18 8 2008 8 Vol.18 No.8 The Chinese Journal of Nonferrous Metals Aug. 2008 1004-0609(2008)08-1504-08 ( 410083) CCl 4 40GeO 2-30SiO 2-12Al 2 O 3-6BaO-6CaO-6MgO OH 3 338 /cm (3.0 µm) Gauss 5 OH 1.71 /cm OH 0.25 /cm DTA XRD OH TB 321 A Low OH content germanate glass prepared by batch soaking process in CCl 4 XIAO Zhuo-hao, CHEN Yuan-yuan, ZUO Cheng-gang, LU An-xian (School of Materials Science and Engineering, Central South University, Changsha 410083, China) Abstract: 40GeO 2-30SiO 2-12Al 2 O 3-6BaO-6CaO-6MgO glass was prepared by using batch soaking process with CCl 4 as dehydration agent. The influence of this process on the infrared transmittance and crystallization behavior of the germanium glass was investigated. The results show that the infrared spectra contains a single band at approximately 3 338 /cm for the germanate glass. This broad absorption band is deconvoluted into five bands and some possible reasons for each band have been given. The absorption coefficient of hydroxyl in the germanate glass prepared by conventional melt quenching technique is 1.71 /cm while that of the one prepared by batch soaking process in CCl 4 is 0.25 /cm. The analyses of DTA and XRD indicate that the glass prepared by batch soaking process crystallizes at lower temperature and has bigger crystallization rate for the residual chlorine acting as a nucleation agent in the interspaces of the glass network structure. The SEM images show that the residual chlorine promotes the formation of crystallite and changes the shape of the crystallite cluster. Key words: germanate glass; infrared transmittance; crystallization; OH absorption; batch soaking process DENNIS LAUBENGAYER [1] 1926 (JPPT-115-332) 2007-12-27 2008-04-23 0731-8830351 E-mail: axlu@mail.csu.edu.cn
18 8 1505 [2] [3] [4] (Reaction atmosphere process, RAP [5 8] ) [9 10] [9, 11] [9 10, 12 14] [15] CCl 4 POCl 4 SOCl 2 [16] CCl 4 YANG [8] Er 3+ OH 15.39 /cm 0.28 /cm ZHAI [17] Nd 2 O 3 Al 2 O 3 -SiO 2 CCl 4 OH 150 10 6 10 10 6 WANG [18] CCl 4 OH MARTUCCI [19] SOKOLNICKI [20] LI [11] CCl 4 [21 22] (BSP Batch soaking process) CCl 4 1 1.1 1 CCl 4 CCl 4 10 min 1 (BSP) Fig.1 Schematic diagram of experimental apparatus for BSP CCl 4 600 1 h 2H 2 O+CCl 4 4HCl+CO 2 (1) 2HO + CCl 4 2HCl + CO 2 + 2Cl (2) CCl 4 H 2 O OH H 2 O OH H 2 O 1.2 40GeO 2-30SiO 2-12Al 2 O 3-6BaO-6CaO- 6MgO ( %) GeO 2 5 N 149 µm 200 g 10 h A B A B 600 1 h 1 580 3 h 600 2 h 1.3 1.3.1 (IR)
1506 2008 8 15 mm 15 HOSONO [23] Na 2 O( ) mm 3 mm 240 SiC 0 5% 28% OH 0.06 µm 3 550 /cm Na 2 O Perkin 5% 3 300 /cm 28% 2 800 2 350 /cm HALL Elmer Lanbda 900UV/VIS/NIR [24] Na Thermo Nicolet Nexus FT IR 2 O 0~10% OH 3 560 /cm 3 450 /cm Na 2 O 400 /cm 10 000 /cm 10% 2 800 2 350 /cm 1.3.2 (DTA) 2 800 /cm 2 TAS100 DTA 350 /cm 2 10 /min 25~1 000 Gauss 3 1.3.3 X (XRD) 3014 X X 149 µm 1.3.4 (SEM) 4%HF 80 s X 650 2 2.1 BSP BSP 2 A B 80% 5 µm 3 338 /cm OH 2 Fig.2 IR absorption profile of samples A and B 3 OH Fig.3 Spectral deconvolution of IR absorbance of samples A and B: (a) 3 338 /cm; (1) 3 560 /cm; (2) 3 473 /cm; (3) 3 340 /cm; (4) 3 138 /cm; (5) 2 859 /cm A 3 338 /cm 3 560 3 473 3 340 3 138 2 859 /cm 5 Gauss 4 3 560 /cm OH (Fig.4(a)) OH 3 672 /cm [24] PLOTNICHENKO [25] 3 473 /cm 3 138 /cm OH 3 473 /cm 3 340 /cm OH (Fig.4(b)) (Fig.4(c)) 3 138 /cm OH (Fig.4(d)) 2 859 /cm
