P EtOH 10 4 10 2 10-4 10-6 20000 15000 10000 5000 w = 0.12% w = 0.43% w = 1.4% w = 4.5% w = 15% w = 41% 0 0 5 10 10-8 0 100 200 300 R EtOH P HC3 10-1 10-3 0 25 50 75 100 N structures 10 3 10 2 10 1 10-1 10-3 0 500 1000 1500 2000 2500 10 R HC3-4 P HC3 Supplementary Figure 1: Distribution of performance scores. (Left) P EtOH as function of R EtOH at w = 0.12 wt% for all IZA-SC structures with the inset showing the values for the 10 structures with the highest P EtOH for all six raffinate concentrations. (Right) P HC3 as function of R HC3 for the 2835 PCOD structures retained for the high-pressure simulations with the inset showing the corresponding data for the 103 IZA-SC structures retained for the high-pressure simulations. 1
10 4 S EtOH 10 2 w = 0.12% w = 1.4% w = 15% Q EtOH [mol per kg] 10-4 P EtOH 10 4 10 2 0.4 0.8 1.2 d free [nm] 0.5 1.0 1.5 d incl [nm] 10 15 20 25 ρ T [nm -3 ] Supplementary Figure 2: Scatter plots for ethanol-water adsorption. Ethanol selectivity (S EtOH, top), loading (Q EtOH, middle), and performance score (P EtOH, bottom) as a function of the diameter of the largest free-roaming sphere (d free, left), the diameter of the largest included sphere along the free sphere path (d incl, middle), and the density of framework T atoms (ρ T, right). 2
125 100 PCOD IZA-SC Q C18 [mmol kg -1 ] 75 50 25 0 10-6 10-4 10 2 10 4 k H, C18 [mol kg -1 Pa -1 ] Supplementary Figure 3: Scatter plot for hydrocarbon adsorption. Loading (Q C18 ) at p = 3 MPa versus k H,C18 at the infinite-dilution limit. 3
Supplementary Figure 4: Scatter plots for hydrocarbon adsorption. Henry s constant (k H,C18 in mol kg 1 Pa 1 ), row 1) and linear-versus-branched selectivity at the infinite-dilution limit (S B0, row 2), loading (Q C18 in mmol kg 1, row 3), linear-versus-branched selectivity (S B3, row 4), long-versus-short selectivity (S L3, row 5), and performance score (P HC3, row 6) at p = 3 MPa as a function of the diameter of the largest free-roaming sphere (d free, left), the diameter of the largest included sphere along the free sphere path (d incl, middle), and the density of framework T atoms (ρ T, right). 4
10 5 k H, C18, long [mol kg -1 Pa -1 ] 10 2 10-1 10-4 PCOD IZA-SC 10-7 10-7 10-4 10-1 10 2 10 5 k H, C18, short [mol kg -1 Pa -1 ] 10 10 10 6 S B0, long 10 7 10 4 10 1 10 3 S L0, long 10 1 10 4 10 7 S B0, short 10-3 10 3 10 6 S L0, short 10-3 Supplementary Figure 5: Influence of simulation length on performance indicators. (Top) Henry s law constant for C18 (k H,C18 in mol kg 1 Pa 1 ), (left bottom) linear-versus-branched selectivity (S B0 ) and (right bottom) long-versus-short selectivity (S L0 ) for 103 IZA-SC and 2835 PCOD structures obtained from long and short GCMC simulations. 5
