9 2 T 9 t 2 = 9 t ( 9 t t c 2 t. .,Gurtin Pipkin [6 ],Coleman [7 ] , Guyer Krumhansl [9 ] . Tavernier [8 ] . Tzou [13,14], .

Σχετικά έγγραφα
, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

X g 1990 g PSRB

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Approximation Expressions for the Temperature Integral

Strain gauge and rosettes

Investigation on Fast Determination of Trace N2Nitrosamines Assisted by Microwave Radiation

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

2.1

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

N 2 O + , Fermi, . N 2 O + . Larzilliere (FIBLAS), O + ( 4 S) + N 2 ( X 1 + ) NO + ( X 1 +, v) ], N 2 O + ( A 2 + )

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Space-Time Symmetries

Prey-Taxis Holling-Tanner

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

ST5224: Advanced Statistical Theory II

Quick algorithm f or computing core attribute

DuPont Suva 95 Refrigerant

Assalamu `alaikum wr. wb.

Higher Derivative Gravity Theories

ACTA PHYSICA SINICA nm NO + ( X 1 + ) + N ( 4 S) = 8, 9) + N( 4 S) NO + ( X 1 +, v = 0, 1) + N ( 2 D), [7,8 ]

,,. ,,, . 2 PACC: 4265S,4265J. I s, I b. I s e Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

1 String with massive end-points

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Dr. D. Dinev, Department of Structural Mechanics, UACEG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Finite Field Problems: Solutions

Homework 3 Solutions

4, Cu( II), Zn( II)

Second Order RLC Filters

[1] P Q. Fig. 3.1

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ER-Tree (Extended R*-Tree)

DuPont Suva 95 Refrigerant

MATSEC Intermediate Past Papers Index L. Bonello, A. Vella

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

High order interpolation function for surface contact problem

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

2. Chemical Thermodynamics and Energetics - I

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Research on Economics and Management

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

4.6 Autoregressive Moving Average Model ARMA(1,1)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Approximation of distance between locations on earth given by latitude and longitude

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

STEAM TABLES. Mollier Diagram

Advance in Nanorealgar Studies

Section 8.3 Trigonometric Equations

derivation of the Laplacian from rectangular to spherical coordinates

Supplementary Information for

N 2. Temperature Programmed Surface Reaction of N 2Nitrosonornicotine on Zeolites and Molecular Sieves

Statistical Inference I Locally most powerful tests

PACS: a, L

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

2 Composition. Invertible Mappings

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

Second Order Partial Differential Equations

D Alembert s Solution to the Wave Equation

C.S. 430 Assignment 6, Sample Solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Jordan Form of a Square Matrix

MathCity.org Merging man and maths

ADVANCED STRUCTURAL MECHANICS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

LiNbO 3, , LiNbO 3. , 50 nj. 2 mm 2 mm. . SU28 [14 ],Polymer [15 ] (LiNbO 3 ) Ti : Sapphire Hz, PACC: 4255R, 4262A, 4265

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

Transcript:

57 7 2008 7 100023290Π2008Π57 (07) Π4273209 ACTA PHYSICA SINICA Vol. 57,No. 7,July,2008 ν 2008 Chin. Phys. Soc. g (, 100084) (2007 11 1 ;2007 12 5 ),,. (). (),,.,,,,,,,.,, CV,,,. :,,, PACC: 4410, 6370, 0340G 11 19 20 [1 ],, [2 ].,.,,,, [3 ].,,,,,.,. Cattaneo [4 ],Vernotte [5 ]., q + 9 q = - K T, (1) (1) CV, q, T, K, t,. (1),,. 1 9 T + 1 c 2 t 9 2 T 2 = 2 T, (2) = KΠ( c p ), c t = Π.,,.,Gurtin Pipkin [6 ],Coleman [7 ] CV. Tavernier [8 ], Guyer Krumhansl [9 ] Maurer [10 ] Boltzmann, CV., Bai Lavine [11 ] Kgrner Bergmann [12 ] CV. Tzou [13,14],, q T, q + 1 9 q = - K q T - K ( T 9 T), (3) g E2mail : demgzy @tsinghua. edu. cn

