2004 62 24, 2403 2406 ACTA CHIMICA SINICA Vol 62, 2004 No 24, 2403 2406 / TiO 2 Pt Ξ, a a a a b Ξ ( a 241000) ( b 361005) / TiO 2 Pt (CNT/ nano2tio 2 / Pt), CNT/ nano2tio 2 / Pt, 13 ma/ cm 2, ;,,,, TiO 2,, Pt,, Electrocatalytic Oxidation of Glucose on Carbon Nanotube/ Nanocrystalline TiO 2 Film Loaded Pt Complex Electrode CHU, Dao2Bao 3, a LI, Xiao2Hua a FENG, De2Xiang a GU, Jia2Shan a SHEN, Guang2Xia b ( a College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000) ( b Department of Chemistry, Xiamen University, Xiamen 361000) Abstract Electrocatalytic oxidation of glucose on carbon nanotube/ nanocrystalline TiO 2 film loaded Pt (CNT/ nano2 TiO 2 / Pt) complex electrode was investigated by cyclic voltammetry and chronopotentiometry The results indicated that CNT/ nano2tio 2 / Pt complex electrode has high catalytic activity to the electrochemical oxidation of glucose in alkaline media, and the peak current density of oxidation of glucose is up to 13 ma/ cm 2, which is one time higher than that on a platinum electrode The complex electrode performance is stable, and it is strong resistant to poisoning and difficult to oxidize oscillatory It is a highly catalytic electrode for using in glucose fuel cell and glucose sensor Keywords carbon nanotube, nanocrystalline TiO 2, glucose, Pt loaded complex electrode, electrocatalytic oxidation, fuel cell,, [1,2],,,, [3 8] 60 [12],,,,Lei [13] 011 mol dm - 3 NaOH, Pt Becerik [14] ;, Pt [9 11],, (1 ma/ cm 2 ) Ξ E2mail : dbchu @sina com cn ; Fax : 055323869303 Received March 12, 2004 ; revised July 14, 2004 ; accepted September 16, 2004 (No 00045317) (Nos 2003kj141, 2004kj164zd)
2404 Vol 62, 2004 F) [7,8,13 ] A TiO 2,, B A [15] / C TiO 2 Pt (CNT/ nano2tio 2 2Pt) D, C, E,,F, CNT/ nano2tio 2 2Pt, A B 1 1 1 CHI660A ( USA CH Instruments), 8511B / ( ) H 2 PtCl 6, [22,,23], ; ( ), Ti TA 1 ( CNT/ nano2tio 2 Pt,,Pt CNT/ nano2tio 2 9915 %) 1 2 CNT/ nano2tio 2 2Pt Ti ( OEt) 4 [16 18 ], [19,20 ] Ti (OEt) 4 TiO 2, 10 min 2TiO 2, Ti, 20 min, 723 K 30 min, 4 5, CNT/ nano2tio 2, 5 mmol dm - 3 H 2 PtCl 6-0105 V Pt CNT/ nano2tio 2, CNT/ nano2tio 2 2Pt ( 0 04 cm 2 ) 1 3 1 ;, 100 mv s - 1 CNT/ nano2tio 2 2Pt (0104 cm 2 ) Figure 1 Cyclic voltammograms of glucose electrooxidation on, ( SCE) different electrodes at scan rate 100 mv s - 1, 015 mol dm - 3 NaOH ;, CHI660A 2 2 CNT/ nano2tio 2 2Pt CNT/ nano2tio 2 2Pt 011 mol dm - 3 + 2, 2 1 CNT/ nano2tio 2 2Pt,,, 1 CNT/ nano2tio 2 2Pt 014 mol dm - 3, TiO 2 [15,,21],,, TiO 2 CNT/ nano2tio 2 CNT/ nano2tio 2 2Pt a CNT/ nano2tio 2 2Pt complex electrode ; b Pure Pt electrode 015 mol dm - 3 NaOH 20, CNT/ nano2tio 2 2Pt + 015 mol dm - 3 NaOH 2 CNT/ nano2tio 2 2Pt ( 1a) ( 1b) ( 015 1a, CNT/ nano2tio 2 2Pt mol dm - 3 + 015 mol dm - 3 NaOH),, - 019 014 V 3 (011 ma/ cm 2 ), (A, B, C) E 2 (D, ( 2a), (400 s)
