News from NRQCD. Matthias Steinhauser TTP Karlsruhe Dresden, July 3,

Σχετικά έγγραφα
Large β 0 corrections to the energy levels and wave function at N 3 LO

The static quark potential to three loops in perturbation theory

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Theory predictions for the muon (g 2): Status and Perspectives

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

A manifestly scale-invariant regularization and quantum effective operators

O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Hadronic Tau Decays at BaBar

Lifting Entry (continued)

Lecture 21: Scattering and FGR

Math221: HW# 1 solutions

Wavelet based matrix compression for boundary integral equations on complex geometries

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

ST5224: Advanced Statistical Theory II

The Spiral of Theodorus, Numerical Analysis, and Special Functions

AdS black disk model for small-x DIS

Higher Derivative Gravity Theories

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

Aluminum Electrolytic Capacitors (Large Can Type)

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Andreas Peters Regensburg Universtity

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Aluminum Electrolytic Capacitors

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002

Statistical Inference I Locally most powerful tests

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Finite Field Problems: Solutions

Non-Gaussianity from Lifshitz Scalar

Hartree-Fock Theory. Solving electronic structure problem on computers

Solution of the NLO BFKL Equation and γ γ cross-section at NLO

Section 7.6 Double and Half Angle Formulas

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

D-term Dynamical SUSY Breaking

Renormalization in Field Theories

Discretization of Generalized Convection-Diffusion

An Inventory of Continuous Distributions

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Srednicki Chapter 55

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

UV fixed-point structure of the 3d Thirring model

Lukasz STAWARZ. on Behalf of the Fermi LAT Collaboration.

Space-Time Symmetries

Surface Mount Aluminum Electrolytic Capacitors

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Local Approximation with Kernels

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

Computing the Gradient

[1] P Q. Fig. 3.1

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Lecture 34 Bootstrap confidence intervals

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Dark matter from Dark Energy-Baryonic Matter Couplings

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Partial Differential Equations in Biology The boundary element method. March 26, 2013

The Simply Typed Lambda Calculus

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

8.324 Relativistic Quantum Field Theory II

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας

/T interactions and chiral symmetry

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Structure constants of twist-2 light-ray operators in the triple Regge limit

Fractional Colorings and Zykov Products of graphs

Chap. 6 Pushdown Automata

Œ. Ì,,.. Ê Ï,,,. ˆ Ò±μ,,,. ³ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Š Ì ± Í μ ²Ó Ò Ê É É ³. ²Ó-, ²³ - É, Š Ì É

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Moments of Structure Functions in Full QCD

Matrix Hartree-Fock Equations for a Closed Shell System

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

MECHANICAL PROPERTIES OF MATERIALS

Capacitors - Capacitance, Charge and Potential Difference

Supporting Information

Exercises to Statistics of Material Fatigue No. 5

Supplementary Appendix

Eulerian Simulation of Large Deformations

NLO BFKL and anomalous dimensions of light-ray operators

Approximation of distance between locations on earth given by latitude and longitude

Three coupled amplitudes for the πη, K K and πη channels without data

Transcript:

News from NRQCD Matthias Steinhauser TTP Karlsruhe Dresden, July 3, 2014 KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Outline Introduction a 3 to 3 loops c v to 3 loops Γ(Υ(1S) l + l ) @ NNNLO positronium HFS Summary Matthias Steinhauser News from NRQCD 2

Physical quantities energy levels and wave function of bound states E q q [NNNLO: Penin,Steinhauser 02; Kiyo,Sumino 03; Beneke,Kiyo,Schuller 05] M Υ(1S) = 2m b + E b b(n = 1) m b E res = 2m t + E t t(n = 1)+δ Γt E res m t Υ sum rules m b [Penin,Pivovarov 98; Hoang 98; Melnikov,Yelkhovsky 98,..., Penin,Zerf 14] Γ(Υ(1S) l + l ), NNNLO σ(e + e NLO t t), NNNLO 0.4 0.2 349 350 351 352 353 354 R 1.4 1.2 0.8 0.6 1 NNLO LO NNNLO NNNLO c3 0 NNLL [Pineda,Signer 07; Hoang,Stahlhofen 13,... ] Comparison of pqcd and LQCD s [Beneke,Kiyo,Schuller 08] [Necco,Sommer 01,Pineda 02,Sumino 05,..., Brambilla,Vairo,Garcia i Tormo,Soto 09, Donnellan,Knechtli,Leder,Sommer 10] Matthias Steinhauser News from NRQCD 3

