DOI: /jos Tel/Fax: by Journal of Software. All rights reserved. , )

Σχετικά έγγραφα
Super-Resolution Reconstruction for Face Images Based on Particle Filters Method

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Quick algorithm f or computing core attribute

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

On homeomorphisms and C 1 maps

ER-Tree (Extended R*-Tree)

The one-dimensional periodic Schrödinger equation

Research on model of early2warning of enterprise crisis based on entropy

Multi-dimensional Central Limit Theorem

Ant Algorithm for Navigation of Multi-Robot Movement in Unknown Environment

Rapid Acquisitio n of Doppler Shift in Satellite Co mmunicatio ns

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

A research on the influence of dummy activity on float in an AOA network and its amendments

Multi-dimensional Central Limit Theorem

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

Power allocation under per-antenna power constraints in multiuser MIMO systems

Congruence Classes of Invertible Matrices of Order 3 over F 2

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

2002 Journal of Software

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 8 Model Solution Section

A Fault Identification Algorithm for Satellite Networks Based on System Level Diagnosis

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

Finite Field Problems: Solutions

The Simply Typed Lambda Calculus

MathCity.org Merging man and maths

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

3 Frequency Domain Representation of Continuous Signals and Systems

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Agent, 2002 Journal of Software /2002/13(08) Vol.13, No.8 ( ( , )

CRASH COURSE IN PRECALCULUS

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Stochastic Finite Element Analysis for Composite Pressure Vessel

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]


Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Motion analysis and simulation of a stratospheric airship

2 Composition. Invertible Mappings

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

A summation formula ramified with hypergeometric function and involving recurrence relation

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

IV и. е ые и Си АДИ, ы 5 (51),

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP)

derivation of the Laplacian from rectangular to spherical coordinates

NATIONAL BANK OF POLAND WORKING PAPER No. 86

THREE-DIMENSIONAL VISCO-ELASTIC ARTIFICIAL BOUNDARIES IN TIME DOMAIN FOR WAVE MOTION PROBLEMS

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Lecture 2. Soundness and completeness of propositional logic

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Fractional Colorings and Zykov Products of graphs

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

EQUIVALENT MODEL OF HVDC-VSC AND ITS HYBRID SIMULATION TECHNIQUE

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Math 6 SL Probability Distributions Practice Test Mark Scheme

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

Cyclic or elementary abelian Covers of K 4

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Démographie spatiale/spatial Demography

Galatia SIL Keyboard Information

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Other Test Constructions: Likelihood Ratio & Bayes Tests

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013

Homomorphism in Intuitionistic Fuzzy Automata

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Math221: HW# 1 solutions

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

35 90% %

ISM 900 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3012

Jordan Form of a Square Matrix

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

MICROMASTER Vector MIDIMASTER Vector

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

!"#$%&'(!"# ! O == N N !"#$% PROGRESSUS INQUISITIONES DE MUTATIONE CLIMATIS

Areas and Lengths in Polar Coordinates

Transcript:

ISSN 000-9825, ODEN RUXUEW E-mal: os@scasaccn Journal of Sofware, Vol8, No7, July 2007, pp553562 hp://wwwosorgcn DOI: 0360/os8553 Tel/Fax: +86-0-62562563 2007 by Journal of Sofware All rghs reserved Per,2+, 2, (, 60054) 2 (, 60039) A Reducon Technque of Per Nes Based on Logc rcu YE Jan-Hong,2+, SONG Wen 2, SUN Sh-Xn (School of ompuer Scence and Engneerng, Unversy of Elecronc Scence and Technology of hna, hengdu 60054, hna) 2 (School of Mahemacs and ompuer Engneerng, Xhua Unversy, hengdu 60039, hna) + orrespondng auhor: Phn: +86-039498360, E-mal: leafever@63com, hp://wwwuesceducn Ye JH, Song W, Sun SX A reducon echnque of Per nes based on logc crcu Journal of Sofware, 2007, 8(7):553562 hp://wwwosorgcn/000-9825/8/553hm Absrac: In radonal mehods, he local srucure of Per ne s requred o compare wh all reducon rules The process s complcae and does no f for nes wh nhbor arcs Ths paper presens a reducon mehod Frsly, Per ne s dvded no several maxmal acyclc subnes and each one s expressed wh logc form Then, logc algebra s used o reduce he logc form Fnally, he resul s reconsruced and embedded n he orgnal ne Ths paper esablshes a mehod o fnd and reduce he maxmal acyclc subnes and presens he correlave proofs Ths mehod can be appled o Per nes or subnes wh nhbor arcs and acyclc Key words: : Per ne; reducon; logc algebra; maxmal acyclc subne Per,,,,, Per, : Per ; ; ; : TP30 : A Per [,2], Per,,,,, Per Suppored by he Naonal Naural Scence Foundaon of hna under Gran No60473030 ( ); he Fundamenal Research Foundaon of Scence and Technology Bureau of Schuan Provnce of hna under Gran No0322625 ( ) Receved 2006-0-08; Acceped 2006--30

