Andreas Peters Regensburg Universtity

Σχετικά έγγραφα
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

2 Composition. Invertible Mappings

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Homework 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Partial Trace and Partial Transpose

Every set of first-order formulas is equivalent to an independent set

Partial Differential Equations in Biology The boundary element method. March 26, 2013

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Matrices and Determinants

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 21: Scattering and FGR

w o = R 1 p. (1) R = p =. = 1

Concrete Mathematics Exercises from 30 September 2016

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Answer sheet: Third Midterm for Math 2339

Approximation of distance between locations on earth given by latitude and longitude

Fractional Colorings and Zykov Products of graphs

Commutative Monoids in Intuitionistic Fuzzy Sets

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

PARTIAL NOTES for 6.1 Trigonometric Identities

Section 9.2 Polar Equations and Graphs

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Distances in Sierpiński Triangle Graphs

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Problem Set 3: Solutions

Statistical Inference I Locally most powerful tests

Section 8.3 Trigonometric Equations

6.003: Signals and Systems. Modulation

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Example Sheet 3 Solutions

Space-Time Symmetries

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

[1] P Q. Fig. 3.1

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Chapter 3: Ordinal Numbers

Congruence Classes of Invertible Matrices of Order 3 over F 2

Finite Field Problems: Solutions

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Test Data Management in Practice

From the finite to the transfinite: Λµ-terms and streams

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

A Note on Intuitionistic Fuzzy. Equivalence Relation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Bounding Nonsplitting Enumeration Degrees

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ST5224: Advanced Statistical Theory II

CRASH COURSE IN PRECALCULUS

TMA4115 Matematikk 3

ADVANCED STRUCTURAL MECHANICS

SOLVING CUBICS AND QUARTICS BY RADICALS

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department

Chap. 6 Pushdown Automata

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ΠΙΣΤΟΠΟΙΗΜΕΝΟ ΕΠΑΓΓΕΛΜΑΤΙΚΟ ΠΕΡΙΓΡΑΜΜΑ «ΧΕΙΡΙΣΤΗΣ ΚΙΝΗΤΩΝ ΜΗΧΑΝΗΜΑΤΩΝ ΜΗΧΑΝΗΜΑΤΩΝ ΕΡΓΟΥ»

Spherical Coordinates

Reminders: linear functions

Abstract Storage Devices

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

Durbin-Levinson recursive method

Parametrized Surfaces

Right Rear Door. Let's now finish the door hinge saga with the right rear door

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

«ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE

D Alembert s Solution to the Wave Equation

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

EE512: Error Control Coding

Προβλήματα πρόσληψης της ορολογίας και θεωρίας στη μέση εκπαίδευση Καλλιόπη Πολυμέρου ΠΕΡΙΛΗΨΗ

Derivation of Optical-Bloch Equations

Lecture 2. Soundness and completeness of propositional logic

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Exercises to Statistics of Material Fatigue No. 5

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

EE101: Resonance in RLC circuits

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

New bounds for spherical two-distance sets and equiangular lines

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Variational Wavefunction for the Helium Atom

Forced Pendulum Numerical approach

Orbital angular momentum and the spherical harmonics

Transcript:

Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun, D.Yu.Ivanov and A.Lenz supported by the Studienstiftung des deutschen Volkes

Outline 1 Motivation/Introduction Technical Issues 3 πn-da Results 4 Outlook

Why πn DAs? 1 Deep Inelastic Pion-Electroproduction: See recent articles: V. M. Braun, D. Y. Ivanov, A. Lenz and A. Peters, Deep inelastic pion electroproduction at threshold, Phys. Rev. D 75 (007) 01401 [arxiv:hep-ph/0611386]. J. P. Lansberg, B. Pire and L. Szymanowski, Hard exclusive electroproduction of a pion in the backward region, Phys. Rev. D 75 (007) 074004 [arxiv:hep-ph/070115]. Handle to learn more about nucleon DAs themselves

Motivation Polyakov, Pobylitsa, Strikman 006 p = φs(x) 6 u d u u u d d u u + φa(x) u u d d u u p π 0 = φs(x) 6f π 6u d u + u u d + d u u φa(x) f π u u d d u u n π + = φs(x) 1fπ u d u 3u u d 3d u u φa(x) f π u u d d u u Rewrite in operator language Extend to higher twists

Leading-Twist Nucleon DAs Three-quark matrix element: with 4 0 ε ijk u i α(a 1 z)u j β (a z)d k γ(a 3 z) p(p, λ) twist 3 = V p 1 (v 1) αβ,γ + A p 1 (a 1) αβ,γ + T p 1 (t 1) αβ,γ (v 1 ) αβ,γ = ( pc) αβ `γ5n + (a 1 ) αβ,γ = ( pγ 5C) αβ N + γ (t 1 ) αβ,γ = (iσ p C) αβ `γ γ 5N + γ γ

Leading-Twist Nucleon DAs Symmetry between the two up quarks: V 1 (1,, 3) = V 1 (, 1, 3), A 1 (1,, 3) = A 1 (, 1, 3) Isospin: T 1 (1,, 3) = [V 1 A 1 ](1, 3, ) + [V 1 A 1 ](, 3, 1) In Brodsky notation V 1 = φ s (x) and A 1 = φ a (x) V 1, A 1 can be expanded in contributions of operators with increasing conformal spin φ N = [V 1 A 1 ](1,, 3) =Nucleon DA T 1 is not independent