Framework: potential NRQCD scales: mass, m: hard momentum, mv: soft energy, mv 2 : ultrasoft Λ QCD potential quarks: ultrasoft gluons: { E p mv 2 p mv { E k mv 2 k mv 2 1 E p p 2 2m 1 E 2 k k 2 QCD NRQCD pnrqcd (potential non-relativistic QCD) integrate out hard scale m from QCD [Caswell,Lepage 86; integrate out all scales from NRQCD except potential quarks and ultrasoft gluons Bodwin,Braaten,Lepage 95] [Beneke,Smirnov 97; Pineda,Soto 98; Brambilla,Pineda,Soto,Vairo 00] alternative formulation: velocity NRQCD (vnrqcd) [Luke,Manohar,Rothstein 00; Hoang,Stewart 03] Matthias Steinhauser News from NRQCD 4

Effective Hamiltonian to N 3 LO [Gupta,Radford 81,...,Manohar 97,...,Kniehl,Penin,Smirnov,Steinhauser 02,...,Beneke,Kiyo,Schuller 13] ( p H = (2π) 3 2 δ( q) m p ) 4 + 4m 3 C c (α s )V C ( q )+C 1/m (α s )V 1/m ( q ) [ ] + πc Fα s (µ) m 2 C δ (α s )+C p (α s ) p 2 + p 2 + 2 q 2 C s (α s ) S 2 Static potential: V C ( q ) = 4πC Fα s( q ) q 2 C c 3 loops 1/m potential: V 1/m ( q ) = π2 C F α 2 s ( q ) m q C 1/m 2 loops Breit potential: 1/m 2 C δ,p,s 1 loop q = p p q Matthias Steinhauser News from NRQCD 5

Static potential Matthias Steinhauser News from NRQCD 6

Static potential V C [ = 4πC Fα s ( q ) q 2 1 [Appelquist,Politzer 75,Susskind 77] Matthias Steinhauser News from NRQCD 7

Static potential V C [ = 4πC Fα s ( q ) 1+ α s( q ) q 2 4π a 1 [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] Matthias Steinhauser News from NRQCD 7

Static potential V C [ = 4πC Fα s ( q ) 1+ α s( q ) q 2 4π a 1 + ( ) αs ( q ) 2 a 2 4π [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] [Peter 96;Schröder 98] Matthias Steinhauser News from NRQCD 7

Static potential V C [ = 4πC Fα s ( q ) 1+ α ( ) s( q ) q 2 4π a αs ( q ) 2 1 + a 2 4π ( ) αs ( q ) 3 ) ] + (a 3 + 8π 2 3A µ2 C ln + 4π q 2 [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] [Peter 96;Schröder 98] [Smirnov,Smirnov,Steinhauser 08; Smirnov,Smirnov,Steinhauser 09; Anzai,Kiyo,Sumino 09] Matthias Steinhauser News from NRQCD 7

Static potential V C [ = 4πC Fα s ( q ) 1+ α ( ) s( q ) q 2 4π a αs ( q ) 2 1 + a 2 4π ( ) αs ( q ) 3 ( ( )) ] 1 + a 3 + 8π 2 CA 3 µ2 + ln + 4π 3ǫ q 2 IR divergence [Appelquist,Dine,Muzinich 77] (in naive perturbation theory ) pnrqcd: ultra-soft contribution: (us)-gluons and (Q Q) bound states as dynamical degrees of freedom IR finite result [Brambilla,Pineda,Soto,Vairo 99; Kniehl,Penin,Smirnov,Steinhauser 02] Finite physical quantities: V QCD (r) = V pert QCD +δvus QCD static energy ( lattice) energy levels of (q q) system: E q q = n H n +δe US q q H.O. log-contributions to V: [Pineda,Soto 00; Brambilla,Garcia i Tormo,Soto,Vairo 07] Matthias Steinhauser News from NRQCD 7