18 8 1507 4 OH Fig.4 Hydroxyl in different configurations in germanate glass MCMILLAN [26] ENGHOLM [27] IR Raman 2 859 /cm [21 22] Ge [22, 28 29] Ge O OH Ge O (Fig.4(e)) B OH Gauss 3 560 3 473 3 340 3 138 /cm 2 859 /cm BSP OH Lambert-Beer 3 OH OH OH 3 338 /cm α(oh) OH 1 T0 α(oh) = ln( ) (3) L T L cm T 0 T 3 338 /cm (3) α(oh) A =1.71 /cm α(oh) B =0.25 /cm BSP OH BSP OH α(oh) 1.71 /cm OH α(oh) 0.25 /cm OH 26.28% 72.41% 2.2 BSP 5 DTA DTA BSP A 641 756 783 BSP B 620 732 779 BSP 20 OH [2] BSP B OH BSP
1508 2008 8 6 730 1 h Fig.6 Photograph of glass samples at 730 for 1 h 5 DTA Fig.5 DTA curves of glass samples A OH B A DTA BSP OH 5 DTA BSP B 897 B [12] B CCl 4 (2) CCl 4 [30] DTA BSP XRD 6 730 730 A B B A 7(a) 730 XRD A A B PDF (19-0015) (Ge 2 Al 6 O 13 ) XRD BSP 6 750 XRD 7(b) A B B 750 730 A B 800 A B MgGeO 3 ( 7(c)) B BaMgSi 900 ( 7(d)) A B BaMgSi 7 B A DTA ( 5) B A 900 B 7(d) A B X XRD 2.3 SEM 8 9 730 1 h 50~80 nm BSP A BSP
18 8 1509 7 XRD Fig.7 XRD patterns of glass samples under different thermal condition: (a) 730, 1 h; (b) 750, 1 h; (c) 800, 1 h; (d) 900, 1 h 8 A 730 1 h SEM Fig.8 SEM photograph of sample A at 730 for 1 h 9 B 730 1 h SEM Fig.9 SEM photograph of sample B at 730 for 1 h BSP HAN [30] 3 1) CCl 4
1510 2008 8 OH OH 1.71 /cm 0.25 /cm 2) CCl 4 3) CCl 4 REFERENCES [1] DENNIS L M, LAUBENGAYER A W. Germanium XVII: Fused germanium dioxide and some germanium[j]. The Journal of Physical Chemistry, 1926, 30(11): 1510 1526. [2] JEWELL J M, SPESS M S, SHELBY J E. Effect of water concentration on the properties of commercial soda-lime-silica glasses[j]. Journal of the American Ceramic Society, 1990, 73(1): 132 135. [3] CURRIER N W, SEVERRDIA A G, TOTTEN G A. Determination of the variation in the water content across the wall of a fused-silica crucible by transmission Fourier transform infrared spectroscopy[j]. Applied spectroscopy, 1988, 42(6): 1125 1127. [4] FANDERLIK J. Silica glass and its application[m]. Amsterdam: Elsevier, 1991. [5]. [M]. :, 1990. GAN Fu-xi. Modern glass science and technology[m]. Shanghai: Shanghai Science Press, 1990. [6]. [D]. :, 2004. YANG Gang-feng. Removal of OH groups in Er 3+ doped phosphate glasses by reaction atmosphere process[d]. Guangzhou: South China University of Technology, 2004. [7] EBENDORFF-HEIDEPRIEM H, SEEBER W, EHRT D. Dehydration of phosphate glasses[j]. Journal of Non-Crystalline Solids, 1993, 163(1): 74 80. [8] YANG G F, ZHANG Q Y, ZHAO S Y, DENG Z D, YANG Z M, JIANG Z H. Dehydration of Er 3+ -doped phosphate glasses using reactive agent bubble flow method[j]. Journal of Sol-Gel Science and Technology, 2006, 352(8): 827 831. [9] KOBAYASHI K. Recovery of hysteresis capacitance-voltage curves of MOS capacitors passivated with bubbled fluoridecontaining glasses[j]. Journal of the European Ceramic Society, 1997, 17: 49 53. [10] KOBAYASHI K, SASAKI H. Visible rays cutoff and infrared transmission properties of TeO 2 -GeO 2 -V 2 O 5 -PbF 2 glass systems[j]. Journal of the European Ceramic Society, 1999, 19(5): 637 639. [11] LI W, WILLEY R J. Stability of hydroxyl and methoxy surface groups on silica aerogels[j]. Journal of Non-Crystalline Solids, 1997, 212(2/3): 243 249. [12],. [J]., 2002, 165(6): 22 24. FENG Ming-liang, GUO Li-ya. The application of fluoride and chloride in glass production[j]. Glass, 2002, 165(6): 22 24. [13],,. BaF 2 BaO [J]., 2005, 25(1): 72 