3 Frequency Domain Representation of Continuous Signals and Systems
|
|
- Αρκάδιος Σπανού
- 7 χρόνια πριν
- Προβολές:
Transcript
1 3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals Exponenial Fourier Series Discree Fourier Specrum / Line Specrum Parseval s Theorem for Periodic Signals Fourier Transform Definiion and Examples Properies of he Fourier Transform Symmery of he Fourier Transform Convoluion Parseval s Theorem for Energy Signals Fourier Transform of Periodic Signals Frequency Domain Descripion of LTI Sysems Frequency Response Bandwidh of Frequency Selecive Sysems Disorionless Transmission Dr. Tanja Karp
2 3. Fourier Series Represenaion of Periodic Signals 3.. Exponenial Fourier Series A large class of periodic signals f T () wih period T and fundamenal frequency = 2π/T can be represened as a sum of harmonic complex exponenial funcions: f T () = X k= F k exp(jk ) wih complex Fourier coefficiens: F k = T Z +T f T () exp( jk ) d Example: Recangular Pulse Train f T () T τ/2 τ/2 T Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 2
3 Calculaion of Fourier coefficiens F k : F k = T Z +τ/2 τ/2 exp( jk ) d = T " # τ/2 exp( jk ) jk τ/2 = k T exp( jk τ/2) exp(jk τ/2) j = 2 sin(k τ/2) k T = τ T sin(k τ/2) k τ/2 = τ T Sa(k τ/2) = τ T Sa(kπτ/T ) Sa(x) = sin(x)/x: sine-over-argumen funcion 3..2 Discree Fourier Specrum / Line Specrum Definiion: Graph of he (complex) Fourier coefficiens F k as a funcion of he angular frequency. f T () = X k= F k exp(jk ) For a periodic signal, he Fourier specrum exiss only a discree values of : =, ±, ±2, ±3,... Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 3
4 Example: Recangular Pulse Train T =, τ varies: f T () = < τ/2 τ/2 < < /2, F k = τ sin(kπτ) kπτ = τ Sa(kπτ) F k.2. ampliude specra τ=.2 F k τ=.. F k τ= Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 4
5 τ =.2, T varies: f T () = <.. < < T/2, F k =.2 T Sa(.2kπ/T ) F k.2. ampliude specra T= F k T=2. F k T= Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 5
6 Magniude and Phase Specra: For complex Fourier coefficiens F k he magniude and phase is generally ploed separaely resuling in he magniude and phase specrum. Example: Sinusoids f T () = sin( ) = 2j {z} F exp(j ) + exp( j ) 2j {z} F F = 2j = 2 ( j) = 2 exp( jπ/2) = 2 π/2 F = 2j = 2 j = 2 exp(jπ/2) = 2 π/2 /2 F k π/2 F k π/2 Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 6
7 3..3 Parseval s Theorem for Periodic Signals A periodic signal f T () is a power signal wih average power: P = T Z +T f T () 2 d = T Z +T Exponenial Fourier Series of complex conjugae funcion: Average Power: P = T = f T () X Z +T X k= F k k= F k exp(jk ) A = f T ()f T () d = T h T Z +T Z +T X k= f T () f T () exp( jk ) d {z } F k f T ()f T () d F k exp( jk ) X k= i = F k X k= exp( jk ) d F k 2 Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 7
8 Example: Sinusoids f T () = sin( ) = 2j {z} F exp(j ) + exp( j ) 2j {z} F Average Power: Z T/2 P = T T/2 sin 2 ( ) d = F 2 + F 2 = 2 Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 8
9 3.2. Definiion and Examples 3.2 Fourier Transform Frequency represenaion of an aperiodic signal. Fourier Transform: Inverse Fourier Transform: F () = f() exp( j)d f() = 2π F () exp(j) d The Fourier Transform is aken over all imes, i.e. all ime resuluion is los. F () is called Fourier Transform/specral-densiy funcion/(fourier) specrum of f(). I is generally a complex valued funcion. Each poin of F () indicaes he relaive weighing of each frequency. Shor-hand noaion: F () = F{f()}, F () f(), f() F () Sufficien condiion for he exisence of he Fourier Transform: f() d < Dr. Tanja Karp 3.2 Fourier Transform 9
