34 3 Vol. 34, No. 3 2016 8 PROGRESS IN ASTRONOMY Aug., 2016 doi: 10.3969/j.issn.1000-8349.2016.03.06 HAT-P-36 1,2,3 (1. 650011 2. 650011 3. 100049) 2012 2014 1 m HAT-P-36 3 IRAF CCD coarse de-correlation SYSREM MCMC HAT-P-36 Mancini Bakos 20 (1.327 347 04 ± 0.000 000 27) d O C HAT-P-36b HAT-P-36b 1 ( ) 2 Rp F = i R [1, 2] HATNet [3, 4] SuperWASP [5, 6] CoRoT [7] Keper [8] 62.2% ➀ 2016-05-04 2016-05-26 (u1531121) xupan@ynao.ac.cn ➀ http://www.exoplanet.eu
342 34 TTV (Transit timing varitation) TDV (Transit Duration Varition) [9, 10] HAT-P-36 2012 HATNet (Hungarian Automated Telescope Network) [11] GSC 3020-02221 G5 V V = 12.262 mag HAT-P-36b M p = (1.832 ± 0.099) M J R p = (1.264 ± 0.071) R J P = (1.327 347 ± 0.000 003) d ρ p = (1.12 ± 0.19) g cm 3 2013 Maciejewski HAT-P-36b 0.6m Toru HAT-P-36 JKTEBOP TAP O C TTV [12] 2015 Mancini HAT-P-36 Rossiter-McLaughlin Cassini 1.52m CA 1.23m P rot = (15.3 ± 0.4) d HAT-P-36b λ = 14 ± 18 φ = 25 +38 25 degree [13] Püsküllü HAT-P-36 [14] 1 m HAT-P-36 3 2 3 MCMC (Markov Chain Monte Carlo) HAT-P-36 2 2.1 2012 2014 1 m HAT-P-36 1 m 2048 2048 Andor DW436 CCD 7.3 7.3 R CCD 2012 3 12 2014 3 8 ( 1) 1 HAT-P-36 /s RMS/mag 2012.03.12 YO-1m R 150 180 0.003 6 2012.03.16 YO-1m R 180 240 0.004 5 2014.03.08 YO-1m R 150 180 0.005 9
3 HAT-P-36 343 2.2 CCD CCD IRAF CCD CCD apphot 2.3 0.01 mag CCD coarse de-correlation [15] SYEREM [16] 3 2006 Holman MCMC [17] Collier Cameron MCMC [18, 19] HAT-P-36 K 1 e ω γ T 0 P F t T b M X = {T 0, P, F, t T, b, M, K 1, e, ω} MCMC X i = X i 1 + σ X G(0, 1)f. (1) G(0, 1) 0 1 f 0.5 25% Metroplis-Hastings 3.1 MCMC 3 Bakos [11] R 4 T eff g [Fe/H] ξ Claret [20] Mancini 1.5 10 4 10 P = 1.327 345 96 d
344 34 MCMC 3.2 T = T 0 + P E T 0 E HAT-P-36b Bakos 3 [11] Mancini 3 [13] ETD ➀ 11 ( 2) 2 T = 2 455 555.889 938(±0.000 202) + E 1.327 347 04(±0.000 000 27). (2) 2 HAT-P-36 (O C) /d 5 999.223 485 6 0.000 691 4 334 0.000 364 8 6 003.204 836 5 0.000 886 0 337 0.001 055 0 6 725.284 577 1 0.001 303 8 881 0.001 895 3 5 555.890 600 0 0.000 430 0 0 0.000 661 3 [11] 5 601.018 820 0 0.000 740 0 34 0.000 918 1 [11] 5 608.983 900 0 0.000 300 0 40 0.000 079 7 [11] 6 397.428 940 0 0.000 310 0 634 0.000 977 3 [13] 6 762.448 340 0 0.000 180 0 909 0.000 059 0 [13] 6 766.430 550 0 0.000 280 0 912 0.000 109 9 [13] 7 460.632 005 0 0.000 670 0 1 435 0.000 937 5 ETD 7 135.432 534 0 0.000 730 0 1 190 0.000 383 5 ETD 7 026.591 914 0 0.000 800 0 1 108 0.001 453 9 ETD 6 754.486 109 0 0.000 670 0 903 0.001 792 3 ETD 6 726.612 459 0 0.000 740 0 882 0.002 430 1 ETD 6 658.915 591 0 0.000 480 0 831 0.000 261 2 ETD 6 394.774 978 0 0.000 880 0 632 0.001 709 4 ETD 6 309.821 069 0 0.000 870 0 568 0.001 989 0 ETD 6 024.445 246 0 0.000 700 0 353 0.001 801 8 ETD 6 004.533 406 0 0.000 520 0 338 0.000 167 4 ETD 6 362.915 530 0 0.000 240 0 608 0.001 409 6 ETD ➀ http://var2.astro.cz/etd/
