Introduction: Big-Bang Cosmology

Σχετικά έγγραφα
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions

Geodesic Equations for the Wormhole Metric

Cosmological Space-Times

Answer sheet: Third Midterm for Math 2339

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Approximation of distance between locations on earth given by latitude and longitude

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1 String with massive end-points

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Homework 8 Model Solution Section

Inverse trigonometric functions & General Solution of Trigonometric Equations

Electromagnetic Waves I

Parametrized Surfaces

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Section 8.3 Trigonometric Equations

Differential equations

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

6.4 Superposition of Linear Plane Progressive Waves

Example 1: THE ELECTRIC DIPOLE

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

The Early Universe Big Bang Cosmology: Einstein Universe Friedmann-Lemaître Universe Einstein-deSitter Universe

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Section 7.6 Double and Half Angle Formulas

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

derivation of the Laplacian from rectangular to spherical coordinates

Spherical Coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Linearized Lifting Surface Theory Thin-Wing Theory

Areas and Lengths in Polar Coordinates

On the Einstein-Euler Equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Statistical Inference I Locally most powerful tests

EE512: Error Control Coding

Oscillatory integrals

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

( () () ()) () () ()

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Oscillatory Gap Damping

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Reminders: linear functions

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

CRASH COURSE IN PRECALCULUS

CE 530 Molecular Simulation

m i N 1 F i = j i F ij + F x

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Second Order RLC Filters

Math221: HW# 1 solutions

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Matrices and Determinants

Lifting Entry (continued)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Example Sheet 3 Solutions

11.4 Graphing in Polar Coordinates Polar Symmetries

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Note: Please use the actual date you accessed this material in your citation.

Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

SPECIAL FUNCTIONS and POLYNOMIALS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Finite Field Problems: Solutions

4.4 Superposition of Linear Plane Progressive Waves

Chapter 2. Stress, Principal Stresses, Strain Energy

ˆˆ ƒ ˆ ˆˆ.. ƒ ÏÉ,.. μ Ê μ, Œ.. Œ É Ï ²,.. ± Î ±μ

ITU-R P (2012/02) &' (

Solutions_3. 1 Exercise Exercise January 26, 2017

( () () ()) () () ()

Rectangular Polar Parametric

PARTIAL NOTES for 6.1 Trigonometric Identities

Lecture 21: Scattering and FGR

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Parallel transport and geodesics

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7)

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Section 9.2 Polar Equations and Graphs

ECE 222b Applied Electromagnetics Notes Set 4c

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Quantum Field Theory Example Sheet 1, Michælmas 2005

c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33

Transcript:

Introduction: Big-Bng Cosology

Bsic Assuptions Principle of Reltivity: The lws of nture re the se everywhere nd t ll ties The Cosologicl principle: The universe is hoogeneous nd isotropic Spce tie is siply connected, cn be filled with cooving observers (CO). Ech CO perfors locl esureents of distnce nd tie in it s own fre of reference, loclly flt. No globl inertil fre. Cosic tie: synchronized clocks of COs in spce t every given tie.

Lick Survey M glxies isotropy hoogeneity North Glctic Heisphere

Microwve Anisotropy Probe Februry, 4 Science brekthrough of the yer WMAP δt/t~ -5 isotropy hoogeneity

Hoogeneous Universe: Flt (Eucliden), therefore open, infinite Curved nd closed, finite

Three-diensionl Two diensionl One-diensionl Open??? Closed x + y + z + w R x + y + z R x + y R

Olbers Prdox L R f L/R R The siplest ssuptions: Hoogeneity nd isotropy Eucliden geoetry Infinite spce A sttic universe N nr dr dr Flux L nr dr nl dr nl + nl + nl R +...

The Universe is evolving in tie

Bby glxies in erly universe z

the universe is expnding Expnding

99 Discovery of the Expnsion

Doppler Shift receding source pproching source

Red-shift distnce wvelength

Hubble Expnsion: V H R Distnce R Velocity V Accelertion

Hubble Expnsion velocity V H R distnce Hubble constnt

V H R A specil center?