554 Journal of Sofware Vol8, No7, July 2007,, [3] Per,Muraa [4,5] T-, ; [6] Muraa, T-, ;Aals [7] ;Mugarza [8] Ferscha [9], Per ; [0,] Per, Per Per ; [2] P/T, S(T) [3,4] [2],,,, [5,6], Per [7] Per Per [8,9] Per, Per, Per, RM-L (reducon mehods based on logc crcu), Per,,, Per 2 3 4 5 Per [,2,20], Per : [2] 8,, Per B A & A A B A A A B B Fg Smulaon of gae crcu based on Per ne Per RM-L Per, N=(S,T;F,I) E/N,,I S T,I F= T, Power()={s (s,) F}; onrol()={s (s,) I} 2 Σ=(S,T;F,I,) E/N,,(S,T;F,I), c :c[,

: Per 555 s, s Power( ) c( s) = Poson ( s, ) = s, s onrol( ) c( s) = 0 2,c 0 =(,,0,0,0),Power()={s,s 2 };onrol()={s 3 };Poson(s,)=s ;Poson(s 2,)=s 2 ; Poson ( s3, ) = s3, Poson( s4, ) = s s2 s3 ; Poson( s5, 2 ) = s s2 s3, Poson(s,),=,2,3 s 4,s 5 ; s Poson(s,),=,2,3 s 4,s 5 s E/N Σ, T, c:c[ c, Poson( s, ) = Poson( s, ),,s, (s ), 2 E/N Σ,,, α T, α,c,c 2,,c α :c [, α, α c, α Poson( s, ) = Poson( s, ),, s α, = s E/N α (conac) [2] 2, α 3,c=(,,0),Poson(s, )=s ;Poson(s 2, 2 )=s 2, 2,Poson(s,)=s +s 2, + 3 E/N Σ, T, ={s}, ={s },onrol()={s},c[ c Poson ( s, ) = s,, (s ) 4,c=(0,0),c[ c,, Poson ( s, ) = s s s 4 s 2 s 5 s 2 3 Fg2 Illusrang he defnon 2 and proposon 2 2 s s 2 2 s 3 s s Fg3 Illusrang he proposon 2 Fg4 Illusrang he proposon 3 3 2 4 3 Per, : 3 N=(S,T;F,I) E/N : () N N 0, s 0,s 2 S : s s 2 ; s Power( ); s onrol( 2 ), 2 s2 ; (2) N N 0, : s = s N I ; (3) N N 0, : s 2 ; s s = s 2, N 2 II ; (4) N N 0, : s 3 ; s s = s 2, N 3 III E/N Σ,c[σ 2 c, s ω ω 2, ( s ), s, Poson(s2, 2 )=s

556 Journal of Sofware Vol8, No7, July 2007 () I, Poson ( s, 2) = s, 2, Poson( s ω, ) = s s s ω s s s s = s, 5(a) ; (2) II, Poson( s, = s + s, 2 Poson( s ω, ) s + s s 2 ) (ADeMorgen), s + s s = s s ) s, I, s s s = ohers ( ohers ohers = ohers 5(b) ; (3) III, Poson( s, 2 ) = s sohers, 2 Poson( s ω, ) = s sohers s, s sohers s = ( s s + sohers s), s ω, 2 s, 2 s s ohers, s ω sohers, s s s s + s, s s, s s = 0,, s = s s ohers ohers ohers 4 Σ=(S,T;F,I,) E/N, N=(S,T;F,I) I II, s s = s ; III, s s = 0 s I srucure s ω s sω s 2 s ω s 2 2 2 s 0 srucure s II srucure s s oher s 2 III srucure 2 s s s s oher (a) (b) (c) Fg5 Illusrang he defnon 3, defnon 4 5 3 4 2 RM-L Per, : ( ),, ( ) [20],, E/N : 2 N Per,w=(s 0,,s n ) n, s = s, =,, n, n, s s s s w s 0 ; w, s s n s 0 = n 22 N E/N,T T,N T- =(S,T ;F,I ),S = (T ) (T ),F =F ((S T ) (T S )),I =I (S T ) 23 E/N N=(S,T;F,I),T T,N T T-, N, TT, T T-, T =T, N N, 3, : N, :S I S, (S I ) T =, s S I, / x S, s x < s ;S O S,(S O ) T =, s SO, / x S,s s < x 3 : S I T I ={ =(Power() onrol()) S I } ((S I T I )

