DOI /J. 1SSN

Σχετικά έγγραφα
The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

High order interpolation function for surface contact problem

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

D Alembert s Solution to the Wave Equation

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Exercises to Statistics of Material Fatigue No. 5

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Prey-Taxis Holling-Tanner

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Motion analysis and simulation of a stratospheric airship

Arbitrage Analysis of Futures Market with Frictions

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

, ; 3.,,,. ; : A

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Second Order Partial Differential Equations

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

«Μετατρέψιμα Ομόλογα και Μέθοδοι Αποτίμησης»

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Approximation Expressions for the Temperature Integral

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 2: Pricing Defaultable Assets. Μιχάλης Ανθρωπέλος

CorV CVAC. CorV TU317. 1

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 4: Υποδείγματα πιστωτικού κινδύνου. The Merton's Structural Model

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 1.3.Ξένες γλώσσες Αγγλικά πολύ καλά 1.4.Τεχνικές γνώσεις

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Part III - Pricing A Down-And-Out Call Option

ΟΙ ΠΑΡΑΓΟΝΤΕΣ που ΕΠΗΡΕΑΖΟΥΝ την ΤΙΜΗ των ΙΚΑΙΩΜΑΤΩΝ ΠΡΟΑΙΡΕΣΗΣ

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

Solution Series 9. i=1 x i and i=1 x i.

Accounts receivable LTV ratio optimization based on supply chain credit

Mean-Variance Analysis

Financial Risk Management

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository

Financial Risk Management

Models for Asset Liability Management and Its Application of the Pension Funds Problem in Liaoning Province

Bank A ssetgl iab ility Sheet w ith Em bedded Op tion s

Ηλεκτρονικοί Υπολογιστές IV

A research on the influence of dummy activity on float in an AOA network and its amendments

Research on Economics and Management

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

Congruence Classes of Invertible Matrices of Order 3 over F 2

This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study.

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

SPECIAL FUNCTIONS and POLYNOMIALS

EE512: Error Control Coding


Αληφαντής, Γ. Σ. (2002), «Η Λογιστική της Αναβαλλόμενης Φορολογίας επί των Αποσβέσεων βάσει του ΔΛΠ 12», Η Ναυτεμπορική, σελίδα 12, Αθήνα

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Συστήματα χρηματοοικονομικής μηχανικής & σύγχρονα μοντέλα επενδύσεων

27/2/2013

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ 2. ΣΠΟΥΔΕΣ

Vulnerable European option pricing with the time-dependent for double jump-diffusion process

The Construction of Investor Sentiment Index for China's Stock Market Based on the Panel Data of Shanghai A Share Companies

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

6.3 Forecasting ARMA processes

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 3: Δειγματοληπτικές μέθοδοι

IMES DISCUSSION PAPER SERIES

ΘΕΩΡΙΑ ΟΜΟΛΟΓΙΩΝ. ΤΙΜΟΛΟΓΗΣΗ,ΔΙΑΧΕΙΡΗΣΗ, ΕΙΔΙΚΑ ΘΕΜΑΤΑ.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Second Order RLC Filters

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

Sticky Leverage. Joao Gomes, Urban Jermann & Lukas Schmid. Wharton School, Duke & UCLA

Homework 8 Model Solution Section

!"#$%&' !"#$% = = = ! == == !"#$% !"#$%&'#()*+,-./012!"#$%&'()*+,-./0123!"#$%& ====!"#$%&'()*+,-./01

Adaptive grouping difference variation wolf pack algorithm

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Αμυνταίου 3, Θεσσαλονίκη (Ελλάδα) Skype ioankroustalis. Ημερομηνία γέννησης 01/06/1984 Εθνικότητα Ελληνική

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

Finite difference method for 2-D heat equation

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

All models have faults - that doesn t mean you can t use them as tools for making decisions. Myron Scholes

Transcript:

