Negative Magnus Force Exerted on a Back-spinning Spherical Body Measurement by Flight Experiments

Σχετικά έγγραφα
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

High order interpolation function for surface contact problem

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Electronic Supplementary Information (ESI)

Lifting Entry (continued)

APPENDIX A. Summary of the English Engineering (EE) System of Units

Study of urban housing development projects: The general planning of Alexandria City

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

CorV CVAC. CorV TU317. 1

A summation formula ramified with hypergeometric function and involving recurrence relation

Klausur Strömungslehre

Analysis o n Characteristic s of Fire Smoke in Highway Tunnel by CFD Simulatio n

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

PRESENTATION TITLE PRESENTATION SUBTITLE

difluoroboranyls derived from amides carrying donor group Supporting Information

Parametrized Surfaces

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Cognitive psychology of visual illusion

Follow this and additional works at:

Electronic Supplementary Information

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Research on Economics and Management

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

SPECIAL FUNCTIONS and POLYNOMIALS

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Τελευταία ενημέρωση: Δευτέρα 3 Ιουνίου 2013 Last updated: Monday, June 3, 2013

EXPERIMENT RESEARCH OF INFLUENCE OF DYNAMIC LOADING ON PROCESS OF CRACK FORMATION AT BOOTY OF LITHOIDAL BLOCKS T.

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Επιτραπέζια μίξερ C LINE 10 C LINE 20

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Simplex Crossover for Real-coded Genetic Algolithms

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Table of Contents 1 Supplementary Data MCD

Rectangular Polar Parametric

Σχέση µεταξύ της Μεθόδου των ερµατοπτυχών και της Βιοηλεκτρικής Αντίστασης στον Υπολογισµό του Ποσοστού Σωµατικού Λίπους

ΕΚΘΕΣΗ ΑΝΑΛΥΣΗΣ ΕΛΑΙΟΛΑ ΟΥ REPORT OF OLIVE OIL ANALYSIS

ECE 468: Digital Image Processing. Lecture 8

Experimental Study of Dielectric Properties on Human Lung Tissue

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

E#ects of Imogolite Addition on Colloidal Stability of Montmorillonite and Kaolinite

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Προφορικές & Αναρτημένες Ανακοινώσεις 3 ης Συνάντησης Βιοχημείας & Φυσιολογίας της Άσκησης

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΜΕΛΕΤΗ ΜΟΡΦΟΛΟΓΙΑΣ ΣΤΕΡΕΩΝ ΥΜΕΝΙΩΝ ΓΙΑ ΦΩΤΟΝΙΟΕΝΕΡΓΕΙΑΚΗ ΑΝΑΒΑΘΜΙΣΗ

Global energy use: Decoupling or convergence?

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

,,, (, ) , ;,,, ; -

ΕΚΘΕΣΗ ΑΝΑΛΥΣΗΣ ΕΛΑΙΟΛΑ ΟΥ REPORT OF OLIVE OIL ANALYSIS

Design Method of Ball Mill by Discrete Element Method

NMBTC.COM /

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

DATA SHEET Surface mount NTC thermistors. BCcomponents


Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

SQC and Digital Engineering Technological Trends in Design Parameter Optimization and Current Issues

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Klausur Strömungsmechanik II Dichte des Fluids ρ F. Viskosität des Fluids η F. Sinkgeschwindigkeit v s. Erdbeschleunigung g

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Buried Markov Model Pairwise

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Καρδιακή Συχνότητα και Πρόσληψη Οξυγόνου Ατόμων Μέσης Ηλικίας κατά την Εκτέλεση Ελληνικών Παραδοσιακών Χορών

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

ΔΙΑΣΤΑΣΕΙΣ ΕΣΩΤΕΡΙΚΗΣ ΓΩΝΙΑΣ INTERNAL CORNER SIZES

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Answer sheet: Third Midterm for Math 2339

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Oscillatory Gap Damping

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

Πολυτεχνείο Κρήτης Χανιά 2010

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

Supporting Information

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

TP A.20 The effect of spin, speed, and cut angle on draw shots

3.5 - Boundary Conditions for Potential Flow

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

A prediction model for field vibrations induced by urban trains of ground line

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

Φυσικοθεραπευτής, MSc, Εργαστηριακός συνεργάτης, Τμήμα Φυσικοθεραπείας, ΑΤΕΙ Λαμίας Φυσικοθεραπευτής

