Thermodynamics of Lysozyme in Binary Solutions of Water + DMSO

Σχετικά έγγραφα
Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Temperature Change of Orientation Function of Polymer Crystals Evaluated by the Simultaneous DSC-XRD and DSC-FTIR Methods

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Studies on the Interaction between Copper( ) Complex with Phenanthroline and L2Methionine Ligands and D NA

ect of Modified Wheat Starches on the Textural Properties of Baked Products, such as Cookies

The Significance of Thermal Analysis in the Development of Teaching Materials for Chemistry Education

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

Supplementary Information

Supporting Information

Emulsifying Properties of Egg Yolk as a Function of Diacylglycerol Oil

Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure,

2. Chemical Thermodynamics and Energetics - I

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Nguyen Hien Trang* **

Conductivity Logging for Thermal Spring Well

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

ACTA CHIMICA SINICA. . NaCl > KCl > LiCl, KCl > LiCl > NaCl. , KCl

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Electronic Supplementary Information

任秉雄 王崇臣 ENVIRONMENTAL CHEMISTRY. 744 t 50% 10% 20% 1 mg L t S. SHZ-82 Spectrum-100 C 16 H 18 N 3 SCl 3H 2 O

Complex Formation of Large-ring Cyclodextrins with Iodine in Aqueous Solution as Revealed by Isothermal Titration Calorimetry

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Solubility Modelling and Mixing Thermodynamics of Thiamphenicol in Water and Twelve Neat Organic Solvents from T = ( to 318.

DuPont Suva 95 Refrigerant

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Inhibition of mushroom tyrosinase by flavonoid from Sorbus tianschanica Ruper in Xinjiang

Electronic Supplementary Information (ESI)

Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land

CH 3 CH 2 COOCH 2 CH 2 CH 3 + H 2 O

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Study of Excess Gibbs Energy for a Lattice Solution by Random Number Simulation

difluoroboranyls derived from amides carrying donor group Supporting Information

Influence of Flow Rate on Nitrate Removal in Flow Process

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

STEAM TABLES. Mollier Diagram

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Changes and Issues of Consolidation Techniques of Peaty Arable Land in Hokkaido

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Comparison of HPLC fingerprint between enzymatic Calculus bovis and natural Calculus bovis

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Anisotropy of Drainable Macropores in Andosols and Alluvial Soils

SUPPORTING INFORMATION

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

Metallurgical Analysis. qu) 2 BPB, 1 Table 1 Spectrophotometric determination of copper. / 10 4 (L mol - 1 cm - 1 )

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

The Technique for Improving Soil Physical Characteristics by Preventing the Formation of Soil Crust by Dressing the Sandy Pyroclastic Deposits

Electronic Supplementary Information

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

of the methanol-dimethylamine complex

Study on the Stability of Insulin Hexamer in Solution by Molecular Dynamics Simulations

Noburo H ARAGUCHI*, Yusuke A RAKAWA*, Akihiro T ANAKA*, Takashi K USABA*, Ken-ichi Y AKUSHIDO* and Ichiro Y AMADA*

Investigation on Fast Determination of Trace N2Nitrosamines Assisted by Microwave Radiation

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supplementary!Information!

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

College of Life Science, Dalian Nationalities University, Dalian , PR China.


Supporting Information

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Soil Temperature Change and Heat of Wetting during Infiltration into Dry soils

N 2. Temperature Programmed Surface Reaction of N 2Nitrosonornicotine on Zeolites and Molecular Sieves

DuPont Suva 95 Refrigerant

Electronic Supplementary Information

Preparation and Characterization of Solid Dispersion of Total Flavonols from Resina Draconis

Η ΤΟΞΙΚΟΤΗΤΑ ΤΟΥ ΒΟΡΙΟΥ(B) ΣΤΗΝ ΚΑΛΛΙΕΡΓΕΙΑ ΤΗΣ ΤΟΜΑΤΑΣ

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Νανοσύνθετα πολυαιθυλενίου υψηλής πυκνότητας (HDPE) / νανοϊνών χαλκού (Cu-nanofibers) με βελτιωμένη σταθερότητα στην υπεριώδη ακτινοβολία

Supporting Information

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

phase: synthesis of biaryls, terphenyls and polyaryls

E#ects of Imogolite Addition on Colloidal Stability of Montmorillonite and Kaolinite

Electronic Supplementary Information (ESI)

Supporting Information

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

Study of Ne w Chemiluminescence Technique Recognition of Sodium Azide by External Reference Method

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Available online at shd.org.rs/jscs/