10 Example: Gae Funcion Fourier Transform: F () = = Euler s Ideniy: f() = rec(/τ) τ/2 Z τ/2 rec(/τ) rec(/τ) exp( j)d = exp( j)d τ/2 τ/2 j exp( j) = (exp( jτ/2) exp(jτ/2)) j τ/2 cos( τ/2) + j sin( τ/2) cos(τ/2) j sin(τ/2) F () = j τ/2 = 2 sin(τ/2) = τ sin(τ/2) τ/2 = τ Sa(τ/2) rec(/τ) τ Sa(τ/2) Dr. Tanja Karp 3.2 Fourier Transform
11 rec() Sa(.5) Example: Uni Impulse Funcion f () Fourier Transform: F{δ()} = f() = δ() δ() exp( j)d () F() = exp( j) = Dr. Tanja Karp 3.2 Fourier Transform
12 Example: Complex Exponenial Funcion f() = exp(j ) The only frequency componen presen in he signal is. Inverse Fourier Transform: F {δ( )} = 2π δ( ) exp(j)d = 2π exp( ) exp(j ) 2πδ( ) Properies of he Fourier Transform Lineariy / Superposiion: where k f () + k 2 f 2 () k F () + k 2 F 2 () f () F (), f 2 () F 2 (), k, k 2 : arbiray consans Dr. Tanja Karp 3.2 Fourier Transform 2
13 Example: Sinusoidal Signals F {cos( )} cos( ) = 2 exp(j ) + 2 exp( j ) (π) (π) exp(j ) 2πδ( ) exp( j ) 2πδ( + ) F{cos( )} = πδ( ) + πδ( + ) F {sin( )} sin( ) = 2j exp(j ) 2j exp( j ) F{sin( )} = jπδ( ) + jπδ( + ) ( jπ) ( jπ) Complex Conjugae: Proof: F{f ()} = f() F (), f () exp( j)d = f () F ( ) f() exp(j)d = F ( j) Dr. Tanja Karp 3.2 Fourier Transform 3
14 Example: Complex Exponenial Funcion exp(j ) 2πδ( ) [exp(j )] = exp( j ) 2πδ( ) = 2πδ( + ) F {exp( j )} F {exp( j )} (2π) (2π) Coordinae Scaling (Reciprocal Spreading) f(a) a F a, a : real valued consan For a = : f( ) F ( ) Dr. Tanja Karp 3.2 Fourier Transform 4
15 Example: Gae Funcion rec() Sa(.5) rec(2) Sa(.25) Dr. Tanja Karp 3.2 Fourier Transform 5
16 Time Shifing (Delay): f( ) F () exp( j ), : real valued consan Example: Shifed Recangular Pulses f() = rec( + 2) + rec( 2), rec() Sa(/2) f() Sa(/2) exp(j2) exp( j2) = Sa(/2) 2 cos(2) rec(+2)+rec( 2) 2 2 Sa(/2)cos(2) Dr. Tanja Karp 3.2 Fourier Transform 6
17 Frequency Shifing (Modulaion) f() e j F ( ) Example: Ampliude Modulaion of a Triangular Pulse f() = Λ() cos( ) = 2 Λ()(exp(j ) + exp( j )) f() 2 Λ() Sa 2 (/2) Sa 2 (( )/2) + Sa 2 (( + )/2) Λ() cos(25 ).5.5(Sa 2 (( 25)/2+Sa 2 ((+25)/2))) Dr. Tanja Karp 3.2 Fourier Transform 7
18 Differeniaion Example: Gae Funcion d d f() j F () Wha is he Fourier Transform of d rec() = δ( +.5) δ(.5) d Wih: d d Compare o: rec() Sa(/2) rec() jsa(/2) = jsin(/2) /2 = 2j sin(/2) rec() () d d rec().5 ( ) δ( +.5) δ(.5) exp(j/2) exp( j/2) = 2j sin(/2) Dr. Tanja Karp 3.2 Fourier Transform 8
19 Inegraion Z f(τ) dτ j F () + π F () δ() Example: Uni Sep Funcion u(): u() = Z δ(τ) dτ, δ() u() = Z δ(τ) dτ j + π δ() Dr. Tanja Karp 3.2 Fourier Transform 9
20 3.2.3 Symmery of he Fourier Transform f() = f r () + jf i () = f r,e () + f r,o () + j(f i,e () + f i,o ()) f r (): real par of f() f i (): imaginary par of f() f r,e () / f i,e (): even symmery par of he real / imaginary par of f() f r,o () / f i,o (): odd symmery par of he real / imaginary par of f() F () = f() exp( j)d = f() (cos() j sin()) d = = 2 (f r,e () + f r,o () + jf i,e () + jf i,o ()) (cos() j sin()) d f r,e () cos()d 2j {z } even symmery, real + 2j {z } even symmery, imaginary f i,e () cos()d + 2 f r,o () sin()d {z } odd symmery, imaginary f i,o () sin()d {z } odd symmery, real Dr. Tanja Karp 3.2 Fourier Transform 2
21 f() real, even real, odd imaginary, even imaginary, odd real imaginary even real par, odd imaginary par odd real par, even imaginary par even real par, even imaginary par odd real par, odd imaginary par F () real, even imaginary, odd imaginary, even real, odd even real par, odd imaginary par odd real par, even imaginary par real imaginary even real par, even imaginary par odd real par, odd imaginary par Dr. Tanja Karp 3.2 Fourier Transform 2