Transcript:

347,,..,.6 1 5 <Re<2.4 1 5 <SP <.7, C D Re, SP( )., Re SP,.,.,,. Negative Magnus Force Exerted on a Back-spinning Spherical Body Measurement by Flight Experiments Keita TAKAMI, Takeshi MIYAZAKI, University of Electro-Communications Ryutaro HIMENO, RIKEN (Received 14 April, 29; in revised form 1 July, 29) Using a high-speed video camera, we measured the trajectory and the rotation of a sphere and a hard baseball thrown by a pitching machine. We determined the drag- and lift- coefficients ( ) by analyzing the video images. The measurements were performed in the range of.6 1 5 <Re<2.4 1 5, and <SP <.7 (SP : dimensionless spin rate). The dependence of C D and on the parameters Re and SP is investigated in detail. Negative Magnus force is exerted on a back-spinning sphere in a relatively wide Re-SP parameter range, whereas only usual Magnus force works on a back-spinning hard baseball. The influence of seam patterns on the aerodynamical properties is discussed. (KEY WORDS): Negative Magnus Effect, Sphere, Back Spin, Hard-Baseball, Drag coefficient, Lift coefficient 1, 1, 2). 182 8585 1 5 1 E-mail: takami@miyazaki.mce.uec.ac.jp E-mail: miyazaki@mce.uec.ac.jp 351 198 2 1 E-mail: himeno@riken.jp,,.,.,.,,., Taneda 3), 4),

348 5),.,,,.. Watts Bahill 6) 7), 4).,. C D (C D =2F D /ρu 2 AF D :, ρ:, A:, U: ). C D, Re (Re c 3. 1 5 ) 8). Re,..,. Achenbach 9) Wieselseberger 1),, Re c., Luthander Rydberg 11), Re c.,, Adair 12)., Re Briggs 13), Re., Watts Ferrer 14) Alaways Hubbard 15). Alaways Hubbard, Re =1.4 1 5,., Watts Ferrer, Alaways Hubbard Re (SP: SP =2πrf/V, f:, r: V : )., 4), 2 4 ( 2 2 4 4 2 4 1),. 16), Re, SP, 2 4., C D (C L =2F L /ρu 2 A F L : ) 2 Re,, 4) 16),. 2, 3 C D,, 4, 5. 6, 7. 1 2 4 ( ) 2 2.1 (JUGGS ), (Nobbytech 963A2)4 3.5m. (Vison Research Phantom. 1 191. ),

349.,,. 2 1 x, y, z. 2 2.2 1 ([ ] ) (. JPN. ) 3 3 ( ):, ( ): 1 [ ( XYZAX GC6 D-34S ) ] JPN 24 1 [m] 7.2 1 2 [.43 1 3 ] 7.16 1 2 [m] 7.3 1 4 [.5 1 4 ] / 1. 1 2 [.92 1 3 ] [kg].145 [1.8 1 3 ].1349 3 3.1 (C D ) F D = ρac D u 2 /2(A A = πr 2 ), D = ρac D m (m: ), x, dx dt = u (2) du dt = 1 2 Du2 (3) ( u >> w ) u, w, x, z (2) (3), (1) x = 2 D log(1 + u D t) (4) 2 u x = u x = 2, 3, 4 t 1 t 4 2, 3, 4 (x 1 x 4 ) 2 u C D Re u. u, 1, 1., 2 u u s,.7. 4, 16) 3 4. C D 2, 2. 2 C D (Re =1.3 1 5, SP =.12, [ ] ) 3 4 25 21 C D.52 [.3].53 [.19] 3.2 ( ) F LZ = ρa u 2 /2, L = ρa m (5)