V H R A specil center? Other Origin

Prediction fro hoogeneity: The Hubble Lw tie VHR t x x t x x distnce r( x, t) ( t) x & r& x & r H &

distnce glxy glxy The Big Bng here now t.7 Gyr tie

היכן היה המפץ הגדול? בנקודה אחת? בהרבה נקודות??? היכן המפץ

היכן היה המפץ הגדול? בנקודה אחת? בהרבה נקודות? מפץ באינסוף נקודות כל הנקודות מתלכדות לנקודה אחת

The Big Bng odel The Stedy Stte odel The Stedy Stte odel

Cosic Microwve Bckground Rdition 965

COBE 99 Plnk blck-body spectru ( h ν dν I ν ) dν hν / kt c e Nobel Prize 6 to Soot nd Mther Ienergy flux per unit re, solid ngle, nd frequency intervl

Hoogeneity nd Isotropy: Robertson-Wlker Metric

Metric Distnce B Metric distnce l ( A, B; t) Hubble expnsion in curved spce: dl dl i vi H ( t) l i H ( t) l i H ( t) l dt dt d ln l dt H ( t) locl Hubble lw l( A, B; t) w( A, B) ( t) H ( t) & l cooving distnce i universl expnsion fctor A tt

Metric l l l θ const. x. const x cos cos x x x x x x x x + + θ θ l l l l l l l l l In sll neighborhood (loclly flt) Coordinte syste: x, x (d exple) dx dx g dx g dx g d + + l dx dx g dx g dx g d + + l j i ij dx dx g d l Line eleent: Specifies the geoetry uniquely. Exct for depends on the choice of coordintes Orthogonl coordintes: g ij for i j j i ij x x x g ) ( l r The etric: l l l x x

Exple: E Coordintes: crtezin sphericl x r sinθ cosφ y r sinθ sinφ z r cosθ intervl d l dx + dy + dz dr + r ( dθ + sin θ dφ ) g crtezin sphericl r r sin dγ θ ngulr distnce dl r dl dl θ φ dr r dθ r sinθ dφ Exple: D sphere ebedded in E : rconst. d l dθ + sin θ d φ Are: da dl dl θ φ r sinθ dθ dφ A π π θ φ da 4π r

The Metric of Hoogeneous nd Isotropic Universe (Robertson-Wlker) d l ( t) dw tconst. In cooving sphericl coordintes u r /, θ, φ Isotropy: dw du + σ ( u) dγ d γ dθ + sin θ dφ Three solutions: σ (u) S k ( u) sin( u ) k u k sinh( u) k sinh( x) ( e x e x ) / dl ( t)[ du + S k ( u) dγ ] Spce-tie intervl ds dt ( t)[ du + S k ( u) dγ ]

k flt spce (E ) d l ( t) [ du + u ( dθ + sin θ dφ )] u θ π φ π infinite volue

k+ closed spce d l ( t) [ du + sin ( u)( dθ + sin θ dφ )] u π θ π φ π For visuliztion: D sphere ebedded in E 4 : (w, x, y, z) D sphere the ebedding is defined by the trnsfortion: consistent with w + x + y + z w z x y cos u sin sin sin u cosθ u sinθ cosφ u sinθ sinφ d l dw + dx + dy + To visulize plot subspce θ π / ( z ) D sphere in w,x,y,z d l ( du + sin uconst. is sphere of cooving rdius u d l sin u ( dθ + sin θ dφ ) A V π π θ φ π sin u dθ sin u A du 4π sin u π sinθ dφ 4π sin u du π u ( t) u dφ ) dz A grows for < u < π/ nd decreses for π/ < u < π x w φ u y

k- n open spce d l ( t) [ du + sinh ( u)( dθ + sin θ dφ )]

