HAT-P-36. HATNet [3, 4] SuperWASP [5, 6] CoRoT [7] Keper [8] 34 3 Vol. 34, No PROGRESS IN ASTRONOMY Aug., 2016

Σχετικά έγγραφα
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

High order interpolation function for surface contact problem

ER-Tree (Extended R*-Tree)

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Approximation Expressions for the Temperature Integral

, -.

Quick algorithm f or computing core attribute

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Research on Economics and Management

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Lecture 34 Bootstrap confidence intervals

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

X X (Knee) Knee Victor Franz Hess

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Προετοιμάζοντας τον μελλοντικό δάσκαλο για το ψηφιακό σχολείο

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

A summation formula ramified with hypergeometric function and involving recurrence relation

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land

Congruence Classes of Invertible Matrices of Order 3 over F 2

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

Section 8.3 Trigonometric Equations

,,, (, ) , ;,,, ; -

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Matrices and Determinants

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Homework 8 Model Solution Section

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Tridiagonal matrices. Gérard MEURANT. October, 2008

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

; +302 ; +313; +320,.

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

ΤΙΤΛΟΣ ΠΤΥΧΙΑΚΗΣ «H ΠΙΛΟΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΥΣΤΗΜΑΤΟΣ CATERING ΣE ΚΕΝΤΡΟ ΚΑΤΑΤΑΞΗΣ ΣΤΗΝ ΚΥΠΡΟ»

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

Arbitrage Analysis of Futures Market with Frictions

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

þÿ Á±½Äà Å, šåá¹±º Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Θωμάς ΣΑΛΟΝΙΚΙΟΣ 1, Χρήστος ΚΑΡΑΚΩΣΤΑΣ 2, Βασίλειος ΛΕΚΙΔΗΣ 2, Μίλτων ΔΗΜΟΣΘΕΝΟΥΣ 1, Τριαντάφυλλος ΜΑΚΑΡΙΟΣ 3,

Buried Markov Model Pairwise

A research on the influence of dummy activity on float in an AOA network and its amendments

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

27/2/2013

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Inverse trigonometric functions & General Solution of Trigonometric Equations

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

þÿ ÀÌ Ä º± µä À ¹ ¼ ½

5. Choice under Uncertainty

Διερεύνηση των συστημάτων εκτροφής μικρών μηρυκαστικών στην Επαρχία Λαγκαδά Θεσσαλονίκης

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

1(a) moat. moat. moat. 1(b) moving magnetic feature

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

2.1

Example Sheet 3 Solutions

PE CVVH PE+HP HP+CVVH HP+CVVH+PE CVVH. ENLAV of HCO - 3 ENLAV-HCO ± μmol /L HP+PE HP+CVVH HP+CVVH+PE

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Single-value extension property for anti-diagonal operator matrices and their square

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία

Ηλεκτρονικός Βοηθός Οδηγού Μοτοσυκλέτας

Reading Order Detection for Text Layout Excluded by Image

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Second Order Partial Differential Equations

CRASH COURSE IN PRECALCULUS

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

þÿ µ ºÄµÂ À ¹ÌÄ Ä±Â ÃÄ

Επιστημονική Επετηρίδα Παιδαγωγικού Τμήματος Νηπιαγωγών Πανεπιστημίου Ιωαννίνων

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

X g 1990 g PSRB

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

ΔΙΑΜΟΡΦΩΣΗ ΣΧΟΛΙΚΩΝ ΧΩΡΩΝ: ΒΑΖΟΥΜΕ ΤΟ ΠΡΑΣΙΝΟ ΣΤΗ ΖΩΗ ΜΑΣ!