Numerical results V C( q ) = 4πCFαs( q ) [ 1+ αs q 2 π (2.5833 0.2778nl) ( ) 2 αs ( ) + 28.5468 4.1471nl + 0.0772n 2 l + π ( αs π ) 3 ( ) 209.884(1) 51.4048nl + 2.9061n 2 l 0.0214n 3 l + ] n l α (n l) s 1 loop 2 loop 3 loop charm 3 0.40 0.2228 0.2723 0.1677 bottom 4 0.25 0.1172 0.08354 0.02489 top 5 0.15 0.05703 0.02220 0.002485 static potential for other colour configurations: [Kniehl,Penin,Schroder,Smirnov,Steinhauser 05; Anzai,Kiyo,Sumino 10; Collet,Steinhauser 11; Prausa,Steinhauser 13; Anzai,Prausa,Smirnov,Smirnov,Steinhauser 13] Matthias Steinhauser News from NRQCD 8

Matthias Steinhauser News from NRQCD 9

c v to 3 loops QCD NRQCD j µ v = Qγ µ Q ji = φ σ i χ jv i = c v (µ) ji + dv(µ) φ σ i 6m D 2 χ+... Q 2 Z 2 Γ v = c v Z2 Z 1 v Γ v +... Γ v : Γ v 1 Z2 1 Z 2 : Zv = 1+O(α 2 s) [Melnikov,v.Ritbergen 00] [Marquard,Mihaila,Piclum,Steinhauser 07] Matthias Steinhauser News from NRQCD 10

c v c v = 1+ αs π c(1) v c (1) v c (2) v c (3),n l v c (3),n h v c (3) v [Källen, Sarby 55] + ( α s ) 2 (2) π c v [Czarnecki,Melnikov 97; Beneke,Signer,Smirnov 97] [Marquard,Piclum,Seidel,Steinhauser 06] [Marquard,Piclum,Seidel,Steinhauser 08] [Marquard,Piclum,Seidel,Steinhauser 14] + ( α s ) 3 (3) π c v +O(αs) 4 (a) (b) (c) (d) (e) (f) (g) (h) massive vertices on-shell quarks: q 2 1 = q2 2 = M2 Q (q 1 + q 2 ) 2 = 4M 2 Q (a) (b) (c) (d) Matthias Steinhauser News from NRQCD 11

e + e t t @ threshold 1.4 1.2 1 NNLO LO NNNLO R 0.8 NNNLO c3 0 0.6 0.4 NLO 0.2 Only c (3),n l v 349 350 351 352 353 354 s included [Beneke,Kiyo,Schuller 08] Matthias Steinhauser News from NRQCD 12

Some technical details... automatic generation of Feynman diagrams, apply projector, reduce scalar products in numerator,... (many) scalar integrals reduction to 100 master integrals withcrusher [Marquard,Seidel] compute MIs withfiesta [Smirnov,Tentyukov 08; Smirnov,Smirnov,Tentyukov 11; Smirnov 13] q1 q2 ( = e3ǫγ E m 4 Q ( ) µ 2 3ǫ m 2 Q 0.411236(3) ǫ 2 + 3.4860(1) ǫ + 34.520(2)+339.68(4)ǫ+O(ǫ 2 ) simpler integrals also known analytically add uncertainties of individual integrals in quadrature multiply final uncertainty by factor 5 ( 5σ ) ) Matthias Steinhauser News from NRQCD 13

Checks finiteness n l contribution gauge parameter independence (ξ 1 ) change basis of MIs coefficient default basis alternative basis [CF 3] c FFF 36.55(0.11) 36.61(2.93) [CF 2C A] c FFA 188.10(0.17) 188.04(2.91) [C F CA 2] c FAA 97.81(0.08) 97.76(2.05) c (3) v (n l = 4) 1621.7(0.4) 1621(23) c (3) v (n l = 5) 1508.4(0.4) 1507(23) (factor 5 not yet included) Matthias Steinhauser News from NRQCD 14

