitsuna: Proposal of Torque Feedforward Control with Voltage Amplitude of input ms] Amplitude of input ms] Amplitude of input ms].8.75.7.65.6 (c) T a (Conventional1).8.75.7.65.6 (g) T a (Conventional).8.75.7.65.6 Experimental results (k) T a (Proposed) Phase of input rad] Phase of input rad] Phase of input rad] 1.8.6.4...4 1.8.6.4.. (d) δ (Conventional1).4 1.8.6.4.. (h) δ (Conventional).4 (l) δ (Proposed) Phase Operation for SPMSM, IEE of Japan Technical Meeting Record, VT-1-1, pp. 17, 1 (in Japanese). 13 T. Totani and H. Nishimura: Final-State Control Using Compensation Input, Trans. of the SICE, Vol. 3, No. 3, pp. 53 6, 1994. 14 M. Hirata, T. Hasegawa, and K. Nonami: Seek Control of Hard Disk Drives Based on Final-State Control Tracking Account of the Frequency Compensates and the Magnitude of Control Input, 3th SICE Symposium on Control Theory, pp. 97 1, 1 (in Japanese). 15 S.Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics, 1994. 16 K. Sakata and H. Fujimoto: Perfect Tracking Control of Servo Motor Based on Precise Model Considering Current Loop and PWM Hold, T.IEEJapan, Vol. 17-D, No. 6, pp. 587 593, 7 (in Japanese). 17 J. Kudo, T. Noguchi, M. Kawakami, and K. Sano: Mathematical Model Errors and Their Compensations of IPM Motor Control System, IEE of Japan Technical Meeting Record, IEE Japan, SPC-8-5, pp. 5-31, 8 (in Japanese). 6/6