Hoogeneity nd Isotropy Robertson-Wlker Metric ds dt ( t)[ du + S k ( u) dγ ] expnsion fctor cooving rdius r ( t) u ngulr re d γ dθ + sin θ dϕ S k ( u) sin u k + sinh u k u k

Rdil ry dγ ds ds dt Redshift dt ν ( t)[ du locl Hubble locl flt λ + S k ( u) dγ ] ± ( t) du u± ( + z ) T t t e o dt ( t) nerby observers long light pth, seprted by δr: δν & δ δv HδrHδuHδt δt ν z λ λ v c For Blck-Body rdition, Plnck s spectru: dn 8πν c Vdν exp( hν / kt) Also for free ssive prticles: p de Broglie wvelength (prticles or photons): like photons: λ h / p p hν / c useful: conforl tie dη dt u η η o e ds ( η)[ dη du S k ( u) dγ ]

Horizon u t o dt < lite ( t) t e u( t, t ) u ( t o e horizon o ) liit exists r H ( t) u ( t)) H u H VH 4π Sk ( u) du Exple: EdS (k, Λ) t / u H t dt t / t / r H t M H u H t / Cuslity proble: M H ( trec ) / 4 ( ) ~ M ( t ) H Our Horizon is not cuslly connected: wht is the origin of the isotropy?

Friedn s Eqution nd its solutions

Newtonin Grvity shell E GM r 4π G v H ρ r r v Hr M 4π ρr M types of solutions, depending on the sign of E H t xiu expnsion, possible only if E< ρ crit H 8 π G ρ ρ crit & 8π G E u r u ρ( t) ε ε ±, independent of r becuse lhs is

The Friedn Eqution Newton s grvity: spce fixed, externl force deterining otions Einstein s equtions G 8 µν+λ gµν π GTµν G c left side of E s eq. is the ost generl function of g nd its st nd nd tie derivtives tht reduces to Newton s eqution φ 4π Gρ Grvity is n intrinsic property of spce-tie. geoetry <-> energy density. Prticles ove on geodesics (locl stright lines) deterined by the locl curvture. For the isotropic RW etric ds dt ( t)[ du + S ( u) dγ ] Einstein s tensor Stress-energy tensor & 8πρ k + Λ ss conservtion ρ V const. ρ & Gtt Ttt ρ Tuu T T P k k + G G G uu ϑϑ ϕϕ ϑϑ ϕϕ energy conservtion A differentil eqution for (t) k && & && & k 8πP+Λ conservtion of nuber of photons ρrv ρr N const. ρ r hν Add λ 4 eq. of otion

Solutions of Friedn eq. (tter er) *, ny k : & t * Λ & k & * k & t / / * k & + t ( ) k + dη dt & conforl tie + / ( t) * t * * turnround [ cos( η)] [ ηsin( η)] rdition er & (t) t / Λ * & k Λ + * 4π Gρ const. > ccelertion < expnsion forever criticl density ρ H / 8π G H k ρ + 8π G 8π G > collpse Λc Λ > H ( ) & e Ht big bng here & now t

Light trvel in closed universe A photon is eitted t the origin (u e ) right fter the big-bng (t e ) dt conforl tie dη photon: ds dη du (t) big crunch π η π/ π t π/ big bng π/ π north pole u south pole

H nd t Λ / collpse / / < > << Ht Ht t Ht t k / / ) /( sinh Ht Generl: ) ( sinh ), ( sin...7 ) /( / / > + Λ S S Ht Crrol, Press, Turner 99, Ann Rev A&A, 499

Solutions with Cosologicl Constnt Λ & k + + * k Λ> [cosh( Λ t) ] Λ< Λ * [ cosh( Λ * Λ t)] ( tter) && s / t * / Λ Λ> e & 6 Λ / t * / Λ Λ< Λ / t t π / Λ t k- Λ> se syptotic behvior s k Λ< & & & ( t c rd -order polynoil one rel root exists Λ + + + c ) if Λc * / t Λ> e s Λ / t c Λ t c Λ c Λ< t