76. CAO Guo-xi, HU He-fang, GAN Fu-xi. Effect of BaF 2 /BaO substitution on the optical properties of barium gallogermanate glass[j]. Acta Optica Sinica, 2005, 25(1): 72 76. [14],,,. [J]., 2005, 34(6): 752 755. YUAN Xin-qiang, FAN You-yu, CAO Guo-xi, HU He-fang. Oxyfluoride glass transmitting middle-infrared with large bulk[j]. Infrared and Laser Engineering, 2005, 34(6): 752 755. [15]. [D]. :, 2002. ZHOU Yong-heng. Study on hydroxyl in quartz glass and quartz raw materials[d]. Beijing: China Building Materials Academy, 2002. [16],,,,. [J]., 2005, 20(5): 1083 1088. YANG Gang-feng, ZHAO San-yin, DENG Zai-de, SUN Jia-sen, JIANG Zhong-hong. Removal of OH groups in Er3+-doped phosphate glasses by reaction atmosphere process[j]. Journal of Inorganic Materials, 2005, 20(5): 1083 1088. [17] ZHAI Ji-wei, SHEN Bo, YAO Xi, ZHANG Liang-ying. Preparation and spectral properties of Nd 2 O 3 -doped silica-based glasses prepared by the sol-gel process[j]. Ceramics International, 2002, 28(7): 737 740. [18] WANG L H, TSAI B J. The sintering and crystallization of colloidal silica gel[j]. Materials Letters, 2000, 43(5/6): 309 314. [19] MARTUCCI A, BRUSATIN G, GUGLIELMI M, STROHHÖFER C, FICK J, PELLI S, RIGHINI G C. Fabrication and characterization of Sol-Gel GeO 2 -SiO 2 erbium-doped planar waveguides[j]. Journal of Sol-Gel Science and Technology, 1998, 13(1/3): 535 539. [20] SOKOLNICKI J, URBASK B, LEGENDZIEWICZ J. Investigation of Er, Er:Yb and Er:Tm systems in silica sol-gels[j]. Journal of Alloys and Compounds, 2000, 300/301: 450 455. [21] HENDERSON G S. The germanate anomaly: What do we know?[j]. Journal of Non-Crystalline Solids, 2007, 353(18/21): 1695 1704. [22] OSAKA A, JIANRONG Q, MIURYA Y, TAKESHI Y. EXAFS of
18 8 1511 germanium in glasses of the GeO 2 -TeO 2 system[j]. Journal of Non-Crystalline Solids, 1995, 191(3): 339 345. [23] HOSONO H, ABE Y. Temperature dependence of infrared absorption spectra of hydroxyl groups in soda germanates glasses[j]. Journal of the American Ceramic Society, 1989, 72(1): 44 48. [24] HALL M M, SHELBY J E. Water diffusion and solubility in alkali germanate[j]. Phys Chem Glasses, 2004, 45(5): 283 290. [25] PLOTNICHENKO V G, SOKOLOV V O, MASHINSKY V M, MASHINSKY V M, SIDOROV V A, GURYANOV A N, KHOPIN V F, DIANOV E M. Hydroxyl groups in germania glass[j]. Journal of Non-Crystalline Solids, 2001, 296(1/2): 88 92. [26] MCMILLAN P F, REMMELE R L. Hydroxyl sites in SiO 2 glass: A note on infrared and Raman spectra[j]. American Mineralogist, 1986, 71(5/6): 772 778. [27] ENGHOLM J R, HAPPEK U, SIEVERS A J. Observation of site-dependent relaxation of the OH vibrational stretch mode in fused silica[j]. Chemical Physics Letters, 1996, 249(5/6): 387 391. [28] HANNON A C, MARTINO D D, SANTOS L F, ALMEIDA R M. A model for the Ge O coordination in germanate glasses[j]. Journal of Non-Crystalline Solids, 2007, 353(18/21): 1688 1694. [29] WANG M C, WANG J S, HON M H. Effect of Na 2 O addition on the properties and structure of germanate glass[j]. Ceramics International, 1995, 21(2): 113 118. [30],,,,. Li 2 O-Al 2 O 3 -SiO 2 [J]., 2006, 34(6): 717 722. HAN Chen, GUO Xing-zhong, YANG Hui, SONG Fang-fang, CHEN Ming-xing. Crystallization mechanism of Li 2 O-Al 2 O 3 - SiO 2 glass containing fluoride and phosphide[j]. Journal of the Chinese Ceramic Society, 2006, 34(6): 717 722. ( )