22 3.2.4 Convoluion Time Convoluion: f () f 2 () = f (τ)f 2 ( τ)dτ F () F 2 () Example: Triangular Funcion rec() rec() * = Λ() Λ() = rec() rec() Sa(/2) Sa(/2) = Sa 2 (/2) Example: Uni Impulse Funcion f() δ() F () f() f() δ( ) F (j) e j f( ) Dr. Tanja Karp 3.2 Fourier Transform 22
23 Frequency Convoluion: F () F 2 () = F (ν) F 2 ( ν) dν 2π f () f 2 () Example: Ampliude Modulaion of a Triangular Pulse f() = Λ() cos( ) = 2 Λ()(exp(j ) + exp( j )) Λ() Sa 2 (/2), exp(±j ) 2πδ( ) f() 2π Sa2 (/2) (πδ( ) + πδ( + )) Λ() cos(25 ).5.5(Sa 2 (( 25)/2+Sa 2 ((+25)/2))) Dr. Tanja Karp 3.2 Fourier Transform 23
24 3.2.5 Parseval s Theorem for Energy Signals E = f() 2 d = 2π F () 2 d Example: f() = Sa(/2) = sin(/2) /2 2πrec() = F () E = f() 2 d = sin 2 (/2) (/2) 2 d = 2π = 2π Z.5.5 F () 2 d = 2π d = 2π 4π 2 rec 2 () d Dr. Tanja Karp 3.2 Fourier Transform 24
25 3.2.6 Fourier Transform of Periodic Signals Exponenial Fourier Series represenaion of a periodic signal: f T () = X k= F k exp(jk ) Fourier Transform of a periodic signal f T (): F{f T ()} = F{ = X k= X k= F k exp(jk )} = F k 2πδ( k ) X k= F k F{exp(jk )} Example: Sum of Two Cosine Signals f T () = cos( ).5 cos(3 ) =.5 exp(j ) + exp( j ).25 exp(j3 ) + exp( j3 ) F = F =.5 F 3 = F 3 =.25 Dr. Tanja Karp 3.2 Fourier Transform 25
26 3 /2 F k /4 3 (π) F() (π) 3 ( π/2) 3 ( π/2) Dr. Tanja Karp 3.2 Fourier Transform 26
27 3.3 Frequency Domain Descripion of LTI Sysems 3.3. Frequency Response Time Domain: Frequency Domain: f () LTI sysem h() g() F() LTI sysem H() G() h(): Impulse Response H(): Frequency Response g() = f() h() G() = F () H() An LTI sysem does no generae new frequency componens. Example: RC Lowpass Filer v i () v i () R C v o () v o () T T /RC h() Dr. Tanja Karp 3.3 Frequency Domain Descripion of LTI Sysems 27
28 For T =, RC=: Magniude Specrum V i () H() V o () Dr. Tanja Karp 3.3 Frequency Domain Descripion of LTI Sysems 28
29 Phase Specrum 2 V i () H() V o () Dr. Tanja Karp 3.3 Frequency Domain Descripion of LTI Sysems 29
30 3.3.2 Bandwidh of Frequency Selecive Sysems Lowpass Filer: A H() A/ 2 Bandpass Filer: A H() A/ 2 c c 2 2 Bandwidh: B = c Bandwidh: B = 2 Highpass Filer: A H() A/ 2 Bandsop Filer: A H() A/ 2 c c 2 2 Only posiive frequencies are couned for he bandwidh. Dr. Tanja Karp 3.3 Frequency Domain Descripion of LTI Sysems 3
31 3.3.3 Disorionless Transmission A ransmission sysem is called disorionless, if he oupu signal g() is a scaled and delayed copy of he inpu signal f(): g() = K f( ) G() = K F () exp( j ) f () LTI sysem h() g() F() LTI sysem H() G() Sysem Frequency Response: H() = K exp( j ) K H() H() The ransmission sysem mus have a consan magniude response and is phase shif mus be linear wih frequency (resuling in he same delay of all frequency componens of he inpu). Dr. Tanja Karp 3.3 Frequency Domain Descripion of LTI Sysems 3
Fourier transform of continuous-time signals
Fourier ransform of coninuous-ime signals Specral represenaion of non-periodic signals Fourier ransform: aperiodic signals repeiion of a finie-duraion signal x()> periodic signals. x x T x kt x kt k k
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12
ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
6.003: Signals and Systems. Modulation
6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open
HMY 220: Σήματα και Συστήματα Ι
HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal
Fourier Transform. Fourier Transform
ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
CT Correlation (2B) Young Won Lim 8/15/14
CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any
Assignment 1 Solutions Complex Sinusoids
Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #3 Ιδιάζοντα σήματα Βασικές κατηγορίες συστημάτων Διασυνδέσεις συστημάτων Ιδιάζοντα σήματα (singular signals) Τα ιδιάζοντα σήματα είναι σήματα τα οποία είναι ιδεατά
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
Σήματα και Συστήματα στο Πεδίο της Συχνότητας
Σήματα και Συστήματα στο Πεδίο της Συχνότητας Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι (22Y411) ΕΝΟΤΗΤΑ 3 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Ανάλυση & Σύνθεση Συχνοτήτων Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι (22Y411) ΕΝΟΤΗΤΑ
Nachrichtentechnik I WS 2005/2006
Nachrichtentechnik I WS 2005/2006 1 Signals & Systems wt 10/2005 1 Overview (Signals & Systems) Signals: definition & classification properties basic signals Signal transformations Fourier transformation
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling
Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials
Linear Time Invariant Systems x(t) Linear Time Invariant System y(t) Linearity input output Ax (t)+bx (t) Ay (t)+by (t) scaling & superposition Time invariance x(t-τ) y(t-τ) Characteristic Functions e
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Fundamentals of Signals, Systems and Filtering
Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
The canonical 2nd order transfer function is expressed as. (ω n
Second order ransfer funcions nd Order ransfer funcion - Summary of resuls The canonical nd order ransfer funcion is expressed as H(s) s + ζ s + is he naural frequency; ζ is he damping coefficien. The
INDIRECT ADAPTIVE CONTROL
INDIREC ADAPIVE CONROL OULINE. Inroducion a. Main properies b. Running example. Adapive parameer esimaion a. Parameerized sysem model b. Linear parameric model c. Normalized gradien algorihm d. Normalized
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #4 Η ιδιότητα της συνέλιξης Απόκριση Συχνότητας ΓΧΑ Συστημάτν Απόκριση συχνότητας ΓΧΑ Συστημάτν που περιγράφονται από Διαφορικές Εξισώσεις Η ιδιότητα πολλαπλασιασμού
From the course textbook, Power Electronics Circuits, Devices, and Applications, Fourth Edition, by M.S. Rashid, do the following problems
ECE 427 Homework #2 From he course exbook, Power Elecronics Circuis, Devices, and Applicaions, Fourh Ediion, by M.S. Rashid, do he following problems 1. Problem.1 on page 1. Draw he oupu volage and inpu
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulaion) - 4.3: Διαμόρφωση Συχνότητας (Frequency Modulaion FM) καθ. Βασίλης Μάγκλαρης maglaris@nemode.nua.gr
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Linear singular perturbations of hyperbolic-parabolic type
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions
Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,
Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
1.8 Paul Mother Wavelet Real Part Imaginary Part Magnitude.6.4 Amplitude.2.2.4.6.8 1 8 6 4 2 2 4 6 8 1 t .8.6 Real Part of Three Scaled Wavelets a = 1 a = 5 a = 1 1.2 1 Imaginary Part of Three Scaled Wavelets
Tables in Signals and Systems
ables in Signals and Systems Magnus Lundberg Revised October 999 Contents I Continuous-time Fourier series I-A Properties of Fourier series........................... I-B Fourier series table................................