Solutions with Cosologicl Constnt (cont.) Λ & k + + * ( tter) e Λ / t 9 k+ (closed) criticl vlue: Λ c * Letre Λ>>Λ c s Λ>Λ c & > solution for every the rhs t s to be > ΛΛc+ε t ΛΛ c & double root t * & & c c c e Λ / t Einstein s sttic universe (unstble) sttic expnding to infltion Eddington-Letre big-bng expnding to sttic c / t t sttic

Solutions with Cosologicl Constnt (cont.) Λ & k + + * ( tter) 9 k+ (closed) criticl vlue: Λ c * <Λ<Λ c & > & < for sll nd lrge for << no solution t cos. const. wins ss ttrction wins Λ & only ttrction t

Friedn Eqution k tot + Λ closed/open 8 c kc G H Λ + ρ π & kinetic potentil curvture vcuu 4 r r ρ ρ ρ ρ ρ ρ r ρ + Λ + + k 8 / H c H kc G H k Λ Λ π ρ two free preters, Λ Crrol, Press, Turner 99, Ann Rev A&A, 499 Λ q & && decelerte/ccelerte 9.7..76.88 8 c g h h G H π ρ Flt: k tot Λ ) ( + ) ( / H H + Λ

Drk Mtter nd Drk Energy vcuu repulsion? Λ unbound bound ss - ttrction

Cosologicl Constnt: Newtonin Anlog vcuu energy density Λ 4πρ Λ M Λ 4π ρ r Λ Λr force per ss on shell F M r rˆ Λ Λ r rˆ vs. M r ˆ r potentil r φ Fdr Λ r 6 vs. M r in Einstein s eqs. & 8π ρ k + Λ && 4π ρ + Λ

if ρ Accelertion, pressure, energy density FRW: dointes if ρ dointes r 8 π & ρ ( k Energy chnge by work d( ρ c ) pd( ) () if ρ ) 4π p && ρ+ c 4 ρ ρλ + ρ + ρr G () 4π ρ ρ p & 4 4 () 8π ρr ρ ρ & r pr rc () 8π ρλ const. pλ ρλc && ρλ Λ dointes + Construct sttic odel: de Sitter: p/c Quintessence Λ ω ωρ ρ p ρ p 8π & in FRW : ρ kc () p && ρ ρ > Λ ρ ρλ ρ c H & / Λc / for infltion need &> & to exceed r ct & r ω</ h Ht e h dv k +

Future SN Cosology Project

Drk Energy w ccelertion WMAP_ Λ WMAP_

Friedn Eqution Hoogeneity + Grvity ( G Λ g 8 ) H & kc c + 8π Gρ µν µν π GTµν Λ kinetic potentil curvture vcuu ρ ρ + ρ r ρ 4 ρ ρr ρr ρ crit + k + Λ ρ kc Λc c k Λ H / 8 G H H π ~ 9 g c two free preters +Λ closed/open q tot && & Λ k decelerte/ccelerte

Solutions of Friedn eq. & * k : t sll : k / t / * 4π Gρ const. ny k lrge, k : t << k t + * * H d η dt / ( t ) [ cos( η)] [ ηsin( η)] & Ht e Λc tter er, Λ (t) conforl tie ccelertion Λ big bng here & now t & 8π Gρ kc Λc H + > +k < > collpse + Λ expnsion forever

Accelertion by cosologicl constnt: & 8π Gρ kc Λc H + q +Λ k && & Λ distnce > Λ e Ht Λ < > Big Bng here & now tie

Generlized Drk Energy Energy conservtion during expnsion: Cosologicl constnt: d( ρtotc ) p d( ρtot ρ Λ const. ) Eqution of stte: pρ c negtive pressure Generl eq. of stte: Λ p wρ c w e.g. Quintessence w( x, t)? &> & w< / & FRW ( k ) 8πG ρ tot 4π G p && ρ+ c