35, D, L, dx dz = u, dt dt = w du dt = 1 2 Du u 2 + w 2 1 2 Lw u 2 + w 2 (6) dw dt = g 1 2 Dw u 2 + w 2 + 1 2 Lu u 2 + w 2.,. t i z z i., t i z i., R(w,L)= (z i z i ) 2 (i =1, 2, 3, ) (7) w,l. t i, (t 1 t 3 ) (t 4 ) 1. 3.3 SP :f[rps]., 2 u, w, SP =2πrf/ u 2 + w 2 (8) SP. 4 4.1 C D C D, JPN (2,4 ) (Re =1.25 1 5, SP =.12) 2, ( 4, 3)., JPN 6, 3. JPN, C D,. ( 5 ),. JPN C D, JPN,., C D 2 4. 4.2, JPN (2, 4 ) (Re =1.25 1 5, SP =.12) 2 Number of Data 2 15 1 5 4seam 2seam Sphere.2.3.4.5.6.7 CD 4 C D (Re =1.25 1 5, SP =.12) 3 C D (Re =1.25 1 5, SP =.12,[ ] ) 2seam 4seam Sphere 25 26 18 C D.349 [.22].328 [.21].52 [.14], ( 5, 4)., 1, C D. JPN,. Re SP(Re = 1.25 1 5,SP =.12),.,. ( ),., 2 4,. C D. Number of Data 2 15 1 5 4seam 2seam Sphere -.3 -.2 -.1.1.2.3.4.5 CLZ 5 (Re =1.25 1 5, SP =.12)

351 4 (Re =1.25 1 5, SP =.12, [ ] ) 2seam 4seam Sphere 25 26 18.72 [.21].174 [.19].23 [.23] 4.3 C D =.5 Re = 1.3 1 5,SP =.12, Re =1.45 1 5,SP =.23, < Re =1.8 1 5,SP =.23 3 (2 3 )., 6, 7 5, 6. Re = 1.3 1 5,SP =.12, Re =1.8 1 5,SP =.23, 5). 4.3.1 C D, C D C D. Re =1.3 1 5,SP =.12 C D =.53, Re =1.8 1 5,SP = 5 6 C D Re( 1 5 ) SP C D [ ] Nakagawa Re =1.3 SP =.12 3 Re =1.45 SP =.23 2 Re =1.8 SP =.23 22.53 [.22].478.458 [.22].394 [.17].412., Re =1.3 1 5,SP =.12. Taneda, Re =1.3 1 5,SP =.12,, = ( 13). (5.1 ), 8 Re. Re..23 C D =.394 ( 6). C D C D 5 2 15 SPHERE (Re=1.3*1**5, SP=.12) (Re=1.45*1**5, SP=.23) (Re=1.8*1**5, SP=.23) 2 15 SPHERE (Re=1.3*1**5, SP=.12) (Re=1.45*1**5, SP=.23) (Re=1.8*1**5, SP=.23) Number of Data 1 Number of Data 1 5.2.3.4.5.6.7 CD 6 C D (Re =1.3 1 5, SP =.12 Re =1.8 1 5, SP =.23) 5 -.3 -.2 -.1.1.2.3 CLZ 7 (Re =1.3 1 5, SP =.12 Re =1.8 1 5, SP =.23) 6 7 4.3.2. Re = 1.3 1 5,SP =.12 =.22, Re =1.8 1 5,SP =.23 =.179 ( 7)., Re =1.8 1 5,SP =.23., Re( 1 5 ) SP Re =1.3 SP =.12 3 Re =1.45 SP =.23 2 Re =1.8 SP =.23 22 [ ] Nakagawa.22 [.23] -.182 -.61 [.18] -.179 [.18] -.177