: Per 557 (T I (T I ) )) F,(S I T I ) I ; S O ; S = S S S ) T T I (( S T ) ( T S )) F,( S T ) I medal medal medal 6,S I ={s 0,s,s 2 },S O ={s 5,s 6,s 7,s 8 } medal ( I O s 5 s 0 s 9 4 s 7 s s 8 s 5 s 2 s 6 s 0 Fg6 The maxmal acyclc subne 2 6 2 T I,, ( ),, T I, σ,σ ~ 3, 3 c c σ c 0 [σ [ O,,σ (T T I ) c O c O (s) Poson(s,),s S O, (s),poson(s,) S I T, c R(c 0 ): c[, T dead ={ T, };S -dead ={s s S, T dead,s }; S = { s s S c ( s) 0} { Poson( s, ) s Sdead, s } ;SO-Logc={Poson(s,) s S O, s } dead dead O ; S Tdead Logc 4 3 S O-Logc S, s s, s s s T dead Logc s + s ohers s, 4, s s s Per 5 4 ( (Karnaugh map),q-m(qune Mcluskey) ) 5, Per S O-Logc, S S O-, S T dead Logc T dead 3 2, Per, 6( S O- ) () S O- S I, S I s, sum, ~ 3 S I S O (2) Poson(s,) S O- Poson(s,)=0, σ σ s, s, s= ohers =

558 Journal of Sofware Vol8, No7, July 2007 (3) Poson(s,) S O- Poson(s,)=,,,s, 7( S ) T dead () S SI, S I s, 6() T dead (2) T dead, T dead, S -dead, s S dead, () s (3) T dead,s s S O, (,s), Poson(s, ) s 8 () s S I,s, S O- S T dead 7(a) s,poson(s,)=s,, ( s, ) = s, 7(a) 7(b), (2) s S I,s S O-Logc S S S O- T dead s, s = 8 s 0 T dead Logc,, s s s s s s s s s Orgnal srucure Reconsrucon Orgnal srucure Reconsrucon (a) (b) Fg7 Illusrang he rule 8() 7 8() 5 s 0 s 4 s s 9 s 5 s 6 s 2 s 7 s 0 s8 Fg8 The reducon resul of 8 9 6~ 8, 4 N 0 3 N, S I S O, s S I, s, (,s); s S O, s, (s, ), N 2 : 3, S I S O 6~ 8 S I

: Per 559 S I l,,s I S O N S I S O, 24 N,N 2 N,N 3 N,N 2, N N 3,N 2 N 3 22,N N,, N, N + + :() N S, s S s,,s O S N O S I N + s, T T,,T,T,N T-, T 23 + (2) ( N N N T, T T T, S O,,, ) S,,S S-,,, S N, N N + 3 3 N S T m n, :() (s, ) F, (s, )=s ;(2) (s, ) I, 3 ( s, ) = s ;(3) (, s ) F, ( s, ) = ; (4) (s, )=0 3 N : N=(S,T;F); : N () T, T ={ }, T-, (2) (2), ) ( ) T, :, ; ( S O, I, T, T T- (3) (3) (2), TT T N = S, T, ) N S I O ( F (4) (4) T, (), (2) (3),, N N = S, T, ) (5) 2 ( 2 2 F2 (5) (4), N, 2,, T, N, 2,, (6) (6) N, 2,, 32 : N ; : S I, S O S SO-Logc S S O-Logc, S, SO- S T dead Logc T dead T dead N, N T dead Logc, N N 3 32, 22, 3 P, N,

560 Journal of Sofware Vol8, No7, July 2007 T-, 32 NP,, NP,RM-L, 4 RM-L : :, ;, ;, ( 9 ) s 2 2 s 5 6 s 7 s s 3 4 s 6 7 s 8 8 s 0 o o s 4 3 s 9 5 Fg9 The example 9 : ; ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; o N,S I ={, },S O ={o} : Marx NeReducon(Marx ) {Se acyclcsubnes =DvdeNe( ); } DO { } =Ge(Se acyclcsubnes ); Se acyclcsubnes =Se acyclcsubnes ; // //, Se acyclcsubnes,, // Se acyclcsubnes DvdeSubNe(,SI,S O ); // TransMarx(,SO-Logc, S ); //, T dead Logc S O-Logc, S T dead Logc S O-New =Q-M(S O-Logc ); // Q-M S O-Logc, S O-New S =Q-M( ); // Q-M, S T dead ST dead Logc ST dead Logc T dead ReconsrucExpresson(,SO-New, S ); //SO-New, S T dead T dead RecoveryMarx(, ); // Whle (Se acyclcsubnes!=null); Oupu ( ); // 0,