4274 57 1 9 T + q 9 2 T 2 = 2 T + 9 ( 2 T) T. (4) ( 10-11 s), (4),,,.,Π,,Xu Guo [15 ],Masuda [16 ],Antaki [17 ],Cho Juhng [18 ], Fan Lu [19 ] Zhang [20 ].,Brorson [21 ], Tang Araki [22 ].,, Lepri [23 ],, ( ),Narayan [24 ],. Maruyama [25 ],. Livi [26 ],. 21,.. 18 19,19 40,,, [27 ].,, [1 ],,,.,,.. [28 ],, E = Mc 2 = M 0 1 - v 2 Πc 2 c2 = E 0 1 - v 2 Πc 2, (5), M,, M 0,, c, v, E, E 0. (5),,. ( ), (5) E k = E - E 0 g 1 2 M 0 v 2, (6a) M k = M - M 0 g 1 2 M 0 v 2 c 2, (6b) E k = 1 2 M 0 v 2, M k.,v ν c M M 0 M k..,,,, M = M 0 + M h, (7a) M h = E h c 2 = V h, (7b) M 0, E h,,,,, M h,, h,. 31 [29 ] (5), (6).,,,

7 : 4275, m = m 0 + m h, gm = m 0 + gm h, (8) m h = 1 2 m 0 v 2 3 c 2, gm h = 1 2 m 0 v 2 3 c 2, (9) m 0, m h, gm, v 2 3, 1 2 m 0 v 2 3, m h.,:1),. v 3, v 2 3.,.,,.. 2),,,,,. [29 ].,., p = 1 3 n mv 3 v 3 = 1 3 n m 0 v 2 3 + 1 3 n m h v 2 3 = p 0 + p h, (10) p 0, p h, p. (8) (10) p h = 5 18 h =C v TΠc 2. p h p h ν p 0, nm 0 c 2 ( v 2 3 ) 2. (11) = 5 3 h RT, (12) p = p 0 + p h = 0 + 5 3 h RT. (13) p p 0 = 0 RT. (14),, p h ν p 0,.,.,, ( ),( ).. 41 [30 ] p = - 9 E 0 9V + E D0 V, (15), p V, E D0,,.,,, [31 ], [32 ] (15), p 0 = E D0 V. (16), Dulong2Pefit, E D0 = M 0 CT = 3 R mol T = 3 M 0 RT, (17) M 0, R. (17),M 0 ( ) E D0, CT, (, ). (17) (16) p 0 = 3 0 RT = 0 CT, (18) C, 0,, 018 210. (18),.,.,,.., M h = E D0 c 2 = M 0 CT c 2. (19),CT,

4276 57, d E h = M h d ( CT) = M 0 C 2 c 2 Td T, (20a) T E h = d E h = 1 2 M h ( CT). (20b) 0 (18), ( ) p h = E h V = 3 2 h RT = 0 ( CT) 2 2 c 2, (21) h =CTΠc 2,.,, p = p 0 + p h, p h ν p 0. (22),,,,. 51 5111,,. ( ) q = 0 CTu h, (23) q, 0 CT, u h., q h = q c 2 = 0 CT c 2 u h = h u h, (24) q h, u h.,,,.,, 9 h + div( 9 h U h ) = 0. (25) t (25).,1 ( T 1 > T 2 ), (25) 1 h u h = q h = const, (26) ( ), h,, u h2 u h1 = h1 = T 1, h2 T 2 u h2 > u h1, (27).,. 5121 ( ) [32 ] 9 U h h + U h U h + P h + f h = 0, (28),,,., ( ),,. (23) 9 u h 9 u h 9 x = = 1 9 q q 9 T - 0 CT 0 CT 2, (29a) 1 9 q 0 CT 9 x - q 9 T 0 CT 2 9 x. (29b) 9 p h 9 x = 0 C 2 T 9 T 9 x = h C 9 T 9 x. (29c) c 2 ().