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

100 khz 45 khz 28 khz

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΑΠΟ ΤΗΝ ΟΙΚΙΑΚΗ ΧΡΗΣΗ ΙΑΦΟΡΩΝ ΜΟΡΦΩΝ ΕΝΕΡΓΕΙΑΣ

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

The pathway of the ozonation of 2,4,62trichlorophenol in aqueous solution

Transcript:

Netsu Sokutei 36 5 263-270 2009 9 28 2009 10 24 Thermodynamics of Lysozyme in Binary Solutions of Water + DMSO Tadashi Kamiyama (Received Sep.28, 2009; Accepted Oct.24, 2009) Thermodynamic properties of lysozyme in binary solutions of water + dimethyl sulfoxide (DMSO) were studied paying attention to the intrinsic viscosity, the partial specific volume, the activation free energy for viscous flow, and the thermal denaturation of lysozyme. The thermostability and cooperativity of lysozyme for thermal denaturation was decreased and increased, respectively, with increasing the molar fraction of DMSO (). Lysozyme was stabilized ( G 3 kj mol 1 ) through the specific binding of DMSO at 0.05. In the range of 0.3 to 0.4, lysozyme was unfolded accompanied with increase in the intrinsic viscosity ( [η] 5.0 cm 3 g 1 ), the partial specific volume ( v o 0.023 cm 3 g 1 ), and the activation free energy for viscous flow (( µ ο* 3 1.4 10 3 kj mol 1. It was considered that these changes were due to interfering water - lysozyme interaction through the strong water - DMSO interaction which was reflected in the maximum or minimum excess functions of the binary solution. The apparent partial specific volume of lysozyme was significantly dependent on the concentration of lysozyme and DMSO, indicating the preferential hydration or solvation to lysozyme. These results indicate that thermodynamic properties of protein in binary solutions together can sensitively reflect the conformational change of protein and the interaction with solvent. Keywords: protein, binary solution, thermodynamics 1) 2009 The Japan Society of Calorimetry and Thermal Analysis. 263

2,3 ph Dimethyl Sulfoxide DMSO (CH 3) 2SO DMSO 4 DMSO DMSO 5-8 DMSO DMSO SIGMA, 6, lot No.90K1922 277 K 48 280 nm 2,690 cm 3 g 1 cm 1 14,307 9-11 DMSO Kanto Kagaku, spectroscopy grade 0.3 kpa 327 K 4A Lysozyme DMSO DMSO Lysozyme DMSO DMSO DMSO 10 4 DMSO ph ph DMSO 1 10 4 (g cm 3 ) F-4500 HITACHI 290 nm Tryptophan Trp (298.15 0.01) K DSC MCS-DSC MicroCal 1 K min 1 5 T m H C p T 1/2 Origin DMA 512 (Anton Paar) (298.15 0.001) K 10 6 g cm 3 (298.15 0.001) K 98.23 0.02 0.03(mg cm 3 ) DSC 1.0(mg cm 3 )3 10 (mg cm 3 ) H E Q / (n 1 n 2) (1) V E (x 1M 1 M 2)/ρ 12 (x 1M 1/ρ 1 M 2/ρ 2) (2) η E η 12 exp{(x 1lnη 1 lnη 2)} (3) 1 2 DMSO 12 DMSO Q n x ρ η Fig.1 DMSO 12) 13) 14) 15) 3.6Redlich- 264

DMSO Excess functions Intensity / arbitarry unit Wavelength / nm Fig.1 Excess functions of binary solutions, water (1) + DMSO (2), at 298.15 K., excess enthalpy (kj mol 1 ),, excess volume (cm 3 mol 1 ),, excess viscosity (mpa s 1 ),, excess activation free energy for viscous flow (kj mol 1 ). Peak wavelength / nm Kister DMSO S=O HO 5-8,16) 0.3 0.4 DMSO 2 : 1 3 : 2-3 kj mol 1 DMSO Trp +DMSO Trp Fig.2 DMSO A B 0 0.1DMSO 0.3 0.4 0 0.1 0.3 0.4 DMSO N 0.2 I 0.4 D Fig.2 Fluorescence spectra of lysozyme at various (A) and wavelength for maximum emission at 298.15 K (B). 3 N I D Lehmann Stanfield 0.03 6 DMSO 2 DMSO Trp 108 Trp 123 17) Trp 18) I 78.54 DMSO 46.6 Trp D Trp Jackson 19 FTIRα β A DMSO0.33 C=O HN S=O HN Trp 3.5 DMSO 265