3 HAT-P-36 345 χ 2 = 5.11 TTV O C ( 1) HAT-P-36b Holman Murray [21] ( ) M 2 = 16 45π M t P 1 ( P2 P 1 ) 2 (1 e 2 ) 3, (3) M 2 t TTV P 1 P 2 HAT-P-36b e 2 t = 0.002 d 0.0, 0.05, 0.1, 0.15, 0.2, 0.25 0.03 AU 0.35 AU 0.01 AU 2 13 M J 0.1 AU 2014 3 8 1 HAT-P-36 O C 33.6 m/s 2
346 34 j + 1/j Agol 2005 [22] t = P 1 M 2, (4) 4.5j M 2 + M 1 j t = 0.002 d 2 : 1 3 : 2 4 : 3 5 : 4 6 : 5 4.2 8.4 12.7 17.1 21.5 M Bakos [11] 33.6 m/s [23] ( ) 2/3 M p sin i = 4.919 10 3 P 1/3 (1 e 2 ) 1/2 M + M p K, (5) M M p (M J ) i ( ) P (d) K (m/s) M (M ) (5) 2 3.3 HAT-P-36 [24, 25] MCMC 3 HAT-P-36b 10 1.5 10 4 1σ ( 3) ( 3) 4 3 MCMC HAT-P-36 M p = 1.928 M J Mancini [13] M p = 1.852 M J Bakos [11] M p = 1.832 M J ( ) R p = 1.309 R J Mancini R p = 1.304 R J Bakos R p = 1.264 R J Mancini HAT-P-36 lg R HK = ( 4.636 ± 0.066) dex HAT-P-36 (1) Bakos FLWO 1.2m Mancini
3 HAT-P-36 347 3 HAT-P-36 Mancini Bakos P 1.327 347 04 ± 0.000 000 27 1.327 346 83 ± 0.000 000 48 1.327 347 ± 0.000 003 d / (Rp/R ) 2 0.014 84 ± 0.000 59 0.014 07 ± 0.002 40 tt 0.092 769 ± 0.000 042 0.092 3 ± 0.000 7 d b 0.185 5 +0.239 6 0.123 4 0.312 +0.078 0.105 R K1 0.34 ± 0.2 0.32 ± 0.39 0.33 ± 0.15 km s 1 γ 0.87 +0.64 0.62 16.327 ± 0.006 16.29 ± 0.10 km s 1 e 0.061 +0.030 0.028 0.063 ± 0.032 ω 54.45 +45.31 58.15 95 ± 63 ( ) i 87.643 +1.568 3.410 85.86 ± 0.21 86.0 ± 1.3 ( ) ρ 0.762 +0.125 0.141 0.913 ± 0.027 ρ M 1.038 ± 0.027 1.030 ± 0.030 1.022 ± 0.049 M R 1.107 ± 0.071 1.041 ± 0.013 1.096 ± 0.056 R a 0.023 93 +0.000 21 0.000 20 0.023 88 ± 0.000 22 0.023 8 ± 0.000 4 AU Rp 1.309 ± 0.099 1.304 ± 0.021 1.264 ± 0.071 RJ Mp 1.928 +0.101 0.094 1.852 ± 0.088 1.832 ± 0.099 MJ ρp 0.856 +0.174 0.203 0.737 ± 0.095 0.84 ± 0.14 ρj Teq 1 845.92 +76.21 56.78 1 788 ± 15 1 823 ± 55 K
348 34 2012 3 16 2014 3 8 0.04 mag 0.08 mag 3 HAT-P-36 Cassini 1.52m CA 1.23m FLWO 1.2m YO 1m YO 1m (2) 2014 3 8 5 10% HAT-P-36b TrES-3b [26] WASP-77Ab [27] WASP-46b [28] HAT-P-23b [29] WASP-135b [30] P = (1.327 347 04± 0.000 000 27) d Mancini Bakos Bakos Mancini 3 9 20 [1] Baraffe I, Chabrier G, Barman T. A&A, 2008, 482: 315 [2] Fortney J J, Marley M S, Barnes J W, ApJ, 2007, 659: 1661 [3] Bakos G A, Lazar J, Papp I, et al. PASP, 2002, 114: 974 [4] Bakos G A, Noyes R W, Kovacs G, et al. Transiting Planets. Cambridge: Cambridge Universtity Press, 2009: 21 [5] Christian D J, Pollacco D L, Skillen I, et al. MNRAS, 2006, 372: 1117 [6] Pollacco D L, Skillen I, Cameron A C, et al. PASP, 2006, 118: 1407 [7] Fridlund C V M, Team CoRoT. Physica Scripta, 2008, T130: 014009 [8] Borucki W J, Koch D, Basri G, et al. Science, 2010, 327: 977 [9] Fulton B J, Shporer A, Winn J N, et al. AJ, 2011, 142: 84 [10] Kipping D M. MNRAS, 2009, 392: 181 [11] Bakos G Á, Hartman J D, Torres G, et al. AJ, 2012, 144: 19