: Per 56, o Fg0 The ne afer reducon 0 5 (), ;,,, 3 32 (2) Muraa, (3) Muraa RM-L Type of ne Ordnary ne Ordnary ne whou conflc Table omparson beween RM-L and classcal reducon mehods orrespondng reducon mehods Presen sx rules basc operaons: Fuson or elmnaon of places and ransons Presen four seps for maxmal acyclc subne Basc operaons: Logc algebra RM-L Dfference Sepwse reducon Area reducon Effcency Low, dffcul o generae algorhm Fnsh he reducon maybe only ones Easy o generae algorhm Ne wh nhbor arcs No Yes Reduce for cycle Yes No,,, References: [] Resg W Per Nes: An Inroducon Berln, Hedelberg: Sprnger-Verlag, 985 735 [2] Yuan Y The Theory and Applcaon of Per Nes Beng: Publshng House of Elecroncs Indusry, 2005 3278 (n hnese) [3] Jang J The PN Theory of Dscree Even Dynamc Sysem Beng: Scence Press, 2000 2970 (n hnese) [4] Muraa T, Koh JY Reducon and expanson of lve and safe marked graphs IEEE Trans on rcu Sysems, 980,AS-27(): 6870 [5] Muraa T Per nes: Properes, analyss, and applcaons Proc of he IEEE, 989,77(4):54580 [6] Jang J Some reducon operaons for a weghed T-graph Journal of hna Insue of ommuncaons, 994,5(2):9702 (n hnese wh Englsh absrac) [7] van der Aals WMP, Basen T Inherance of workflows: An approach o acklng problems relaed o change Theorecal ompuer Scence, 2002,270():25203 [8] Mugarza J, amus H, Genna J, Teruel E, Slva M Reducng he compuaonal complexy of schedulng problems n Per nes by means of ransformaon rules In: IEEE In l onf on Sysems, Man, and ybernecs 998 925 [9] Ferscha A oncurren execuon of med Per nes In: Tew JD, Manvannan S, Sadowsk DA, Sela AF, eds Proc of he Wner Smulaon onf Orlando: Socey for ompuer Smulaon Inernaonal Press, 994 229236 [0] Ln On refnemen of model srucure for sochasc Per nes Journal of Sofware, 2000,():0409 (n hnese wh Englsh absrac)

562 Journal of Sofware Vol8, No7, July 2007 [] Ln, Qu Y, Zheng B, Tan LQ An approach o performance equvalen smplfcaon and analyss of sochasc Per nes ATA ELETRONIA SINIA, 2002,30():620623 (n hnese wh Englsh absrac) [2] Xu AG, Jang J The reducon operaons and her properes for P/T nes Journal of Sofware,997,8(7):493504 (n hnese wh Englsh absrac) [3] L JQ, Fan YS Research of Per nes based workflow model reducon mehods Informaon and onrol, 2002,30(6):492497 (n hnese wh Englsh absrac) [4] Zhou JT, Sh ML, Ye XM A mehod for semanc verfcaon of workflow processes based on Per nes reducon echnque Journal of Sofware, 2005,6(7):2425 (n hnese wh Englsh absrac) hp://wwwosorgcn/000-9825/6/24hm [5] Palmer J, Perlman D, Wroe; hen WK, Xu PP, Trans Schaum s Oulnes Inroducon o Dgal Sysems Beng: Scence Press, 2002 268 (n hnese) [6] Lu BQ Dgal rcu and Sysem Beng: Tsnghua Unversy Press, 993 598 (n hnese) [7] Schaefer DH Per ne represenaons of compuaonal and communcaon operaors In: Yakovlev A, ed Hardware Desgn and Per Nes Boson: Kluwer Academc Publshers, 2000 574 [8] Yakovlev AV, Koelmans AM, Semenov A, Knnmen DJ Modellng, analyss and synhess of asynchronous conrol crcus usng Per nes Inegraon, he VLSI Journal, 996,2(3):4370 [9] Zhao BH, Jng L, Yan YG Hardware mplemenaon of Per nes Journal of Sofware, 2002,3(8):652657 (n hnese wh Englsh absrac) hp://wwwosorg cn/000-9825/3/652pdf [20] Wu ZH An Inroducon of Per Nes Beng: hna Machne Press, 2006 9722 (n hnese) [2] van der Aalsa WMP, er Hofsede AHM Verfcaon of workflow ask srucures: A Per-ne-based approach Informaon Sysems, 2000,25():4369 : [2] Per :,20053278 [3] PN :,20002970 [6] T-,994,5(2):9702 [0] Per,2000,():0409 [],,, Per,2002,30():620623 [2], P/T 997,8(7):493504 [3], Per,2002,30(6):492497 [4],, Per,2005,6(7):2425 hp://wwwosorg cn/000-9825/6/24hm [5] Palmer J,Perlman D, ;,, :,2002268 [6] :,993598 [9],, Per,2002,3(8):652657 hp://wwwosorgcn/000-9825/3/652pdf [20] Per :,20069722 (976 ),,,,,Per (940 ),,,,, (956 ),,,F, Per