16 16 N [molecules per unit cell] 12 8 4 Oumi, 300 K Dubinin, 303 K Sano, 303 K Zhang, 308 K Dose, 308 K TraPPE-zeo, 303 K Milestone, 293 K Cekova, 298 K Lin, 303 K TraPPE-zeo, 298 K 12 8 4 N [molecules per unit cell] 0 10-4 10-3 10-1 p / p 0 10-1 10 1 c [mol L -1 ] 0 Supplementary Figure 6: Adsorption isotherms in MFI. (Left) Unary ethanol adsorption from the gas phase. The red squares, blue diamonds, magenta up triangles, cyan left triangles, purple down triangles, and black circles show the experimental measurements by Oumi et al. 1, Dubinin et al. 2, Sano et al. 3, Zhang et al. 4, and Dose et al. 5, and the predictions using the TraPPE zeo/trappe UA force fields, respectively. (Right) Ethanol adsorption from aqueous solution. The red squares, blue diamonds, green up triangles, and black circles show the experimental measurements of Milestone and Bibby 6, Cekova et al. 7, and Lin and Ma 8, and the predictions using the TraPPE zeo/trappe UA/TIP4P force fields, respectively. Pressures are converted to activities using experimentally measured and model-predicted saturation vapor pressures for experiments and simulations, respectively. 6
Supplementary Table 1: Adsorption properties for ethanol-water separation. Ethanol loading (Q EtOH in mol kg 1 ), water loading (Q Wat in mol kg 1 ), retentate composition (r in wt%), ethanol selectivity (S EtOH ), performance score (P EtOH ), and performance rank (R EtOH ) at six different raffinate concentrations (w) for each of the five highest ranked zeolites at any w. Data for MFI and VFI are provided for comparison. The target selectivity (S target = 0.956(1 w)/0.044w) is the value required to exceed the azeotropic concentration. w = 0.12 % S target = 18000 w = 0.43 % S target = 5100 Q EtOH Q Wat r S EtOH P EtOH R Q EtOH Q Wat r S EtOH P EtOH R FER 0.21 0.03 0.95 16000 3400 1 0.47 0.03 0.98 10000 4800 1 OWE 0.34 0..90 7000 2400 2 0.88 0..96 5200 4500 2 ESV 0.16 0.03 0.93 12000 1800 4 0.41 0.03 0.97 8100 3300 3 UFI 0.28 0.07 0.91 8100 2200 3 0.59 0.07 0.96 5200 3100 4 MRE 0.13 0.02 0.94 12000 1500 7 0.41 0.03 0.97 7400 3000 5 ZON 0.12 0.03 0.91 8500 1100 13 0.36 0.03 0.97 7500 2700 6 ATN 0.15 0.05 0.87 5600 820 21 0.47 0.05 0.96 5600 2600 7 MAZ 0.12 0.02 0.94 13000 1600 5 0.30 0.02 0.97 8300 2500 8 ZON 0..02 0.94 12000 1200 11 0.29 0.02 0.97 7400 2200 11 MTT 0.06 0.01 0.91 7900 450 33 0.19 0.02 0.96 5800 1100 26 CGF 0.06 0.02 0.89 6600 420 34 0.18 0.02 0.95 4800 880 33 CDO 0.03 0.02 0.88 5900 170 58 0.08 0.01 0.95 4600 370 54 MFI 0.24 0.12 0.83 4000 930 18 0.91 0.24 0.91 2300 2000 15 VFI, 2.0 6.81 0.43 620 1300 10 w = 1.4 % S target = 1500 w = 4.5 % S target = 460 Q EtOH Q Wat r S EtOH P EtOH R Q EtOH Q Wat r S EtOH P EtOH R FER 1.0 0.04 0.98 4700 4600 4 1.6 0.05 0.99 1700 2700 10 OWE 1.6 0.12 0.97 2500 3900 5 1.9 0.07 0.99 1400 2700 9 ESV 0.9 0.04 0.98 4200 3600 7 1.2 0.06 0.98 1100 1300 18 UFI 1.7 0.53 0.89 610 1100 37 3.0 0.98 0.89 160 480 50 MRE 0.8 0.03 0.98 4700 3700 6 1.0 0.02 0.99 3000 3100 7 ZON 1.0 0.03 0.99 7500 7700 3 1.8 0.01 1.00 6400 11000 2 ATN 1.3 0.03 0.99 7200 9600 1 1.9 0.01 1.00 11000 20000 1 MAZ 0.7 0.04 0.98 3400 2200 15 1.2 0.11 0.97 590 720 36 ZON 0.9 0.02 0.99 8900 8100 2 1.7 0.01 1.00 6500 11000 3 MTT 0.6 0.03 0.98 3700 2400 13 1.1 0.02 0.99 3000 3400 6 CGF 0.6 0.02 0.99 5800 3400 9 1.3 0.01 1.00 8100 11000 4 CDO 0.3 0.01 0.99 4900 1400 28 1.0 0.01 0.99 3500 3400 5 MFI 1.7 0.25 0.94 1200 2100 17 2.0 0.21 0.96 500 1000 26 Idealized siliceous structure. Zinc-containing aluminophosphate. Zeolite with Q Wat > Q EtOH at w = 0.12 %. 7