ΤΟ ΤΡΑΠΕΖΙΚΟ ΣΥΣΤΗΜΑ- ΟΙ ΣΥΓΧΡΟΝΕΣ ΤΡΑΠΕΖΙΚΕΣ ΥΠΗΡΕΣΙΕΣ- ΧΡΗΜΑΤΟΙΚΟΝΟΜΙΚΉ ΑΝΑΛΥΣΗ ΤΩΝ ΤΕΣΣΑΡΩΝ ΣΥΣΤΗΜΙΚΩΝ ΤΡΑΠΕΖΩΝ

Transcript:

34 3 Vol. 34, No. 3 2016 8 PROGRESS IN ASTRONOMY Aug., 2016 doi: 10.3969/j.issn.1000-8349.2016.03.06 HAT-P-36 1,2,3 (1. 650011 2. 650011 3. 100049) 2012 2014 1 m HAT-P-36 3 IRAF CCD coarse de-correlation SYSREM MCMC HAT-P-36 Mancini Bakos 20 (1.327 347 04 ± 0.000 000 27) d O C HAT-P-36b HAT-P-36b 1 ( ) 2 Rp F = i R [1, 2] HATNet [3, 4] SuperWASP [5, 6] CoRoT [7] Keper [8] 62.2% ➀ 2016-05-04 2016-05-26 (u1531121) xupan@ynao.ac.cn ➀ http://www.exoplanet.eu

342 34 TTV (Transit timing varitation) TDV (Transit Duration Varition) [9, 10] HAT-P-36 2012 HATNet (Hungarian Automated Telescope Network) [11] GSC 3020-02221 G5 V V = 12.262 mag HAT-P-36b M p = (1.832 ± 0.099) M J R p = (1.264 ± 0.071) R J P = (1.327 347 ± 0.000 003) d ρ p = (1.12 ± 0.19) g cm 3 2013 Maciejewski HAT-P-36b 0.6m Toru HAT-P-36 JKTEBOP TAP O C TTV [12] 2015 Mancini HAT-P-36 Rossiter-McLaughlin Cassini 1.52m CA 1.23m P rot = (15.3 ± 0.4) d HAT-P-36b λ = 14 ± 18 φ = 25 +38 25 degree [13] Püsküllü HAT-P-36 [14] 1 m HAT-P-36 3 2 3 MCMC (Markov Chain Monte Carlo) HAT-P-36 2 2.1 2012 2014 1 m HAT-P-36 1 m 2048 2048 Andor DW436 CCD 7.3 7.3 R CCD 2012 3 12 2014 3 8 ( 1) 1 HAT-P-36 /s RMS/mag 2012.03.12 YO-1m R 150 180 0.003 6 2012.03.16 YO-1m R 180 240 0.004 5 2014.03.08 YO-1m R 150 180 0.005 9

3 HAT-P-36 343 2.2 CCD CCD IRAF CCD CCD apphot 2.3 0.01 mag CCD coarse de-correlation [15] SYEREM [16] 3 2006 Holman MCMC [17] Collier Cameron MCMC [18, 19] HAT-P-36 K 1 e ω γ T 0 P F t T b M X = {T 0, P, F, t T, b, M, K 1, e, ω} MCMC X i = X i 1 + σ X G(0, 1)f. (1) G(0, 1) 0 1 f 0.5 25% Metroplis-Hastings 3.1 MCMC 3 Bakos [11] R 4 T eff g [Fe/H] ξ Claret [20] Mancini 1.5 10 4 10 P = 1.327 345 96 d

344 34 MCMC 3.2 T = T 0 + P E T 0 E HAT-P-36b Bakos 3 [11] Mancini 3 [13] ETD ➀ 11 ( 2) 2 T = 2 455 555.889 938(±0.000 202) + E 1.327 347 04(±0.000 000 27). (2) 2 HAT-P-36 (O C) /d 5 999.223 485 6 0.000 691 4 334 0.000 364 8 6 003.204 836 5 0.000 886 0 337 0.001 055 0 6 725.284 577 1 0.001 303 8 881 0.001 895 3 5 555.890 600 0 0.000 430 0 0 0.000 661 3 [11] 5 601.018 820 0 0.000 740 0 34 0.000 918 1 [11] 5 608.983 900 0 0.000 300 0 40 0.000 079 7 [11] 6 397.428 940 0 0.000 310 0 634 0.000 977 3 [13] 6 762.448 340 0 0.000 180 0 909 0.000 059 0 [13] 6 766.430 550 0 0.000 280 0 912 0.000 109 9 [13] 7 460.632 005 0 0.000 670 0 1 435 0.000 937 5 ETD 7 135.432 534 0 0.000 730 0 1 190 0.000 383 5 ETD 7 026.591 914 0 0.000 800 0 1 108 0.001 453 9 ETD 6 754.486 109 0 0.000 670 0 903 0.001 792 3 ETD 6 726.612 459 0 0.000 740 0 882 0.002 430 1 ETD 6 658.915 591 0 0.000 480 0 831 0.000 261 2 ETD 6 394.774 978 0 0.000 880 0 632 0.001 709 4 ETD 6 309.821 069 0 0.000 870 0 568 0.001 989 0 ETD 6 024.445 246 0 0.000 700 0 353 0.001 801 8 ETD 6 004.533 406 0 0.000 520 0 338 0.000 167 4 ETD 6 362.915 530 0 0.000 240 0 608 0.001 409 6 ETD ➀ http://var2.astro.cz/etd/

