Research Article The Study of Triple Integral Equations with Generalized Legendre Functions

Σχετικά έγγραφα
Oscillatory integrals

INTEGRAL INEQUALITY REGARDING r-convex AND

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Some definite integrals connected with Gauss s sums

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

2 Composition. Invertible Mappings

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Solutions_3. 1 Exercise Exercise January 26, 2017

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Section 8.3 Trigonometric Equations

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Section 7.6 Double and Half Angle Formulas

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

A summation formula ramified with hypergeometric function and involving recurrence relation

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

derivation of the Laplacian from rectangular to spherical coordinates

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Uniform Convergence of Fourier Series Michael Taylor

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Math221: HW# 1 solutions

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Homework 3 Solutions

Reminders: linear functions

Approximation of distance between locations on earth given by latitude and longitude

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ST5224: Advanced Statistical Theory II

On the generalized fractional derivatives and their Caputo modification

Example Sheet 3 Solutions

Second Order Partial Differential Equations

CRASH COURSE IN PRECALCULUS

Lecture 5: Numerical Integration

EE512: Error Control Coding

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Differentiation exercise show differential equation

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Math-Net.Ru Общероссийский математический портал

Concrete Mathematics Exercises from 30 September 2016

D Alembert s Solution to the Wave Equation

SPECIAL FUNCTIONS and POLYNOMIALS

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order RLC Filters

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Matrices and Determinants

Strain gauge and rosettes

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Other Test Constructions: Likelihood Ratio & Bayes Tests

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Homomorphism in Intuitionistic Fuzzy Automata

Commutative Monoids in Intuitionistic Fuzzy Sets

Weyl-Titchmarsh type formula for periodic Schrödinger operator with Wigner-von Neumann potential

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Spherical quadrangles with three equal sides and rational angles

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

4.6 Autoregressive Moving Average Model ARMA(1,1)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Exercises to Statistics of Material Fatigue No. 5

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Parametrized Surfaces

Homework 8 Model Solution Section

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

( y) Partial Differential Equations

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

The k-α-exponential Function

Inverse trigonometric functions & General Solution of Trigonometric Equations

Differential equations

Answer sheet: Third Midterm for Math 2339

C.S. 430 Assignment 6, Sample Solutions

Notes on the Open Economy

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Every set of first-order formulas is equivalent to an independent set

PARTIAL NOTES for 6.1 Trigonometric Identities

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

The Simply Typed Lambda Calculus

Section 9.2 Polar Equations and Graphs

Solutions to Exercise Sheet 5

Homomorphism of Intuitionistic Fuzzy Groups

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Numerical Analysis FMN011

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

If we restrict the domain of y = sin x to [ π 2, π 2

Transcript:

Hindwi Pulishing Corportion Astrct nd Applied Anlysis Volume 28, Article ID 395257, 2 pges doi:.55/28/395257 Reserch Article The Study of Triple Integrl Equtions with Generlized Legendre Functions B. M. Singh, J. Rokne, nd R. S. Dhliwl 2 Deprtment of Computer Science, University of Clgry, Clgry, AB, Cnd T2N-N4 2 Deprtment of Mthemtics nd Sttistics, University of Clgry, Clgry, AB, Cnd T2N-N4 Correspondence should e ddressed to R. S. Dhliwl, dhli.r@shw.c Received 28 April 28; Accepted 2 Septemer 28 Recommended y Lnce Littlejohn A method is developed for solutions of two sets of triple integrl equtions involving ssocited Legendre functions of imginry rguments. The solution of ech set of triple integrl equtions involving ssocited Legendre functions is reduced to Fredholm integrl eqution of the second kind which cn e solved numericlly. Copyright q 28 B. M. Singh et l. This is n open ccess rticle distriuted under the Cretive Commons Attriution License, which permits unrestricted use, distriution, nd reproduction in ny medium, provided the originl work is properly cited.. Introduction Dul integrl equtions involving Legendre functions hve een solved y Bloin. He pplied these equtions to prolems of potentil theory nd to torsion prolem. Lter on Pthk 2 nd Mndl 3 who considered dul integrl equtions involving generlized Legendre functions which hve more generl solution thn the ones considered y Bloin. Recently, Singh et l. 4 considered dul integrl equtions involving generlized Legendre functions, nd their results re more generl thn those in 3. In the nlysis of mixed oundry vlue prolems, we often encounter triple integrl equtions. Triple integrl equtions involving Legendre functions hve een studied y Srivstv 5. Triple integrl equtions involving Bessel functions hve lso een considered y Cooke 6 9, Trnter, Love nd Clements, Srivstv 2, nd most of these uthors reduced the solution into solution of Fredholm integrl eqution of the second kind. The relevnt references for dul nd triple integrl equtions re given in the ook of Sneddon 3. In this pper, method is developed for solutions of two sets of triple integrl equtions involving generlized Legendre functions in Sections 3 nd 4. Ech set of triple integrl equtions is reduced to Fredholm integrl eqution of the second kind which my e solved numericlly. The im of this pper is to find more generl solution for the type of