7 : 4277,,,. f = u h, (30),(29), (30) (28), K C h K 9 q Kq 9 T 0 C 2 - T 0 C 2 T 2 - Kq 2 9 T 2 0 C 3 T 3 9 x Kq 9 q + 2 0 C 3 T 2 9 x =K 9 T 9 x - Kc 2 2 0 C 3 T 2 q. (31a) CV, K 0 C 2 T = a = (32) CT,(31a) 9 q t 9 ( 0 CT) - u h = - K 9 T 9 x - Kc 2 2 0 C 3 T 2 q, + t u h 9 q 9 x - u h 9 ( 0 CT) 9 x (31b),,,, (31b). ( ) ( ), (31) ( ),. 5131,,,,., (28) p h + f h = 0, (33a). (30) (31), (33a) K d T d x + K 2 h Cc 2 q = 0. (33b),, = K c2 C 2 h, (34) (31b) () 9 q 9 ( 0 CT) t - u 9 h t = K 9 T 9 x + t u h 9 q 9 x - u h 9 ( 0 CT) 9 x - q. (31c), (31c) q = - K d T d x - q K = d T d x. (35) :.,,, ( ) (28) (,, )., () ( 1),,. 5141. CV,,(31c),,,,. C u d u h h d x = - K d T d x - q, (36a), K d T d x + q = Kq 2 d T 2 0 C 3 T 3 d x, q = - 1 - q 2 2 0 C 3 T 3 K d T d x. (36b) (36c), q 2. K a = 1-2 0 C 3 T 3 K, q = - K a d T d x, (36d)

4278 57 q2 2 0 C 3 T 3.,, T 1 = 400 K, T 2 = 300 K, q = 10 6 WΠm 2, q2 2 0 C 3 T 3 10-14 ν 1,,.,,,,,,, (36d)., 20 K,70 K, K = 5000 WΠmK, 20 300m., 10 12 WΠm 2,,,,. (36c) 2.,,,,... Onsager [33 ], Kaliski,CV [34 ].,,,, ( ),( (31c) ),, (31c),q T,. (1) (31c) CV,, ( ) ( ). (31c) 9 2 T 2 + 1 9 T 2 qk 9 2 T + t t 2 0 C 3 v T 2 9 x = 1 - K 9 2 T 2 0 C 3 v T 3 (37) 0 C v t 9 x 2 q 2 CV (2),,. CV,, 3, y z, x L, T 0,T w., :x 3 = xπl,t 3 = TΠT 0, t 3 = tπ. 2 5151 CV,(1),,(2), (2),,,, 10-10 10-14 s, 3 T 3 w = 013,

7 : 4279 CV 4,4 (a), (b), (c) (d) 013,016,019 112. 4 (a), CV,,CV,,,.,, 4 (b),, 4 (c) (d)., CV,, [11,12 ], CV,,, CV,CV. 4 61 11 (), (, ),.,,,.,CV,. 21,,.,, ( ). 31,,,,,