Leading-Twist Pion-Nucleon DAs Aim: Find a representation of V πn 1 etc. in terms of nucleon DAs Basic Ansatz: 4 0 ε ijk u i α(a 1 z)u j β (a z)d k γ (a 3 z) π(k)n(p,λ) twist 3 = -i/f π (γ 5 ) δγ {V πn 1 (v 1 ) αβ,δ + A πn 1 (a 1 ) αβ,δ + T πn 1 (t 1 ) αβ,δ }

Soft-Pion theorem: Basic concepts Take the Soft-Pion Theorem (SPT): 0 O π a (k)n i (P, h) = i f π 0 [Q a 5, O] N i(p, h) + Bremsstrahlungs contributions Q a 5 = d 3 x q(x)γ 0 γ 5 τ a q(x) N N π

Leading-Twist Pion-Nucleon DAs For nπ + specify: 0 O π + (k)n(p, h) = i 0 [Q + 5, O] n(p, h) f π Define trilocal operator as: together with O uud αβγ = ɛijk u i α(a 1 z)u j β (a z)d k γ (a 3 z) [Q5, 1 Oαβγ] uud = 1 (γ5) αλ Oλγβ ddu + (γ 5) βλ Oλγα ddu + (γ 5) γλ Oαβλ uuu [Q5, Oαβγ] uud = i (γ5) αλ Oλγβ ddu + (γ 5) βα Oλγα ddu (γ 5) γλ Oαβλ uuu

Results for nπ + The final comparison with the Ansatz leads us to: V nπ+ 1 (1,, 3) = 1 nv n 1 (1, 3, ) + V n 1 (1,, 3) + V n 1 (, 3, 1) o +A n 1(1, 3, ) + A n 1(, 3, 1), A nπ+ 1 (1,, 3) = 1 nv n 1 (3,, 1) V n 1 (1, 3, ) + A n 1(, 1, 3) o +A n 1(, 3, 1) + A n 1(3, 1, ), T1 nπ+ (1,, 3) = 1 n A n 1(, 3, 1) + A n 1(1, 3, ) V1 n (, 3, 1) o -V n 1(1, 3, ).

Results for nπ + The amplitudes have the natural symmetry property V nπ+ 1 (1,, 3) = V nπ+ 1 (, 1, 3), A nπ+ 1 (1,, 3) = A nπ+ 1 (, 1, 3) They are always built nucleon DAs of the same twist But they do not fulfill the Isospin relation anymore as they contain both I = 1/ and I = 3/ contributions

Results for pπ 0 The calculation for pπ 0 DAs is much easier as we do not need any Fierz transform [Q5, 3 Oαβγ] uud = 1 (γ5) αλ Oλβγ uud + (γ 5) βλ Oαλγ uud (γ 5) γλ Oαβλ uud V pπ0 1 (1,, 3) = 1 V p 1 (1,, 3), A pπ0 1 (1,, 3) = 1 Ap 1 (1,, 3), T pπ0 1 (1,, 3) = 3 T p 1 (1,, 3).

Results for pπ + pπ + DAs are built of nπ + DAs and nucleon DAs O uuu αγβ = ɛ ijk u i α(a 1 z)u j β (a z)u k γ(a 3 z) [Q5, 1 Oαβγ(z)] uuu = 1 n o (γ 5) αλ O duu λβγ(z) + (γ 5) βλ Oαλγ(z) udu + (γ 5) γλ Oαβλ(z) uud [Q5, Oαβγ(z)] uuu = i n o (γ 5) αλ O duu λβγ(z) + (γ 5) βλ Oαλγ(z) udu + (γ 5) γλ Oαβλ(z) uud V pπ+ i = ±V nπ+ i + V p i, A 1 and T 1 similar

Higher Twists General Definition of Higher Twists 4 0 ε ijk u i α(a 1 z)u j β (a z)d k γ(a 3 z) N(P, λ)π(k) = (γ 5) γδ i f π h S πn 1 (s 1 ) αβ,δ + S πn (s ) αβ,δ + P πn 1 (p 1 ) αβ,δ + P πn (p ) αβ,δ +V πn 1 (v 1 ) αβ,δ + V πn (v ) αβ,δ + 1 V πn 3 (v 3 ) αβ,δ + 1 V πn 4 (v 4 ) αβ,δ +V πn 5 (v 5) αβ,δ + V πn 6 (v 6 ) αβ,δ + A πn 1 (a 1 ) αβ,δ + A πn (a ) αβ,δ +A πn 3 (a 3 ) αβ,δ + 1 AπN 4 (a 4 ) αβ,δ + A πn 5 (a 5) αβ,δ + A πn 6 (a 6 ) αβ,δ +T πn 1 (t 1 ) αβ,δ + T πn (t ) αβ,δ + T πn 3 (t 3 ) αβ,δ + T πn 4 (t 4 ) αβ,δ +T πn 5 (t 5) αβ,δ + T πn 6 (t 6 ) αβ,δ + 1 T πn 7 (t 7) αβ,δ + 1 T πn i 8 (t 8 ) αβ,δ. Higher twist calculation follows the same procedure but much more extensive x -corrections can also be calculated

Summary We defined a trilocal Operator O and made use of the SPT to calculate πn DAs We obtained πn DAs which have the natural symmetry property. They are expressed in terms of nucleon DAs having the same twist

Outlook Apply to deep inelastic Pion Electroproduction (see talk of V.Braun) etc.... References: V. M. Braun, D. Y. Ivanov, A. Lenz and A. Peters, Phys. Rev. D 75 (007) 01401 [arxiv:hep-ph/0611386].