3 HAT-P-36 345 χ 2 = 5.11 TTV O C ( 1) HAT-P-36b Holman Murray [21] ( ) M 2 = 16 45π M t P 1 ( P2 P 1 ) 2 (1 e 2 ) 3, (3) M 2 t TTV P 1 P 2 HAT-P-36b e 2 t = 0.002 d 0.0, 0.05, 0.1, 0.15, 0.2, 0.25 0.03 AU 0.35 AU 0.01 AU 2 13 M J 0.1 AU 2014 3 8 1 HAT-P-36 O C 33.6 m/s 2

346 34 j + 1/j Agol 2005 [22] t = P 1 M 2, (4) 4.5j M 2 + M 1 j t = 0.002 d 2 : 1 3 : 2 4 : 3 5 : 4 6 : 5 4.2 8.4 12.7 17.1 21.5 M Bakos [11] 33.6 m/s [23] ( ) 2/3 M p sin i = 4.919 10 3 P 1/3 (1 e 2 ) 1/2 M + M p K, (5) M M p (M J ) i ( ) P (d) K (m/s) M (M ) (5) 2 3.3 HAT-P-36 [24, 25] MCMC 3 HAT-P-36b 10 1.5 10 4 1σ ( 3) ( 3) 4 3 MCMC HAT-P-36 M p = 1.928 M J Mancini [13] M p = 1.852 M J Bakos [11] M p = 1.832 M J ( ) R p = 1.309 R J Mancini R p = 1.304 R J Bakos R p = 1.264 R J Mancini HAT-P-36 lg R HK = ( 4.636 ± 0.066) dex HAT-P-36 (1) Bakos FLWO 1.2m Mancini

3 HAT-P-36 347 3 HAT-P-36 Mancini Bakos P 1.327 347 04 ± 0.000 000 27 1.327 346 83 ± 0.000 000 48 1.327 347 ± 0.000 003 d / (Rp/R ) 2 0.014 84 ± 0.000 59 0.014 07 ± 0.002 40 tt 0.092 769 ± 0.000 042 0.092 3 ± 0.000 7 d b 0.185 5 +0.239 6 0.123 4 0.312 +0.078 0.105 R K1 0.34 ± 0.2 0.32 ± 0.39 0.33 ± 0.15 km s 1 γ 0.87 +0.64 0.62 16.327 ± 0.006 16.29 ± 0.10 km s 1 e 0.061 +0.030 0.028 0.063 ± 0.032 ω 54.45 +45.31 58.15 95 ± 63 ( ) i 87.643 +1.568 3.410 85.86 ± 0.21 86.0 ± 1.3 ( ) ρ 0.762 +0.125 0.141 0.913 ± 0.027 ρ M 1.038 ± 0.027 1.030 ± 0.030 1.022 ± 0.049 M R 1.107 ± 0.071 1.041 ± 0.013 1.096 ± 0.056 R a 0.023 93 +0.000 21 0.000 20 0.023 88 ± 0.000 22 0.023 8 ± 0.000 4 AU Rp 1.309 ± 0.099 1.304 ± 0.021 1.264 ± 0.071 RJ Mp 1.928 +0.101 0.094 1.852 ± 0.088 1.832 ± 0.099 MJ ρp 0.856 +0.174 0.203 0.737 ± 0.095 0.84 ± 0.14 ρj Teq 1 845.92 +76.21 56.78 1 788 ± 15 1 823 ± 55 K