DMSO i DMSO ii DMSO Fig.1 DMSO DSC H C p T m T 1/2 G S DMSO DSC Fig.3 DMSO 0, 0.05, 0.10, 0.20, 0.30, 0.40 0, 18.5, 32, 52, 65, 74 w/w% 0.4 Table 1 Fig.4 T m DMSO T m 350.25 58.89 115.62 0.46 0.35 DMSO DMSO H H Cp / kj mol 1 K 1 Fig.3 T / DSC thermograms of lysozyme in binary solutions of water and DMSO. The numbers next to the curves represent the mole fractions of DMSO,. The reversibilities of these measurements were over 95%. Cp H / kj mol 1 K 1 / kj mol 1 Tm / K Fig.4 T1/2 / K Dependence of thermodynamic properties for thermal denaturation of lysozyme on the. Table 1 Thermodynamic properties for thermal denaturation of lysozyme in binary solutions of water and DMSO. T m H C p T 1/2 G300 H300 T S300 kj mol 1 kj mol 1 K 1 kj mol 1 kj mol 1 kj mol 1 0.00 77.19 0.01 537 3 5.4 0.3 6.88 0.01 56.8 267.1 210.4 0.05 73.87 0.01 583 6 5.7 0.5 6.33 0.01 59.9 315.0 255.1 0.10 69.80 0.02 571 6 6.3 0.3 6.82 0.01 53.8 299.9 246.1 0.20 60.96 0.01 508 5 3.5 0.3 7.30 0.01 45.5 388.4 342.9 0.30 48.95 0.02 445 10 0.4 0.3 7.53 0.01 30.2 437.0 406.8 0.40 266

DMSO 20-22) C p T 1/2 DMSO (4) (6) 300K G 300 H 300 S 300 Table 1 H = H Tm + C p ( T T ) m (4) [η] / cm 3 g 1 S = S Tm + C p ln T T m (5) T T G = HT 1 C p ( Tm T ) + T ln m Tm Tm (6) Fig.5 Plots of intrinsic viscosities of lysozyme against the at 298.15 K. 0.00, G 300 56.8 kj mol 1 DMSO 0.05 S H 3 kj mol 1 DMSO [η] 23) 1 η 1 ρ t [] (7) η = lim 1 = lim 1 c 0 c η c 0 0 c ρ t 0 0 η 0 η ρ 0 ρ t 0 t DMSO [η] Fig.5 DMSO 0.05 0.35 (2.8 0.4) cm 3 g 1 24 2.66 cm 3 g 1 (4.0 0.4) cm 3 g 1 0.1 0.3 0.3 0.4 10.5 cm 3 g 1 0.4 0.9 DMSO 7.9 0.6 cm 3 g 1 6.6 cm 3 g 1 23 6.5 cm 3 g 1 0.4 Ma Wang 25) DMSO v o o 1 V0 v = lim c 0 c ρ c V0 = ρ 8 9 c cm 3 g 1 V 0 v app v app v o kc v o 26) Chalikian 27) v o i van der Waals V c ii cavity V cav iii V sol o v = V + V c 0 cav + V sol (10) V c v o ii iii 267

v o / cm 3 g 1 k / cm 3 g 1 Fig.6 (A) The concentration dependences of apparent partial specific volumes of lysozyme, k, and (B) partial specific volumes of lysozyme at infinite dilutions against at 298.15 K. ii iii Fig.6k v o DMSO Fig.6(A) k DMSO DMSO V 0 Fig.6(B) 0.05 0.35 H C p T 1/2 DMSO DMSO 0.2 28) 29) DMSO cavity cavity (10) 0.2 0.42 +0.023 cm 3 g 1 FTIR cavity 27) Fig.6(A) Fig.1 DMSO 0.6 FTIR 19) cavity DMSO ii iii 30) Fig.7 i ii (i) ii µ o* 12 29) * 0 V µ 12 = RT ln η hn o o 12 (11) R T h N V o 12 Planck Avogadro m 3 mol 1 Eyring 30) 268