Z v ( ) α (nl) 2 ( s (µ) CFπ Z 2 1 v = 1+ π ǫ 12 CF + 1 ) ( ) α (nl) 3 8 CA s (µ) + C Fπ 2 π { [ ( C 2 5 43 F 144ǫ + 2 144 1 2 ln 2+ 5 ) ] 1 48 Lµ ǫ [ ( 1 113 + C F C A 864ǫ + 2 324 + 1 ) ] 5 1 ln 2+ 4 32 Lµ ǫ [ + C 2 A 1 ( 2 16ǫ + 2 27 + 1 ) ] 1 1 ln 2+ 4 24 Lµ ǫ [ ( 1 + Tn l C F 54ǫ 25 ) ( 1 + C 2 A 324ǫ 36ǫ 37 )] 2 432ǫ } + C F Tn h 1 60ǫ +O(α 4 s) analytic result from [Beneke,Signer,Smirnov 98; Kniehl,Penin,Smirnov,Steinhauser 02; Marquard,Piclum,Seidel,Steinhauser 06; Beneke,Kiyo,Penin 07] (numerical) agreement better than 1% L µ = lnµ 2 /m 2 Z 2 Γ v = c v Z2 Z 1 v Γ v Matthias Steinhauser News from NRQCD 15

Results for c v [Marquard,Piclum,Seidel,Steinhauser 14] c v (µ = m Q ) = 1 2.67 α s π +[ 44.55+0.41n l] ( αs ) 2 π + [ ] ( 2091(2)+120.66n l 0.82nl 2 α s π + singlet terms ) 3 MS scheme; µ = m Q large corrections singlet terms: small ( 3% of c (2) ) at 2 loops (for axial-vector, scalar, pseudo-scalar current) [Kniehl,Onishchenko,Piclum,Steinhauser 06] Matthias Steinhauser News from NRQCD 16

Application: height of σ(e + e t t) 1.4 LO, NLO, NNLO 1.2 1.0 R 0.8 0.6 0.4 0.2 0.0 341 342 343 344 345 346 347 s (GeV) [Hoang,Beneke,Melnikov,Nagano,Ota,Penin,Pivovarov,Signer,Smirnov,Sumino,Teubner,Yakovlev,Yelkhovsky 00] Matthias Steinhauser News from NRQCD 17

Application: height of σ(e + e t t) ( q 2 g µν + q µ q ν ) Π(q 2 ) = i dx e iqx 0 Tj µ (x)j ν(0) 0 [ Π(q 2 ) E En = Nc Z n +... 2mQ 2 E Z ( ) ] n (E+i0) t = cv 2 E 1 m t c v cv + dv ψ 3 1 (0) 2 Z t (µ)/z t LO(µ S ) 1.2 1.1 1 0.9 0.8 0.7 NNLO NNNLO NNNLO (ferm.) NLO LO 0.6 20 40 60 80 100 120 140 160 µ (GeV) Matthias Steinhauser News from NRQCD 17

Γ(Υ(1S) l + l ) Matthias Steinhauser News from NRQCD 18

Γ(Υ(1S) l + l ) Υ(1S) meson: simplest heavy quark bound state Γ(Υ(1S) l + l ) exp = 1.340(18) kev Γ(Υ(1S) l + l ) = 4πα2 9m 2 b ( ψ 1 (0) 2 c v [c v E 1 cv m b + dv 3 ) +... ] d v : matching constant of sub-leading b b current ψ 1 (0) wave function of the (b b) system ψ LO 1 (0) 2 = 8m3 b α3 s 27π M Υ(1S) = 2m b + E 1 E p,lo 1 = (4m b αs)/9 2 many building blocks necessary; most recent ones: c v [Marquard,Piclum,Seidel,Steinhauser 14] ψ 1 (0): ultrasoft contribution [Beneke,Kiyo,Penin 07] ψ 1 (0): single- and double-potential insertions [Beneke,Kiyo,Schuller 08 13] O(ǫ) term of 2-loop 1/(m b r 2 ) pnrqcd potential [Peinin,Smirnov,Steinhauser 13] NLL: [Pineda 01]; NNLL-approx: [Pineda,Signer 07];... Matthias Steinhauser News from NRQCD 19