4 3 2 Vol 43 No 2 2 1 4 4 Journal of Shanghai Normal UniversityNatural Sciences Apr 2 1 4 DOI1 3969 /J 1SSN 1-5137 214 2 2 1 2 2 1 22342 2234 O 175 2 A 1-51372142-117-1 2 7 8 1 2 3 Black-Scholes-Merton Ingersoll1977 1 Brennan Schwartz1977 2 Brennan Schwartz198 3 Barone 23 4 Toshikazu26 5 Monte Carlo 214-2-28 13ZZ17 E-mailfuyi@ shedu edu cn

118 214 Kostas 1998 6 Ayache23 7 Wang21 8 Kyoko21 9 ahuai211 1 Toshikazu 26 5 21 11 29 12 213 13 1 1 A T B 2 A B 3 λ 1 λ 2 1 2 4 Poisson Poisson s t k PN t - N s = k= 1 k λk t - s k e -λt -s T P T= 1 - P > T= 1 - e -λt 5 6 St dst= μstdt + σstdwt μ σ Wt 7 S + = S - 1 - η η 8

2 119 9 k q 2 Δ - Π t = V t - ΔS t V S t t + dt dπ = dv - ΔdS = V V + μs t S + 1 2 V ( 2 σ2 S 2 + q) dt + σs V 2 S S dw t - ΔμSdt + σsdw t Δ = V S dπ = V t + 1 2 V ( 2 σ2 S 2 + q) dt 2 S t t + dt t t + dt λ 1 dt 7 1 R R 1 R + 1 - R 2 ks1 - η 1 η 1 Π dπ = 1 - λ 1 dt V t + 1 2 V ( 2 σ2 S 2 + q) dt + λ S 2 1 dtδsη 1 - V+ λ 1 dtmax ks1 - η 1 1 dπ = rπdt 2 1 2Ito^ 1 - λ 1 dt V t + 1 2 V ( 2 σ2 S 2 + q) dt + λ S 2 1 dtδsη 1 - V+ λ 1 dtmax ks1 - η 1 = rπdt V t + r + λ 1η 1 S V S + 1 2 V 2 σ2 S 2 S - λ 2 1 + rv + λ 1 max ks1 - η 1 + q = V t + r + λ1η S V 1 S + 1 2 V 2 σ2 S 2 S - λ 2 1 + rv + λ 1 max ks1 - η 1 + q = 3 V t = T = maxks t t + dt λ 1 dt λ 2 dt 1 R R

12 214 2 ks1 - η 2 η 2 > η 1 η 2 Π ( ) dπ = 1 - λ 1 dt V t + 1 2 V 2 σ2 S 2 + q dt + λ S 2 1 dtδsη 2 - V+ λ 1 dtmaxr ks1 - η 2 1 - λ 1 dt V t + 1 2 V ( 2 σ2 S 2 + q) dt + λ S 2 1 dtδsη 2 - V+ λ 1 dtmaxr ks1 - η 2 = r( V - S V ) S dt V t + r + λ1η S V 2 S + 1 2 V 2 σ2 S 2 S - r + λ 1V + λ 2 1 maxr ks1 - η 2 + q = 4 V t = T = max ks 2 1 < 2 T 1 2 T 4 1 2 3 2 2 > T T 3 1 < 2 T 1 2 P 1 T = P 2 T 1 2 = T 1 λ 1 f 1 2 d 2 d 1 = 1 + e -λ1 +λ2t-1 - e -λ1t 5 λ 1 + λ 2 2 < 2 T 1 2 T P 2 T = P 2 T 1 2 = 2 λ 2 f 1 2 d 2 d 1 + T T λ 1 λ 2 e -λ 1 1 -λ 2 2 d 2 d 1 = λ 1 + λ 2 1 - e -λ1 +λ2t 6 3 2 > T P 3 = P 2 > T= e -λ 2 T 7 3 34 3 x = S = T - t 3 Cauchy V - ( r + λ 1η 1 - ) σ2 V 2 x - 1 2 V 2 σ2 x + λ 2 1 + rv - λ 1 max ke x 1 - η 1 - q = V = = maxke x V = Ue α + βx α β U - 1 2 U 2 σ2 x - e -α -βx λ 2 1 max ke x 1 - η 1 + q= 8 Ux = e -βx maxke x