352 5 JPN 8 12 14 17. 2,. 1., C D =.5 =., 13 Taneda 3). 5.1 Re Re SP =.12,.23,.35 ( 8 1). SP =.12( 8), C D.6 1 5 Re 1.7 1 5 C D =.5, 1.7 1 5 Re, Re. Re =2.1 1 5 C D =.38.,.6 1 5 Re 1.4 1 5, =.1 =. 1.4 1 5 Re 1.7 1 5, =, 1.7 1 5 Re <. Re =2.1 1 5 =.2. SP =.23( 9). C D.6 1 5 Re 1.4 1 5 C D =.5, Re, Re =1.4 1 5 Re. Re =2. 1 5 C D =.38.,.6 1 5 Re 1.4 1 5 =.2 = 1.4 1 5 Re <, Re =1.8 1 5 =.2. SP =.35( 1), Re,. C D.6 1 5 Re 1.2 1 5 C D =.6, Re =1.2 1 5 C D =.5. 1.2 1 5 Re, Re =1.8 1 5 C D =.38..6 1 5 Re 1.2 1 5 =.17 Re, Re =1.2 1 5. 1.2 1 5 Re <, Re =1.8 1 5 =.2. Re C D, SP. C D Re.6.4.2 -.2.6.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 Re(1 5 ) SPHERE C D SPHERE 8 -Re (Sphere:SP =.12).6.4.2 -.2.6.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 Re(1 5 ) SPHERE C D SPHERE 9 -Re (Sphere:SP =.23).6.4.2 -.2.6.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 Re(1 5 ) SPHERE C D SPHERE 1 -Re (Sphere:SP =.35) Briggs,. 7 ( T =2, r =.35m ) SP Re( 1 5 ) f[rpm] U[ft/sec].12 1.7 117 117.23 1.4 1843 96.35 1.2 24 83, Re, C D. Briggs 13), Adair 12) C D Re ( 12rpm 18rpm 1 v 125 ft/sec)., Briggs (rpm, ft/sec) 7. SP =.12 SP =.23 Briggs., Re. Re, C D C D =.5 Re. Re,,. C D <

353. 5.2 SP Re =1.1 1 5, 1.6 1 5, SP ( 11, 12). Re =1.1 1 5 ( 11), SP.4, C D =.5, SP..4 SP.5 C D SP, SP =.5, C D =.3., SP.4 =.1, SP =.4..4 SP.5, SP =.45 =.7., SP =.5, SP. SP =.65 =.2. Re =1.6 1 5 ( 12),. SP.23, C D =.5, SP C D..45 SP, SP, C D =.3., SP.23 =. SP =.23,.23 SP.45. SP =.25 =.2. SP.25 SP, SP =.45, SP =.58 =.28. SP C D, Re. C D SP, SP. SP, C D 2. SP,.,,. SP, C D,.,,,. Re SP,. 5.3, Re SP.,, >, <., (4.2 ), <.3 =..6.4.2 -.2 SPHERE C D SPHERE.1.2.3.4.5.6.7 11 -SP (Sphere:Re =1.1 1 5 ).6.4.2 -.2 SPHERE C D SPHERE.1.2.3.4.5.6.7 12 -SP (Sphere:Re =1.6 1 5 ) 5.3.1 Taneda ( 8 12 ), >, <, = 3, Re SP 13., Taneda 3). 13, <, Taneda., Re, SP Taneda. Taneda. Taneda 7) Taneda.5, Re. Re Re +, Re Re, SP

354. Re + =(1+SP)Re (9) Re =(1 SP)Re (1) (9), (1) Re + Re 13. Re, 1 Re + =1.4 1 5, 1.7 1 5, Re =.5 1 5, 13 (2 ) (1 )., Re 1.4 1 5 <Re + < 1.7 1 5., Re (Re ). SP.7.6.5.4.3.2.1.6.8 1 1.2 1.4 1.6 1.8 2 2.2 Re(1 5 ) Taneda line Sphere < > ~ 13 5.4 Re Re SP =.12,.23 ( 14, 15). SP =.12( 14), C D 2 4,.6 1 5 Re 1.6 1 5 C D =.5. 1.6 1 5 Re Re, C D =.38. Re 1.4 1 5,2 4 C D.,2.6 1 5 Re 1.8 1 5 = Re. 1.8 1 5 Re Re, =.2. 4,.6 1 5 Re 1.6 1 5 Re =., 1.6 1 5 Re =.2. Re 1.8 1 5 2 4., Re =1.25 1 5,2 : =.72,4 : =.174. SP =.23( 15), Re SP =.12. 2 C D.6 1 5 Re 1.2 1 5, C D =.5 Re 1.2 1 5 Re Re, C D =.38. 4 C D Re Re 2 4 C D., 2,.6 1 5 Re 1.7 1 5, =. 1.7 1 5 Re Re =.25. 4,.6 1 5 Re 1.5 1 5, = =.25 Re, Re. 2 4. SP =.12, SP =.23, Re, C D C D =.5 Re. (5.1 ),., =,., 6, 1).,, Re,. Re,,.,,,.,, Re. Re Re.6 1 5, SP =.23 <,.,., C D Re Re (SP =.12 Re =1.6 1 5, SP =.23 Re =1.4 1 5 )., C D, (5.1 ).,. C D, Re, SP. SP =.12 1. 1 5 <Re< 1.6 1 5, 2 4. 4 (4.2 ). SP =.23,2 4 C D,., SP Re. Re SP