No 24 : / TiO 2 Pt 2405,,, [25],,015 mol dm - 3,, - 011 V, ( 2b, 2c) 110 ma/ cm 2 ( 2b),,, ; 215 ma/ cm 2 ( 2c), 110 ma/ cm 2 [24] 2d,, CNT/ nano2tio 2 2Pt CNT/ nano2tio 2 2Pt, 3 CNT/ nano2tio 2 2Pt,, 100 mv s - 1 Figure 3 Cyclic voltammograms of the CNT/ nano2tio 2 2Pt complex electrode in different concentration glucose solution at scan rate 100 mv s - 1 concentration of glucose (mol dm - 3 ) : a 0 1 ; b 0 5 ; c 0 6 Inset : i p (peak A) c(glucose) plot 3 2 CNT/ nano2tio 2 2Pt 2 CNT/ nano2tio 2 / Pt, Figure 2 Glucose oxidation on CNT/ nano2tio 2 2Pt electrode under different current densities a 0 1 ma/ cm 2 ; b 1 0 ma/ cm 2 ; c 2 5 ma/ cm 2 ; d 5 0 ma/ cm 2 References 2 3, 1 Shen, P 2K ; Tseung, A C C J, 141, 3082 Electrochem Soc 1994,, 2 Shen, P 2K ; Chen, K2Y ; Tseung, A C C J Electroanal Chem 1995, 389, 219 CNT/ nano2tio 2 2Pt 3 3 Skou, E Electrochim Acta 1977, 22, 313 015 mol dm - 3 NaOH 4 (a) Ernst, S ; Heitbaum, J ; Hamann, C H J Electroanal,, 011 Chem 1979, 100, 173 015 mol dm - 3 ( 3a, b), ( b ) Ernst, S ; Heitbaum, J ; Hamann, C H Ber, 015 mol dm - 3 ( 3b), 1 CNT/ nano2tio 2 / Pt, 015 mol dm - 3, 13 ma/ cm 2,,, Bunsenges Phys Chem 1980, 84, 50 ( A 13 ma/ cm 2 ) ; 5 ( a ) De Mele, M F L ; Videla, H A ; Arvia, A J 015 mol dm - 3 ( 016 mol dm - 3 ), Bioelectrochem Bioenerg 1982, 9, 469 ( 3c), (b) De Mele, M F L ; Videla, H A ; Arvia, A J, Bioelectrochem Bioenerg 1983, 10, 239
2406 Vol 62, 2004 (c ) De Mele, M F L ; Videla, H A ; Arvia, A J Bioelectrochem Bioenerg 1986, 13, 213 6 Vassilyev, Y B ; Khazova, O A ; Nikolaeva, N N J Electroanal Chem 1985, 196, 105 7 Essis Yei, L H ; Beden, B ; Lamy, C J Electroanal Chem 1988, 246, 349 8 Larew, L A ; Johnson, D C J Electroanal Chem 1989, 262, 167 9 Zhang, X ; Chan, K2Y ; Tseung, A C C J Electroanal Chem 1995, 386, 241 10 Gebhardt, U ; Luft, G ; Richter, G J ; Sturm, F von Bioelectrochem Bioenerg 1978, 5, 607 11 Giner, J ; Holleck, G ; Malachesky, P A Ber Bunsenges Phys Chem 1973, 77, 782 12 Bagotzky, V S ; Vassilyev, Y B Electrochem Acta 1964, 9, 1329 13 Lei, H 2W ; Wu, B2L ; Cha, C2S ; Hideaki, K J Electroanal Chem 1995, 382, 103 14 Becerik, I ; Kadirgan, F J Electroanal Chem 1997, 436, 189 15 Gu, J 2S ; Chu, D2B ; Zhou, X2F ; Shen, G2X Acta Chim Sinica 2003, 61, 1405 (in Chinese) (,,,,, 2003, 61, 1405) 16 Chu, D 2B ; Zhou, X2F ; Lin, C2J Chem J Chin Univ 2000, 21, 133 (in Chinese) (,,,, 2000, 21, 133 ) 17 Zhou, X 2F ; Chu, D2B ; Lin, C2J Acta Chim Sinica 2000, 58, 1327 (in Chinese) (,,,, 2000, 58, 1327 ) 18 Zhou, X 2F ; Chu, D2B ; Lin, C2J Electrochim Acta 2002, 47, 2769 19 Chu, D 2B ; Shen, G2X ; Zhou, X2F ; Lin, C2J Electrochemistry 2001, 7, 249 (in Chinese) (,,,,, 2001, 7, 249 ) 20 Chu, D2B ; Shen, G2X ; Zhou, X2F ; Lin, C2J Chem J Chin Univ 2002, 23, 678 (in Chinese) (,,,,, 2002, 23, 678 ) 21 Regan, B O ; Gratzel, M Nature 1991, 353, 737 22 Guang, C ; Brinda, B L ; Ellen, R F ; Charles, R M Nature 1998, 393, 346 23 Dahu, J R ; Zhenag, T ; Liu, Y ; Xue, J 2S Science 1995, 270, 590 24 Wei, X 2L ; Shen, P2K Chin J Chem Phys 2003, 16, 395 (in Chinese) (,,, 2003, 16, 395 ) 25 Paulina, S ; Shun, S2G ; Wu, H2H Chin J Sci Bull 1991, 36, 1707 (in Chinese) (Paulina Suarez,,,, 1991, 36, 1707 ) (A0403128 SHEN, H ; LING, J )