Supplementary Table 1 (continued): Adsorption properties for ethanol-water separation. Ethanol loading (Q EtOH in mol kg 1 ), water loading (Q Wat in mol kg 1 ), retentate composition (r in wt%), ethanol selectivity (S EtOH ), performance score (P EtOH ), and performance rank (R EtOH ) at six different raffinate concentrations (w) for each of the five highest ranked zeolites at any w. Data for MFI and VFI are provided for comparison. The target selectivity (S target = 0.956(1 w)/0.044w) is the value required to exceed the azeotropic concentration. w = 15 % S target = 120 w = 41 % S target = 31 Q EtOH Q Wat r S EtOH P EtOH R Q EtOH Q Wat r S EtOH P EtOH R FER 1.8 0.05 0.99 490 880 8 1.9 0.06 0.99 120 220 11 OWE 2.0 0.07 0.99 410 830 10 2.0 0.07 0.99 110 230 10 ESV 1.3 0.06 0.98 300 390 25 1.3 0.06 0.98 81 110 28 UFI 3.2 0.77 0.91 60 190 45 3.5 0.55 0.94 23 120 34 MRE 1.1 0.02 0.99 760 840 9 1.2 0.01 1.00 330 380 6 ZON 1.9 0.02 1.00 1500 2800 4 2.0 0.02 1.00 400 780 4 ATN 2.0 0.01 1.00 5400 11000 1 2.0 0.00 1.00 2700 5400 1 MAZ 1.6 0.29 0.93 79 130 57 1.7 0.19 0.96 33 55 48 ZON 1.9 0.01 1.00 2100 4100 3 2.0 0.01 1.00 660 1300 3 MTT 1.3 0.01 1.00 1200 1500 5 1.3 0.01 1.00 490 650 5 CGF 1.6 0.00 1.00 4800 7400 2 1.7 0.00 1.00 1800 3100 2 CDO 1.4 0.02 0.99 860 1200 6 1.5 0.03 0.99 210 320 7 MFI 2.1 0.16 0.97 190 400 24 2.2 0.13 0.98 60 130 21 Idealized siliceous structure. Zinc-containing aluminophosphate. Zeolite with Q Wat > Q EtOH at w = 0.12 %. 8
Supplementary Table 2: Adsorption properties for hydrocarbon separation. Henry s law constant for C18 (k H,C18 in mol kg 1 Pa 1 ), high-pressure loading for C18 (Q C18 in mmol kg 1 ), linear-versus-branched selectivity (S Bp ) and long-versus-short selectivity (S Lp ), performance score (P HCp ), and performance rank (R HCp ) for the top-10 IZA-SC and PCOD structures based on simulations in the infinite-dilution limit and at p = 3 MPa. The last 5 rows show the PCOD structures with the highest R HC3 that have similar selectivities to those of the top-10 IZA-SC zeolites (S B3 < 100 and S L3 > 0.9). infinite-dilution limit p = 3 MPa name k H,C18 S B0 S L0 P HC0 R HC0 Q C18 S B3 S L3 P HC3 R HC3 ATO 6.2 10 1 65 6400 6.3 10 3 2 95 21 0.58 3.5 1 MRE 3.6 23 14000 6.1 10 3 3 54 51 1.1 2.6 2 AFO 1.4 10 4 330 21 2.2 10 3 5 48 27 1.0 1.3 3 CAN 1.4 45 7100 9.1 10 3 1 75 12 0.91 0.97 4 AEL 4.5 10 4 7.9 280 1.3 10 5 94 65 11 0.81 0.86 5 MTT 7.1 10 3 70 110 4.3 10 3 4 48 18 1.1 0.81 6 WEN 1.4 10 5 27 1.8 2.0 10 4 47 62 11 1.0 0.67 7 FER 9.5 10 4 110 88 1.2 10 3 7 32 32 1.5 0.65 8 TON 4.4 10 3 8.0 79 4.4 10 4 19 55 11 1.0 0.62 9 EUO 4.3 10 3 1.4 8.6 6.8 10 4 12 76 1.9 0.29 0.50 10 MTW 2.5 5.5 9000 1.5 10 3 6 40 2.8 1.4 0.078 28 GON 2.3 4.6 10000 1.0 10 3 8 35 2.7 1.3 0.071 34 VET 1.2 4.2 5400 9.3 10 4 9 28 2.1 1.5 