3 HAT-P-36 349 [12] Maciejewski G, Puchalski D, Saral G, et al. Information Bulletin on Variable Stars, 2013, 6082: 1 [13] Mancini L, Esposito M, Covino E, et al. A&A, 2015, 579: A136 [14] Püsküllü Ç, Soydugan F, Erdem A, et al. ASPC, 2015, 496: 356 [15] Collier C A, Pollacco D, Street R A, et al. MNRAS, 2006, 373: 799 [16] Tamuz O, Mazeh T, Zucker S, MNRAS, 2005, 356: 1466 [17] Holman M J, Winn J N, Latham D W, et al. ApJ, 2006, 652: 1715 [18] Collier C A, Wilson D M, West R G, et al. MNRAS, 2007, 380: 1230 [19] Pollacco D, Skillen I, Collier C A, et al. MNRAS, 2008, 385: 1576 [20] Claret A. A&A, 2000, 363: 1081 [21] Holman M J, Murray N M. Science, 2005, 307: 1288 [22] Agol E, Steffen J, Sari R, et al. MNRAS, 2005, 359: 567 [23] Torres G, Winn J N, Holman M J, ApJ, 2008, 677: 1324 [24] Sun L L, Gu S H, Wang X B, et al. RAA, 2015, 15: 117 [25] Wang X B, Gu S H, Collier C A., et al. RAA, 2013, 13: 593 [26] O Donovan F T, Charbonneau D, Bakos G Á, et al. ApJL, 2007, 663: L37 [27] Maxted P F L, Anderson D R, Collier C A, et al. PASP, 2013, 125: 48 [28] Anderson D R, Collier C A, Gillon M, et al. MNRAS, 2012, 422: 1988 [29] Bakos G Á, Hartman J, Torres G, et al. ApJ, 2011, 742: 116 [30] Spake J J, Brown D J A, Doyle A P, et al. PASP, 2016, 128: 024401 Photometric Observations and Study for the Transiting Exoplanetary System HAT-P-36 PAN Xu 1,2,3 (1. Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China; 2. Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China) Abstract: We use the 1-meter telescope of Yunnan Observatories and observed three transit events of HAT-P-36 from 2012 to 2014. We correct the data for systematic errors based on coarse de-correlation and SYSREM algorithms. Three new transit light curves are analyzed by means of the Markov chain Monte Carlo technique. The value of planet mass acquired in this paper is slightly larger than the results of Mancini and Bakos. Through the analysis of all available mid-transit times of symmetric and complete light curves, I refine the ephemeris of HAT-P-36b, which is better than former ones. Via the O C analysis, I find that this system exists significant transit timing variations. But the Lomb-Scargle periodogram generated for timing residuals show no significant signal. Therefore, I speculate that there is an external perturbing planet and hence this paper also gives some physical parameters range of this perturbing planet. Key words: exoplanet; HAT-P-36; transit event