355, Re SP..6.4.2 -.2.6.4.2 -.2 4seam C D 2seam C D.6.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 Re(1 5 ) 14 -Re (JPN:SP =.12).6.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 Re(1 5 ) 4seam C D 2seam C D 15 -Re (JPN:SP =.23) 5.5 SP, SP 16, 17. Re =.65 1 5 ( 16),2 4, SP.3 SP C D =.5 C D..3 SP SP C D =.4. SP.3, 2 4 C D.,2 4 SP.45 = SP..2 SP, 2 4,. Re =1.1 1 5 ( 17), 2 C D, SP.2 SP C D =.45..2 SP.4 SP, C D =.4.,.4 SP C D SP. 4 C D SP 2 4 C D., 2 4 SP.4 SP =. SP.4, SP =.7 =.4., SP.4 2 4. Re =.65 1 5 Re =1.1 1 5, SP SP C D. (5.2 ), SP,.,, <., Re SP,. SP,., C D SP. (5.2 ), SP C D. Re =1.1 1 5,.4 SP C D.,. C D, SP, Re. Re =.65 1 5,.2 <SP <.5,2 4, 4., Re =1.1 1 5, 2 4 C D,,.15 <SP <.3.., Re SP., Re SP..6.4.2 -.2 4seam C D 2seam C D.1.2.3.4.5.6.7 SP 16 C D,-SP (JPN:Re =.65 1 5 ) 6,., SP.23., 12 16km/h, 1.6 1 5 <

356.6.4.2 -.2.1.2.3.4.5.6.7 SP 4seam C D 2seam C D 17 C D,-SP (JPN:Re =1.1 1 5 ) Re < 2.1 1 5 ( 2 )., 145km/h,, 18m 1.7m., 4,.45m. 1.25m., 2 4., SP =.23, 1.6 1 5 <Re<2.1 1 5, 2 4., 2 4, (SP). 7,,., Re, C D,.,, ( ).., Re-SP. 1) G. Magnus : Poggendorfs annual on Physics and Chemistry,88 (1853). 2) L. Rayleigh : On the irregular flight of a tennis ball, Messenger of Mathematics,7 (1877) 14-16. Reprinted in Scientific Papers(Cambrige,1899),1 344-346. 3) S.Taneda: Negative Magnus Effect, Reports of Research Institute for Applied Mechanics(1957) 123-128 4),,, :,,25 (26) 257-264. 5),,,, :, 25 6) R.G.Watts A.T.Bahill, (1993) 7) :,,49 (1979) 51-53. 8) E.Achenbach : Experiments on the flow past spheres at very high Reynolds numbers,j.fluid Mech,54 (1972) 565-575. 9) E.Achenbach : The effects of surface roughness and tunnel blockage on the flow past spheres, J.Fluid Mech,65 (1974) 113-125. 1) C.Wieselsberger : Weitere Feststellungen über die Gesetze des Flüssigkeits-und Luftwiderstandes, Phys.Z. 23 (1922) 219-224 11) S. Luthander and A. Rydberg : Experimentelle untersuchungen uber den luftwiderstand bei einer um eine mit der windrichtung parallelen achse rotieren kugel, Zeitschrift für Physikalische Chemie 36 (1935) 552-558. 12) R.K.Adair : THE PHYSICS OF BASEBALL, 3rd ed. HarperCollins, New York (22). 13) L.J.Briggs : Effect of Spin and Speed on the Lateral Deflection (Curve) of a Baseball; and the Magnus Effect for Smooth Spheres, Am.J.Phys. 27, 589-596 (1959). 14) R.G.Watts and R.Ferrer : The Lateral Force on a Spinning Sphere, Amer.J.Physics,55,No.1(1987) 4-44. 15) L.W.Alaways and M.Hubbard : Experimental determination of baseball spin and lift, Journal of Sports Sciences, 19 (21) 349-358. 16),, :,, 27 (28) 43-49.