4280 57,.,,,,,,. 41,,. CV,,. [1] Fourier J 1955 Analytical Theory of Heat ( New York : Dover Publications) [2] Eckert E R G, Drake R M; Hang Q ( Trans) 1983 Heat and Mass Transfer (Beijing : Science Press) (in Chinese) [, ; () 1983 ( : ) ] [3] Dampier W C 2001 A History of Science and Its Relatios with Philosophy and Religion ( Guilin : Guangxi Normal University Press) [ ; 2001 ( : ) ] [4] Cattaneo C 1948 Atti. Sem. Mat. Fis. Univ. Modena 3 3 [5] Vernotte P 1958 C. R. Acad. Sci. 246 3154 [6] Gurtin M E, Pipkin A C 1968 Arch. Ration Mech. Anal. 31 113 [7] Coleman B D, Fabrizio M, Owen D R 1982 Arch. Ration Mech. Anal. 80 135 [8] Tavernier J 1962 C. R. Acad. Sci. 254 69 [9] Guyer R A, Krumhansl JA 1966 Phys. Rev. 148 766 [10] Maurer M J 1969 J. Appl. Phys. 40 5123 [11] Bai C, Lavine A S 1995 J. Heat Transfer 117 257 [12] Kgrner C, Bergmann H W 1998 Appl. Phys. A 67 397 [13] Tzou D Y 1995 ASME J. Heat Transfer 117 8 [14] Tzou D Y 1997 Macro to microscale heat transfer : the lagging behavior (Washington : Taylor & Francis) [15] Xu Y S, Guo Z Y 1995 Int. J. Heat Mass Transfer 38 2919 [16] Masuda K, Okuma O, Nishizawa T, Kanaji M, Matsumura T, Tang D W, Araki N 1996 Int. J. Heat Mass Transfer 39 1585 [17] Antaki P J 1998 Int. J. Heat Mass Transfer 41 2253 [18] Cho C J, Juhng W N 2000 J. Korean Phys. Soc. 36 209 [19] Fan Q M, Lu W Q 2002 Int. J. Heat Mass Transfer 45 2815 [20] Zhang H W, Zhang S, Guo X, Bi J Y 2005 Int. J. Solids Struct. 42 877 [21] Brorson S D, Fujimoto J G, Ippen E P 1987 Phys. Rev. Lett. 59 1962 [22] Tang D W, Araki N 1996 Int. J. Heat Mass Transfer 39 1585 [23] Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896 [24] Narayan O, Ramaswamy S 2002 Phys. Rev. Lett. 89 200601 [25] Maruyama S 2002 Physica B 323 193 [26] Livi R, Lepri S 2001 Nature 421 327 [27] Shen X J 1985 Probe into the Essence of Heat (Beijing : Beijing Publishing House) (in Chinese) [ 1985 ( : ) ] [28] Einstein A, Lorentz H A, Minkowski H, Weyl H 1952 The principle of relativity (New York : Dover Publications) [29] Guo Z Y 2006 J. Eng. Thermophys. 27 631 (in Chinese) [ 2006 27 631] [30] Tien C L ; Gu Y Q ( Trans) 1987 Statistical thermodynamics (Beijing : Tsinghua University Press) (in Chinese) [; 1987 ( :) ] [31] Du L J, Xi T G; Wang M H ( Trans) 1987 Introduction to solid thermophysical properties : theory and measurement (Beijing : China Metrology Publishing House) (in Chinese) [,; 1987 :( : ) ] [32] Guo Z Y, Cao B Y, Zhu H Y, Zhang Q G 2007 Acta Phys. Sin. 56 3306 (in Chinese) [ 2007 56 3306] [33] Onsager L 1931 Phys. Rev. 37 405 [34] Kaliski S 1965 Bull. Acad. Pol. Sci. XIII 211

7 : 4281 A general heat conduction law ba sed on the concept of motion of thermal ma ss Guo Zeng2Yuan g Cao Bing2Yang ( Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China) (Received 1 November 2007 ; revised manuscript received 5 December 2007) Abstract Based on the mass2energy relation in Einstein s relativity theory, thermal energy has equivalent mass, which is referred to as thermal mass. The concepts of phonon gas mass in solids and thermon gas mass in gases are then introduced. Based on these concepts, the momentum conservation equation, including driving force, resistance and inertial force, for the thermal mass motion is established using Newtonian mechanics. Since the heat conduction is just the motion of the thermal mass (phonon gas or thermon gas) in a medium, the momentum conservation equation for thermal mass is a general heat conduction law which can unify the description of heat conduction under various conditions. The momentum conservation equation reduces to Fourier s heat conduction law when the heat flux is not very high so that the inertial force of the thermal mass can be ignored. For micro2πnano2 scale heat conduction, the heat flux may be very high and the inertial force due to the spatial velocity variation can not be ignored. Therefore, the heat conduction deviates from Fourier s law, i. e. non2fourier phenomenon takes place even under steady state conditions. In such cases, the thermal conductivity can not be calculated by the ratio of the heat flux to the temperature gradient. Under ultra fast heat conduction conditions, the inertial force of the thermal mass must be taken into consideration and the momentum conservation equation for the thermal mass motion leads to a damped wave equation. Compared with the CV model, the general heat conduction law includes the inertial force due to the spatial velocity variation. Thus the physically impossible phenomenon of negative temperatures induced by the thermal wave superposition described by CV model, is elliminated, which demonstrates that the present general law of heat conduction based on thermal mass motion is more reasonable. Keywords : Fourier heat conduction law, general heat conduction law, motion of thermal mass, non2fourier heat conduction PACC: 4410, 6370, 0340G g E2mail : demgzy @tsinghua. edu. cn