Result Γ(Υ(1S) l + l ) pole = 2 5 α 2 α 3 [ s mb ( 1+α s ( 2.003+3.979 L)+ α 2 3 5 s 9.05 7.44 lnαs 13.95 L+10.55 L 2) +α 3 s ( 0.91+4.78 a3 + 22.07 b2ǫ + 30.22 cf 134.8(1) cg 14.33 lnα s 17.36 ln 2 α s +(62.08 49.32 lnα s) L 55.08 L 2 + 23.33 L 3) ] +O(α 4 s) µ=3.5 GeV = 2 5 α 2 α 3 s mb 3 5 [ 1+1.166αs + 15.2α 2 s +(66.5+4.8 a3 + 22.1 b2ǫ + 30.2 cf 134.8(1) cg ) α 3 s +O(α 4 s) ] = 2 5 α 2 α 3 s mpole b 3 5 [1+0.28+0.88 0.16] = [1.04±0.04(α s) +0.02 0.15 (µ)] kev 2 5 α 2 α 3 s = mps b [1+0.37+0.95 0.04] 3 5 = [1.08±0.05(α s) +0.01 0.20 (µ)] kev L = ln[µ/(m b C F α s )], C F = 4/3 Matthias Steinhauser News from NRQCD 20

Γ(Υ(1S) l + l ): µ dependence 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 PS 2 4 6 8 10 Matthias Steinhauser News from NRQCD 21

Γ(Υ(1S) l + l ): µ dependence 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 PS 2 4 6 8 10 Matthias Steinhauser News from NRQCD 21

Γ(Υ(1S) l + l ): µ dependence 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 PS 2 4 6 8 10 Matthias Steinhauser News from NRQCD 21

Γ(Υ(1S) l + l ): µ dependence 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 PS NNNLO NNLO NLO LO 2 4 6 8 10 Matthias Steinhauser News from NRQCD 21

Γ(Υ(1S) l + l ): µ dependence 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 PS NNNLO NNLO NLO LO 2 4 6 8 10 Matthias Steinhauser News from NRQCD 21

Γ(Υ(1S) l + l ): α s dependence 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 PS NNLO NNNLO NLO LO 0.2 0 0.11 0.115 0.12 0.125 0.13 Matthias Steinhauser News from NRQCD 22

Γ(Υ(1S) l + l ): PS vs. OS 1.6 1.4 PS 1.6 1.4 OS 1.2 1.2 1 NNNLO 1 NNNLO 0.8 0.8 0.6 NNLO 0.6 NNLO 0.4 0.2 0 NLO LO 2 4 6 8 10 0.4 0.2 0 NLO LO 2 4 6 8 10 2 1.8 PS NNLO 1.6 1.4 1.2 NNNLO 1 0.8 NLO 0.6 0.4 LO 0.2 0 0.11 0.115 0.12 0.125 0.13 2 1.8 OS NNLO 1.6 1.4 1.2 NNNLO 1 0.8 NLO 0.6 0.4 LO 0.2 0 0.11 0.115 0.12 0.125 0.13 Matthias Steinhauser News from NRQCD 23

Result Γ(Υ(1S) l + l ) pole = [1.04±0.04(α s ) +0.02 0.15 (µ)] kev Γ(Υ(1S) l + l ) PS = [1.08±0.05(α s ) +0.01 0.20 (µ)] kev Γ(Υ(1S) l + l ) exp = [1.340±0.018] kev third-order perturbative result is 30% too low possible explanation: sizeable non-perturbative contribution Matthias Steinhauser News from NRQCD 24

Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) 2 17.54π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 αs π G2 = 0.012 GeV 4 δ np Γ ll (Υ(1S)) = 1.67 pole /2.20 PS kev? value of αs π G2? scale of α s? dimension-6 condensate contribution [Pineda 97] Matthias Steinhauser News from NRQCD 25

Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) 2 17.54π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 2. M Υ(1S) = 2m b + E p 1 + 624π2 425 m b(α s C F ) 2 K use PS scheme perturbation theory converges [Beneke,Kiyo,Schuller 05] charm effects [Hoang 00] δ np Γ ll (Υ(1S)) = 4α2 α s 9 17.54 425 3744 δm np Υ(1S) [1.28 +0.17 0.18 (α s)±0.42(m b ) +0.20 0.57 (µ)±0.12(m c)] kev? m MS b = 4.163 GeV 4.203 GeV δ np Γ ll (Υ(1S)) 0.3 kev Matthias Steinhauser News from NRQCD 25

Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) 2 17.54π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 2. M Υ(1S) = 2m b + E p 1 + 624π2 425 m b(α s C F ) 2 K use PS scheme perturbation theory converges [Beneke,Kiyo,Schuller 05] charm effects [Hoang 00] δ np Γ ll (Υ(1S)) = 4α2 α s 9 17.54 425 3744 δm np Υ(1S) [1.28 +0.17 0.18 (α s)±0.42(m b ) +0.20 0.57 (µ)±0.12(m c)] kev? m MS b = 4.163 GeV 4.203 GeV δ np Γ ll (Υ(1S)) 0.3 kev Summary: perturbation theory: solid prediction non-perturbative contribution: unclear Matthias Steinhauser News from NRQCD 25

Matthias Steinhauser News from NRQCD 26

Positronium hyperfine splitting ν = E (e + e ) E (e + e ) precise test of QED Experiment: 203.387 5(1 6) GHz [Mills et al. 75 83] 203.389 10(74) GHz [Ritter et al. 84] 2.7σ 203.394 2(16) stat. (13) syst. GHz [Ishida et al. 13] ( ) Zeeman HFS 1+4q2 1 q B non-thermalized positronium? material effects? non-uniform B field?... Matthias Steinhauser News from NRQCD 27

Comparison experiment theory from [Ishida et al. 13] Matthias Steinhauser News from NRQCD 28

Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders { ν = ν LO 1 α ( 32 π 21 + 6 7 ln 2 ( ) α 2 [ 1367 + π 378 5197 159 ] 56 ζ(3) 3 2 ( ) α 3 } + D π ( 6 2016 π2 + α 3 π ln2 α+ ) 5 14 α2 lnα 7 + 221 84 π2 ) ( 62 15 + 68 7 ln 2 ln 2 ) α 3 π lnα Matthias Steinhauser News from NRQCD 29

Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] 159 56 ζ(3) 3 2 ( ) α 3 } + D π ( 32 21 + 6 ) 7 ln 2 5 14 α2 lnα ( 6 378 5197 2016 π2 + α 3 π ln2 α+ 7 + 221 84 π2 ) ( 62 15 + 68 7 ln 2 ln 2 ) α 3 π lnα [Pirenne 47] Matthias Steinhauser News from NRQCD 29

Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] 159 56 ζ(3) 3 2 ( ) α 3 } + D π ( 32 21 + 6 ) 7 ln 2 5 14 α2 lnα ( 6 378 5197 2016 π2 + α 3 π ln2 α+ 7 + 221 84 π2 ) ( 62 15 + 68 7 ln 2 ln 2 ) α 3 π lnα [Brodsky,Erickson 66;... ; Hoang,Labelle,Zebarjad 97; Czanecki,Melnikov,Yelkhovsky 99] Matthias Steinhauser News from NRQCD 29

Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] 159 56 ζ(3) 3 2 ( ) α 3 } + D π ( 32 21 + 6 ) 7 ln 2 5 14 α2 lnα ( 6 378 5197 2016 π2 + α 3 π ln2 α+ 7 + 221 84 π2 ) ( 62 15 + 68 7 ln 2 ln 2 ) α 3 π lnα [Karshenboim 93] Matthias Steinhauser News from NRQCD 29

Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] 159 56 ζ(3) 3 2 ( ) α 3 } + D π ( 32 21 + 6 ) 7 ln 2 5 14 α2 lnα ( 6 378 5197 2016 π2 + α 3 π ln2 α+ 7 + 221 84 π2 ) ( 62 15 + 68 7 ln 2 ln 2 ) α 3 π lnα [Kniehl,Penin 00; Hill 01; Melnikov,Yelkhovsky 01] Matthias Steinhauser News from NRQCD 29

Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π ( ) α 2 [ 1367 π ] ( 32 21 + 6 ) 7 ln 2 5 14 α2 lnα ( 6 + 378 5197 2016 π2 + 7 + 221 ) 84 π2 ln 2 159 56 ζ(3) 3 ( α 3 2 π ln2 α+ 62 15 + 68 ) α 3 7 ln 2 π lnα ( ) α 3 } ( ) α 3 + D = 203.391 69(41) GHz+ ν LO D π π error estimate: D from muonium atom [Nio,Kinoshita 97] Matthias Steinhauser News from NRQCD 29

Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders { ν = ν LO 1 α ( 32 π 21 + 6 7 ln 2 ( ) α 2 [ 1367 + π 378 5197 159 ] 56 ζ(3) 3 2 ( ) α 3 } + D π ( 6 2016 π2 + α 3 π ln2 α+ ) 5 14 α2 lnα 7 + 221 84 π2 ) ( 62 15 + 68 7 ln 2 ln 2 ) α 3 π lnα [Adkins,Fell 14] light-by-light 2γ exchange contribution to D: tiny Matthias Steinhauser News from NRQCD 29

Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] 159 56 ζ(3) 3 2 ( ) α 3 } + D π m 2 e ( 32 21 + 6 ) 7 ln 2 5 14 α2 lnα ( 6 378 5197 2016 π2 + α 3 π ln2 α+ aim: 1-γ annihilation contribution to D at O(α 6 m e ): 1-γ annihilation contribution 32% non-annihilation 47% 7 + 221 84 π2 ) ( 62 15 + 68 7 ln 2 ln 2 ) α 3 π lnα Matthias Steinhauser News from NRQCD 29

Dann 1 γ : 1-γ annihilation contribution pnrqed dimensional regularization QED part of c v Π γγ (q 2 = 4m 2 e) computed up to 3 loops...+δ us π 2 +...+2c QED v δ us : ultra-soft contribution [Marcu 11]; QCD: [Beneke,Kiyo,Penin 07] Matthias Steinhauser News from NRQCD 30

D 1 γ ann : result D 1 γ ann = 84.8±0.5 ν th = 203.391 69+0.000 217 GHz = 203.391 91(22) GHz error estimate: size of the evaluated 1-γ annihilation contribution moves closer to [Ishida et al. 13] ν exp = 203.394 2(16) stat. (13) syst. GHz Matthias Steinhauser News from NRQCD 31

D 1 γ ann : result D 1 γ ann = 84.8±0.5 ν th = 203.391 69+0.000 217 GHz = 203.391 91(22) GHz error estimate: size of the evaluated 1-γ annihilation contribution moves closer to [Ishida et al. 13] ν exp = 203.394 2(16) stat. (13) syst. GHz 95% from ultra-soft contribution: D 1 γ,us ann 3π2 7 δus o Assumption: also non-annihilation correction is dominated by ultra-soft contribution: D 1 γ,us sct 4π2 7 δus o 106 D tot 191 ν th = 203.392 11 GHz agreement within 1σ with [Ishida et al. 13] Matthias Steinhauser News from NRQCD 31

Conclusions a 3, c v to 3 loops Γ(Υ(1S) l + l ) to NNNLO positronium HFS: 1 γ annihilation to O(α 7 m e ) Coming soon: e + e t t at NNNLO Matthias Steinhauser News from NRQCD 32