Graphical Abstract Vol 62, 2004 QSPR cmc Calculations for AE 3 SO 3 and the Contribution of EO in Micellization WANG, Zhong2Ni ; WANG, Zheng2Wu ; GAO, Yan2An ; ZHENG, Li2Qiang ; LIU, Jie ; LI, Gan2 Zuo ; ZHANG, Gao2Yong Acta Chimica Sinica 2004, 62 (24), 2391 Degradation of RhB Catalyzed by TiO 2 Bulk Porous Nanosolids LIU, Xiu2Lin ; YU, Li2Li ; XU, Hong2Yan ; LI, Mei ; WANG, Cheng2Jian ; J IANG, Min2Hua ; CUI, De2Liang Acta Chimica Sinica 2004, 62 (24), 2398 Electrocatalytic Oxidation of Glucose on Carbon Nanotube/ Nanocrystalline TiO 2 Film Loaded Pt Complex Electrode CHU, Dao2Bao ; LI, Xiao2Hua ; FENG, De2Xiang ; GU, Jia2Shan ; SHEN, Guang2Xia Acta Chimica Sinica 2004, 62 (24), 2403 Molecular Dynamics Simulation of Magnesium2 Montmorillonite Hydrates FANG, Qin2Hua ; HUANG, Shi2Ping ; LIU, Zhi2 Ping ; WANG, Wen2Chuan Acta Chimica Sinica 2004, 62 (24), 2407 Three homologous trioxyethylenated fatty alcoholsulfonates AE 3 SO 3 [ C n H 2 n + 1 (OE) 3 SO 3 Na ( n = 12, 14, 16 ) ] anionic surfactants were synthesized and purified Firstly, their critical micelle concentration ( cmc ) predictions were done on an optimum Quantitative Structure2Property Relationship (QSPR) model, and the cmc values were experimentally measured by use of surface tension method at the same time Secondly, both hydrophilicity and hydrophobicity of the EO segment within AESO 3 moiety have been analyzed upon the QSPR calculation, Klevens equation, organic concept diagram, and the calculation of the thermodynamic parameters in micellization TiO 2 / RhB composite was synthesized by assembling RhB into the channels of TiO 2 porous nanosolids Its catalytic efficiency was affected by both temperature and time of exchange process CNT/ nano2tio 2 / Pt complex elec2 trode has high catalytic activity to the electrochemical oxidation of glucose in alkaline media, and the peak current density of glucose oxidation is up to 13 ma/ cm 2 ( curve a), which is one time higher than that on a platinum electrode (curve b) A water molecule is adsorbed on the siloxane surface The water molecule is located in the upper of the ring and the hydroxyl is below the ring The structural and dynamical properties of Mg2montmorillonite have been investigated by molecular dynamics simulation The simulation results indicate that a few water molecules are adsorbed on the siloxane surface and hydrogen bonds are formed