0.039 47 ITH 5.2 10 3 5.5 34 8.3 10 4 10 40 1.4 1.5 0.036 52 8113534 2.4 10 3 6.1 10 5 5.0 10 2 2.9 18 36 16000 0.71 800 1 8296636 3.7 10 2 1.4 10 4 3.9 10 2 1.4 31 27 20000 1.4 390 2 8302206 9.9 10 4 1.4 10 5 1.2 10 2 1.2 35 20 27000 1.5 360 3 8319806 1.4 10 5 5.3 10 3 2.0 10 1 3.6 10 3 734 19 35000 1.8 360 4 8165762 4.6 10 4 2.5 10 4 5.8 10 1 2.0 10 1 104 61 3100 0.79 230 5 8302179 4.0 10 4 4.1 10 4 3.1 10 1 5.4 10 1 66 58 5300 1.4 220 6 8121102 4.4 10 4 3.3 10 4 2.3 10 2 6.3 10 2 187 36 4900 0.98 180 7 8276859 7.6 10 5 2.2 10 5 6.0 10 1 2.8 10 1 91 14 40000 3.2 170 8 8149581 5.1 10 4 1.6 10 4 2.1 10 1 3.9 10 1 79 36 5600 1.2 170 9 8244356 6.5 10 5 4.2 10 4 4.2 6.5 10 1 50 12 40000 2.9 170 10 8246562 5.4 10 3 1.9 10 6 1.9 10 2 5.4 10 1 9 8.1 40000 4.6 71 25 8325576 6.9 10 3 6.0 10 5 2.3 10 5 1.8 10 4 3 14 2400 2.8 12 128 8280370 4.4 10 3 4.7 10 5 1.6 10 1 1.3 10 2 8 2.2 40000 10 8.2 171 8276346 9.8 10 1 9.6 10 3 2.4 10 2 3.9 10 2 10 13 830 2.1 4.9 267 8161406 1.5 10 2 4.6 10 4 3.0 2.3 10 2 5 3.2 2700 4.5 1.9 520 8325781 7.6 3.7 10 4 1.3 10 3 2.2 10 2 6 6.2 600 2.7 1.4 630 8182003 2.8 4.7 10 6 7.8 10 3 1.7 10 3 4 1.9 1600 7.2 0.43 1113 8328013 1.5 1.0 10 9 9.5 10 2 1.6 10 6 2 0.47 40000 67 0.28 1301 8316501 9.3 7.6 10 3 3.5 10 2 2.0 10 2 7 49 1.0 1.2 0.041 2200 8295863 1.3 5.9 10 9 4.8 10 3 1.7 10 6 1 0.058 40000 120 0.019 2410 8083868 1.1 10 5 19 2.1 1.0 10 4 2241 55 85 0.98 4.7 276 8216857 9.9 10 1 83 8800 9.3 10 3 474 78 56 0.94 4.7 278 8165707 8.1 10 5 120 5.7 1.7 10 3 1005 59 98 1.3 4.4 290 8285996 6.6 10 5 39 32 8.1 10 5 2304 69 82 1.3 4.2 298 8133653 1.1 10 2 360 170 2.3 10 2 311 54 77 1.1 3.8 313 Idealized siliceous structure. Aluminophosphate. 9
Supplementary References [1] Oumi, Y., Miyajima, A., Miyamoto, J. & Sano, T. Binary mixture adsorption of water and ethanol on silicalite. In Aiello, R., Giordano, G. & Testa, F. (eds.) Stud. Surf. Sci. Catal., vol. 142, 1595 1602 (Elsevier, 2002). [2] Dubinin, M. M., Rakhmatkariev, G. U. & Isirikyan, A. A. Differential heats of adsorption and adsorption isotherms of alcohols on silicalite. B Acad Sci USSR Ch+ 38, 1950 1953 (1989). [3] Sano, T., Yanagishita, H., Kiyozumi, Y., Mizukami, F. & Haraya, K. Separation of ethanol/water mixture by silicalite membrane on pervaporation. J. Membr. Sci. 95, 221 228 (1994). [4] Zhang, K. et al. Adsorption of water and ethanol in MFI-type zeolites. Langmuir 28, 8664 8673 (2012). [5] Dose, M. E. et al. Effect of crystal size on framework defects and water uptake in fluoride mediated silicalite-1. Chem. Mater. 26, 4368 4376 (2014). [6] Milestone, N. B. & Bibby, D. M. Concentration of alcohols by adsorption on silicalite. J. Chem. Technol. Biotechnol. 31, 732 736 (1981). [7] Cekova, B., Kocev, D., Kolcakovska, E. & Stojanova, D. Zeolites as alcohol adsorbents from aqueous solutions. Acta Periodica Technologica 37, 83 87 (2006). [8] Lin, Y. S. & Ma, Y. H. Liquid diffusion and adsorption of aqueous ethanol, propanols, and butanols in silicalite by HPLC. ACS Symp. Ser. 368, 452 466 (1988). 10