348 34 2012 3 16 2014 3 8 0.04 mag 0.08 mag 3 HAT-P-36 Cassini 1.52m CA 1.23m FLWO 1.2m YO 1m YO 1m (2) 2014 3 8 5 10% HAT-P-36b TrES-3b [26] WASP-77Ab [27] WASP-46b [28] HAT-P-23b [29] WASP-135b [30] P = (1.327 347 04± 0.000 000 27) d Mancini Bakos Bakos Mancini 3 9 20 [1] Baraffe I, Chabrier G, Barman T. A&A, 2008, 482: 315 [2] Fortney J J, Marley M S, Barnes J W, ApJ, 2007, 659: 1661 [3] Bakos G A, Lazar J, Papp I, et al. PASP, 2002, 114: 974 [4] Bakos G A, Noyes R W, Kovacs G, et al. Transiting Planets. Cambridge: Cambridge Universtity Press, 2009: 21 [5] Christian D J, Pollacco D L, Skillen I, et al. MNRAS, 2006, 372: 1117 [6] Pollacco D L, Skillen I, Cameron A C, et al. PASP, 2006, 118: 1407 [7] Fridlund C V M, Team CoRoT. Physica Scripta, 2008, T130: 014009 [8] Borucki W J, Koch D, Basri G, et al. Science, 2010, 327: 977 [9] Fulton B J, Shporer A, Winn J N, et al. AJ, 2011, 142: 84 [10] Kipping D M. MNRAS, 2009, 392: 181 [11] Bakos G Á, Hartman J D, Torres G, et al. AJ, 2012, 144: 19

3 HAT-P-36 349 [12] Maciejewski G, Puchalski D, Saral G, et al. Information Bulletin on Variable Stars, 2013, 6082: 1 [13] Mancini L, Esposito M, Covino E, et al. A&A, 2015, 579: A136 [14] Püsküllü Ç, Soydugan F, Erdem A, et al. ASPC, 2015, 496: 356 [15] Collier C A, Pollacco D, Street R A, et al. MNRAS, 2006, 373: 799 [16] Tamuz O, Mazeh T, Zucker S, MNRAS, 2005, 356: 1466 [17] Holman M J, Winn J N, Latham D W, et al. ApJ, 2006, 652: 1715 [18] Collier C A, Wilson D M, West R G, et al. MNRAS, 2007, 380: 1230 [19] Pollacco D, Skillen I, Collier C A, et al. MNRAS, 2008, 385: 1576 [20] Claret A. A&A, 2000, 363: 1081 [21] Holman M J, Murray N M. Science, 2005, 307: 1288 [22] Agol E, Steffen J, Sari R, et al. MNRAS, 2005, 359: 567 [23] Torres G, Winn J N, Holman M J, ApJ, 2008, 677: 1324 [24] Sun L L, Gu S H, Wang X B, et al. RAA, 2015, 15: 117 [25] Wang X B, Gu S H, Collier C A., et al. RAA, 2013, 13: 593 [26] O Donovan F T, Charbonneau D, Bakos G Á, et al. ApJL, 2007, 663: L37 [27] Maxted P F L, Anderson D R, Collier C A, et al. PASP, 2013, 125: 48 [28] Anderson D R, Collier C A, Gillon M, et al. MNRAS, 2012, 422: 1988 [29] Bakos G Á, Hartman J, Torres G, et al. ApJ, 2011, 742: 116 [30] Spake J J, Brown D J A, Doyle A P, et al. PASP, 2016, 128: 024401 Photometric Observations and Study for the Transiting Exoplanetary System HAT-P-36 PAN Xu 1,2,3 (1. Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China; 2. Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China) Abstract: We use the 1-meter telescope of Yunnan Observatories and observed three transit events of HAT-P-36 from 2012 to 2014. We correct the data for systematic errors based on coarse de-correlation and SYSREM algorithms. Three new transit light curves are analyzed by means of the Markov chain Monte Carlo technique. The value of planet mass acquired in this paper is slightly larger than the results of Mancini and Bakos. Through the analysis of all available mid-transit times of symmetric and complete light curves, I refine the ephemeris of HAT-P-36b, which is better than former ones. Via the O C analysis, I find that this system exists significant transit timing variations. But the Lomb-Scargle periodogram generated for timing residuals show no significant signal. Therefore, I speculate that there is an external perturbing planet and hence this paper also gives some physical parameters range of this perturbing planet. Key words: exoplanet; HAT-P-36; transit event