DMSO µ O* i / kj mol 1 Fig.7 Viscous flow model of protein in solution. 1/3 DMSO µ o* 12 DMSOFig.8(A) µ o* 12 0.01 kj 0.1 % DMSO Fig.8(A) Fig.1 3.4 kj mol 1 DMSO 30 % DMSO µ o* 3 29), 31) µ µ RT V [ B ( V )] o o 12 3 o* o* 3 = 12 + V o 12 (12) V o 3 m 3 mol 1 B Jones-Doll η/η 0 1 Ac 0.5 Bc 32,33) µ o* 3 DMSO Fig.8(A) µ o* 3 140 kj mol 1 1.8 % DMSO µ o* 12 µ o* 3 i µ o* 12/V o 12 µ o* 3/V o 3 Fig.8(B) µ o* 3/V o 3 µ o* 12/V o 12 µ o* 3 0.3 0.4 µ o* 3/V o 3 µ o* 3 µ o* 3/V o 3 µ O* i Vi 1 / kj cm 3 Fig.8 Plots of µ o* i(a) and µ o* i /V o i 1 (B) in various aqueous DMSO solutions: i "12" in the absence of lysozyme ( ); i "3" in the presence of lysozyme ( ) (9,100 360)kJ mol 1 (0.85 0.03) kj cm 3 7,658 kj mol 1, 0.75 kj cm 3 1.18 1.13 % Dash µ o* 3 DMSO 0.2 14.4 kj mol 1 Gly 15.7 kj mol 1 α-ala 15.6 kj mol 1 β-ala 29) 129 1 µ o* 3 45.8 kj mol 1 ( = 0.1998) 3 µ o* 3/V o 3 1.5 1 µ o* 3 µ o* 3/V o 3 269

1),,,, (2005). 2),,, (1989). 3),, (2000). 4) 2, 35 (1960). 5) J. Catalan, C. Diaz, and F. Garcia-Blanco, J. Org. Chem. 66, 5846 (2001). 6) D. D. Macdonald and J. B. Hyne, Can. J. Chem. 49, 611 (1971). 7) J. M. Cowie and P. M. Toporowski, Can. J. Chem. 39, 2240 (1961). 8) L.-J. Yang, X.-Q. Yang, K.-M Huang, G.-Z. Jia, and H. Shang, Int. J. Mol. Sci. 10, 1261 (2009). 9) S. E. Radford, C. M. Dobson, and P. A. Evans, Nature 358, 302 (1992). 10) W. Pfeil and P. L. Privalov, Biophys. Chem. 4, 23, (1976). 11) K. Takano, Y. Yamagata, and K. Yutani, J. Mol. Biol. 280, 49 (1998). 12),, 13, 2 (1986). 13) T. Kamiyama, T. Matsusita, and T. Kimura, J. Chem. Eng. Data 48, 1301 (2003). 14) T. Kamiyama, M. Morita, and T. Kimura, J. Chem. Eng. Data 49, 1350 (2004). 15) T. Kamiyama, M. Morita, and T. Kimura, J. Sol. Chem. 37, 27 (2008). 16) X. Qian, B. Han, Y. Liu, H. Yan, and R. Liu, J. Sol. Chem. 24, 1183 (1995). 17) M. S. Lehmann and R. F. D. Stansfield, Biochemistry 28, 7028 (1989). 18) R. W. Cowgill, Biochim. Biophys. Acta 133, 6 (1967) 19) M. Jackson and H. Mantsch, Biochim. Biophys. Acta 1078, 231 (1991). 20) G. Velicelebi and M. Sturtevant, Biochemistry 18, 1180 (1979). 21) Y. Fujita and Y. Noda, Bull. Chem. Soc. Japan 56, 233 (1983). 22) A. L. Jacobson and C. L. Turner, Biochemistry 19, 4354 (1980). 23) C. Tanford, K. Kawahara, and S. Lapanje, J. Am. Chem. Soc. 89, 729 (1967). 24) K. Monkos, Biochim. Biophys. Acta 1339, 304 (1997). 25) R. J. Ma, and C. H. Wang, J. Phys. Chem. 87, 679 (1983). 26), 31, 186 (2004); 40, 2461 (1995). 27) T. V. Chalikian, Annu. Rev. Biophys. Biomol. Struct. 32, 207 (2003). 28) I. N. Basumallick and R. K. Mohanty, Ind. J. Chem. 29, 647 (1990). 29) U.N. Dash and N.N. Pasupalak, Ind. J. Chem. 36, 834 (1997). 30) H. Eyring, J. Chem. Phys. 4, 283 (1936); S. Glasstone, K.J. Laidler, and H. Eyring, "The Theory of Rate Processes" McGraw-Hill, (1941); " ", (1964). 31) D. Feakins, W.E. Waghorne, and K.G. Lawrence, J. Chem. Soc., Faraday Trans. 1, 82, 563 (1986). 32) G. Jones and M. Dole, J. Am. Chem. Soc. 51, 1073 (1929). 33) Y. Z. Wang, and J. Lu, Biophys. Chem. 99, 199 (2002). DMSO DSC DMSO 0.05 0.3 0.4[η] v o µ o* 3 DMSO DMSO Tadashi Kamiyama Faculty of Science and Engineering, Kinki University TEL. 06-6721-2332 (ext 4111) FAX. 06-6723-2721 e-mail: kamiyama@chem.kindai.ac.jp 270