2 121 ( 1 ) α = - λ 1 - r - 1 1 2σ 2 2 σ2 - r - λ 1 η 2β = 1 2 - r σ - λ 1η 1 2 σ 2 8 U Ux = e -βx maxke x 9 9 1 Ux = σ 槡 2π - e -x-ξ 2σ2 -βξ maxke ξ dξ 1 U - 1 2 U 2 σ2 - e -α -βx λ x 2 1 max ke x 1 - η 1 + q= Ux = 11 11 1 Ux = σ 槡 2π λ 1 max ke ξ 1 - η 1 + q e - x-ξ2 2σ2 -ζ -αζ-βξ dξdζ - 槡 - ζ 12 112 8 1 Ux = e -x-ξ σ 槡 2π 2σ2 -βξ maxke ξ dξ + - 1 λ 1 max ke ξ 1 - η 1 + q σ 2 槡 π - - 槡 Ux = e σ2β-x2 -x2 2σ2 Nd 1 + ke σ 2β-x-σ22 -x2 2σ2 1 - Nd 2 + λ 1 + q q ζ e -x2 +2ασ2 -ζζ -βσ2 -ζ-x2 2σ2 -ζ Nd 3 dζ + e -x2 +2ασ2 -ζζ -βσ2 -ζ-x2 2σ2 -ζ 1 - Nd 3 dζ + λ 1 k1 - η 1 e - x-ξ2 2σ2 -ζ -αζ-βξ dξdζ e -x2 +2ασ2 -ζζ -β-1σ2 -ζ-x2 2σ2 -ζ 1 - Nd 4 dζ d 1 = d 2 = d 3 = k + σ2 β - x σ 槡 k + σ2 β - x - σ 2 σ 槡 k1 - η 1 + βσ2 - ζ- x σ 槡 - ζ

122 214 k1 - η 1 + β - 1σ2 - ζ- x d 4 = 13 σ 槡 - ζ VS t V 1 S V 1 S t= e α+βs e σ2β-s2 -S2 2σ2 Nd' 1 + ke σ 2β-S-σ22 -S2 2σ2 1 - Nd' 2 + λ 1 + q q e -S2 +2ασ2 -ζζ -βσ2-ζ-s2 2σ2 -ζ Nd' 3 dζ + e -S2 +2ασ2 -ζζ -βσ2 -ζ-s2 2σ2-ζ 1 - Nd' 3 dζ + λ 1 k1 - η 1 e -S2 +2ασ2-ζζ -β-1σ2 -ζ-s2 2σ2 -ζ 1 - Nd' 4 dζ d' 1 = k + σ2 βt - t- S σ 槡 T - t 4 d' 2 = d' 3 = d' 4 = k + σ2 βt - t- S - σ 2 T - t σ 槡 T - t k1 - η 1 + σ2 βt - t - ζ- S σ 槡 T - t - ζ k1 - η 1 + σ2 β - 1 T - t - ζ- S σ T - t - 槡 Wx = e σ2β-x2 -x2 2σ2 Nd 1 + ke σ 2β -x-σ22 -x2 2σ2 1 - Nd 2 + λ 1 R + q q ζ e -x2 +2ασ2 -ζζ -βσ2 -ζ-x2 2σ2 -ζ Nd 5 dζ + e -x2 +2ασ2 -ζζ -βσ2 -ζ-x2 2σ2 -ζ 1 - Nd 5 dζ + λ 1 k1 - η 2 e -x2 +2ασ2 -ζζ -β-1σ2 -ζ-x2 2σ2 -ζ 1 - Nd 6 dζ 14 d 1 d 2 13 k1 - η 2 + βσ2 - ζ- x d 5 = σ 槡 - ζ k1 - η 2 + β - 1σ2 - ζ- x d 6 = σ 槡 - ζ VS t V 2 S V 2 S t= e α+βs e σ2β-s2 -S2 2σ2 Nd' 1 + ke σ 2β-S-σ22 -S2 2σ2 1 - Nd' 2 +