2 Astrct nd Applied Anlysis integrl equtions given in 5 nd to develop n esier method for solving triple integrl equtions in generl. 2. Integrl involved generlized Legendre functions nd some useful results We first summrize some known results needed in the pper. We find from 4, eqution 2, pge 33 tht ( ) 2 [ 2 μ ] μ sinh αc P μ ] cosh αc cos τx dτ c [ cosh αc cosh xc ] μ /2 H α x, 2. μ</2 ndfrom 4, weotin ) [ 2 ( 3/2 2 μ ] μ sinh αc ( ) ( ) 2 μ iτ c 2 μ iτ sinh fτ sin xτ P μ ] c cosh αc dτ c [ cosh xc cosh αc ] μ /2 H x α, 2.2 μ> /2 ndh denotes the Heviside unit function. Furthermore, c /f, f> nd P μ cosh αc is the generlized Legendre function defined in 5, pge 37.From /2 i τ/c 4, 6, the generlized Mehler-Fock trnsform is defined y ψ ( cosh αc ) P μ cosh αc ] F τ dτ, 2.3 nd its inversion formul is F τ fτ ( ) ( ) sinh fτ 2 2 μ iτ c 2 μ iτ c 2.4 [ ] ( ) cosh αc ψ cosh αc sinh αc dα. P μ /2 i τ/c Equtions 2. nd 2.2 re of form 2.3. From the inversion formul given y 2.4, 2., nd 2.2, it follows tht cos xτ τ sin xτ τ sinh fτ ( /2 μ i τ/c ) ( /2 μ i τ/c ) 2 /2 μ x [ sinh αc ] μp μ cosh αc ] dα [ cosh αc cosh xc ] μ /2, μ < 2, 2 /2 μ x 2.5 [ ] μp μ sinh αc cosh αc dα /2 i τ/c [ ] /2 μ, μ > cosh xc cosh αc 2. 2.6

B. M. Singh et l. 3 The inversion theorem for Fourier cosine trnsforms nd the results 2. nd 2.2 led to P μ /2 i τ/c P μ /2 i τ/c [ ] 2 cosh αc c sinhμ αc /2 μ α cos τs [ ] μ /2, μ < cosh αc cosh sc 2, 2.7 [ ] 2c cosh αc [ sinh μ αc /2 μ sin fτ ( /2 μ i τ/c ) ( /2 μ i τ/c ) sin τs [ ] /2 μ, μ > cosh sc cosh αc 2. α 2.8 If h t is monotoniclly incresing nd differentile for <t<nd h t / inthis intervl, then the solutions of the equtions t t f x dx [ ] α g t, < t <, <α<, 2.9 h t h x f x dx [ h x h t ] α g t, < t <, <α<, 2. re given y Sneddon 3 s f x sin α f x sin α d dx x d dx h t g t dt [ ] α, < x <, 2. h x h t x h t g t dt [ ] α, <x<, 2.2 h t h x respectively, the prime denotes the derivtive with respect to t. 3. Triple integrl equtions with generlized Legendre functions: set I In this section, we will find solution of the following triple integrl equtions: ( τa τ sinh τf 2 μ i τ ) ( c 2 μ i τ ) P μ ] c cosh αc dτ, <α<, 3. A τ P μ ] 2 cosh αc dτ f α, < α <, 3.2 ( τa τ sinh τf 2 μ 3 i τ ) ( c 2 μ 3 i τ ) P μ ] 3 c cosh αc dτ, < α <, 3.3