Magnetically Coupled Circuits
DR. GYURCSEK ISTVÁN Magnetically Coupled Circuits Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 Ch. Alexander,
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Femtosecond laser pulses
Femosecon laser pulses Inroucion on femosecon lasers Numerical analysis Compuer conrolle experimens Lab wor Pulse shaping Femosecon laser pulses : lab wor Time omain eraher specroscopy Specral inerferomery
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
LTI Systems (1A) Young Won Lim 3/21/15
LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #2 Σειρές Fourier και ΓΧΑ Συστήματα Απόκριση Συχνοτήτων και Φιλτράρισμα Σειρές Fourier: Σειρές Fourier και ΓΧΑ Συστήματα jk( 2π ) Τ k k x () FS.. ak k= k= jkω0 x
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ
ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ y t x Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 1 ΔΙΑΛΕΞΗ 2 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΟΙ ΣΗΜΑΤΩΝ Analog: Continuous Time & Continuous Amplitude Sampled: Discrete Time & Continuous
BandPass (4A) Young Won Lim 1/11/14
BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Introduction to Time Series Analysis. Lecture 16.
Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 3
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulaion) - 3 4.4: Βρόχος Κλειδωμένης Φάσης (Phase-Locked Loop - PLL) 4.5: Μη Γραμμικά Φαινόμενα
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulaion) - 1 0.0: Μετάδοση Αναλογικής & Ψηφιακής Πληροφορίας (Baseband, Bandpass) Σύντομη
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
D-Wave D-Wave Systems Inc.
D-Wave D-Wave sems Inc. Anaol Yu. mirnov D-Wave sems Inc. Vancouver Briish Columbia HE QUANUM COMPUING COMPANY M Decoherence and Noise Conrol in rongl Driven uperconducing Quanum Bis Collaboraion: M. Grajcar
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Ανάλυση ΓΧΑ Συστημάτων
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 9 με Μετασχηματισμούς Κεφ. 5 (εκτός 5.7.4 και 5.3 μόνο από διάλεξη) Ένα ΓΧΑ σύστημα καθορίζεται πλήρως από Κρουστική απόκριση (impulse response)
Riemann Hypothesis: a GGC representation
Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 2011-12 Εαρινό Εξάµηνο Ενδιάµεση Εξέταση 1 Παρασκευή 17 Φεβρουαρίου
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Θεωρία Σημάτων και Γραμμικών Συστημάτων
Θεωρία Σημάτων και Γραμμικών Συστημάτων Σημειώσεις από τις παραδόσεις Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: hps://gihub.com/kongr45gpen/ece-noes 26 Τελευταία ενημέρωση: 23 Ιανουαρίου 27
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1
Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales
Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Σήματα και Συστήματα. Διάλεξη 3: Εισαγωγή στα Συστήματα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 3: Εισαγωγή στα Συστήματα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Συστήματα 1. Ορισμός και Κατηγορίες Συστημάτων Συστήματα Συνεχούς Χρόνου Συστήματα Διακριτού