2 123 λ 1 R + q q e -S2 +2ασ2 -ζζ -βσ2 -ζ-s2 2σ2 -ζ Nd' 5 dζ + e -S2 +2ασ2 -ζζ -βσ2 -ζ-s2 2σ2 -ζ 1 - Nd' 5 dζ + λ 1 k1 - η 2 d' 1 d' 2 14 e -S2 +2ασ2-ζζ -β -1σ2 -ζ-s2 2σ2 -ζ 1 - Nd' 6 dζ d' 5 k1 - η 2 + βσ2 T - t - ζ- S = σ 槡 T - t - ζ d' 6 k1 - η 2 + β - 1σ2 T - t - ζ- S = σ 槡 T - t - ζ VS t 4 VS t= P 1 + P 3 V 1 S t+ P 2 V 2 S t 1 1 V t S 2 λ 1 2 λ 1 3 4 λ 2 3 λ 1 = 5 λ 2 λ 2 4 λ 1 = 3 λ 2 λ 2 5 r 5 r λ 1

124 214 2 λ 1 3 λ 1 = 5 λ 2 4 λ 1 = 3 λ 2 5 r 6 σ 6 σ 6 σ 7 R

2 125 7 R 7 8 q 8 9 k 9 8 q 9 k 5 AV 1INGERSOLL JR J A contingent-claims valuation of convertible securities J Journal of inancal Economics 1977 4289-322 2BRENNAN M J SCHWARTZ E S Convertible bondsvaluation and optimal strategies for call and conversion J Journal of inance 1977 321699-1715 3BRENNAN M J SCHWART E S Analyzing convertible bondsj Journal of inance and Quantitative Analysis 198 1597-929 4BARONE ADESI G BERMUDEZ A HATGIOANNIDES J Two factor convertible bonds valuation using the method of characteristics finite elements J Journal of Economic Dynamics and Control 23 27181-1831 5KIMURA T SHINOHARA T Monte carlo analysis of convertible bonds with reset clauses J European Journal of Operational Research 26 16831-31 6TSIVERIOTIS K ERNANDES C Valuing convertible bonds with credit riskj Journal of ixed Income 1998 895-12 7AYACHE E ORSYTH P A VETZAL K R The valuation of convertible bonds with credit risk J The Journal of Derivatives 23 119-3 8WANG L L BIAN B J Pricing of perpetual convertible bonds with credit risk under framework of reduce form J Journal

126 214 of Tongji University 21 6935-94 9KYOKO Y KATSUSHIGE S The valuation of callable-puttable reverse convertible bonds J Asia-Pacific Journal of Operational Research 21 27189-29 1ZHOU Y YI H A free boundary problem arising from pricing convertible bond J Applicable Analysis 21 337-323 11 J 21 233-39 12 J 29 7989-992 13 J 213 3465-469 The research of convertible bond pricing based on credit risk of guarantor U Yi 1 ZHANG Jizhou 2 QIU Yazun 2 1 Business School Shanghai Normal University Shanghai 2234 China 2 College of Mathemcties and Sciences Shanghai Normal University Shanghai 2234 China AbstractIn this paper we study convertible bonds pricing from the perspective of investors under the background of credit risk of guarantor The default process of the bond issuer and guarantor are assumed to be a poisson process and we consider the stock price jumps after the issuer default Through the hedge we get the party differential equation model and the explicit solution inally we calculate the solution and analysis the effect of various parameters in the model Key wordsconvertible bondsguaranteereduced form methodcredit risk