4 Astrct nd Applied Anlysis A τ is n unknown function to e determined, f α is known function, nd P μ cosh αc is the generlized Legendre function defined in Section 2 nd /2 < /2 i τ/c μ < /2, /2 <μ 2 < /2, μ 3 > /2. The tril solution of 3., 3.2, nd 3.3 cn e written s A τ ψ t cos τt dt, 3.4 ψ t is n unknown function to e determined. On integrting 3.4 y prts, we get A τ ψ sin τ τ τ ψ t sin τt dt, 3.5 the prime denotes the derivtive with respect to t. Sustituting 3.5 into 3.3, interchnging the order of integrtions nd using 2.2, we find tht 3.3 is stisfied identiclly. Sustituting 3.5 into 3. nd using the integrl defined y 2.2, weotin ψ [ ] /2 μ cosh c cosh αc α ψ t dt [ ] /2 μ, <α<. 3.6 cosh tc cosh αc Eqution 3.6 is equivlent to the following integrl eqution: d dα α c sinh tc ψ t dt [ ] /2 μ, <α<. 3.7 cosh tc cosh αc By sustituting 3.4 into 3.2, interchnging the order of integrtions nd using the integrl defined y 2. we find tht α ψ t dt c [ ] /2 μ2 cosh αc cosh tc ( ) 2 [ 2 μ ] μ2 2 sinh αc f α, < α <, μ 2 < 2. 3.8 For otining the solution of the prolem, we need to solve two Ael s type integrl equtions 3.7 nd 3.8. We ssume tht d c sinh tc ψ t dt dα [ ] /2 μ φ α, <α<. 3.9 cosh tc cosh αc α

B. M. Singh et l. 5 The ove eqution is of the sme form s 3.7 nd defined in different region. Eqution 3.9 is of form 2.2. Hence, the solution of the integrl eqution 3.9 cn e written s ψ t cos ( μ ) t φ α dα [ ] /2 μ, cosh cα cosh tc 2 <μ <,<t<. 3. 2 to The solution of Ael s type integrl equtions 2. together with 3.7 nd 3.9 le ψ t cos ( μ ) φ α dα [ ] /2 μ, cosh cα cosh tc 2 <μ <, <t<. 3. 2 Equtions 3. nd 3. men tht 3.7 is stisfied identiclly. Eqution 3.8 cn e rewritten in the form ψ t dt [ ] /2 μ2 cosh αc cosh tc c α 2 ( μ 2 ) f α [ sinh αc ] μ2, ψ t dt [ ] /2 μ2 cosh αc cosh tc <α<. 3.2 Sustituting the expression for ψ t from 3. nd 3. into the first nd second integrl of 3.2 we otin α S t dt [ ] /2 μ2 cosh αc cosh tc dt φ u dt F α [ ] /2 μ2 [ ] /2 μ2, <t<, cosh αc cosh tc cosh cu cosh tc 3.3 S t t φ u dt [ cosh cu cosh tc ] /2 μ, 3.4 F α 2 ( μ 2 ) f α [ sinh αc ] μ2 c cos ( μ ). 3.5 Assuming tht the right-hnd side of 3.3 is known function of α it hs the form of 2.9, whose solution is given y S t cos ( ) μ 2 d dt t c sinh cα F α dα [ ] /2 μ2 I t, <t<, cosh ct cosh cα 2 <μ 2 < 2, 3.6

6 Astrct nd Applied Anlysis I t cos ( ) μ 2 d dt t c sinh cα dα dp [ ] /2 μ2 ( ) /2 μ2 cosh ct cosh cα cosh cα cosh cp φ u du ( ) /2 μ2, < t <, cosh cu cosh cp 2 <μ 2 < 2. 3.7 From the integrl d t dt c sinh cα dα [ ] /2 μ2 [ ] /2 μ2 cosh ct cosh cα cosh cα cosh cp [ ] /2 μ2 c sinh ct cosh c cosh cp [ ] [ ] cosh ct cosh cp /2 μ2, p<<t, cosh ct cosh c 2 <μ 2 < 2, 3.8 we then otin c cos ( μ 2 ) sinh ct I t [ cosh ct cosh c ] /2 μ 2 φ u du [ ] /2 μ. cosh cu cosh cp ( cosh c cosh cp ) /2 μ2 dp [ cosh ct cosh cp ] 3.9 Eqution 3.4 is n Ael-type eqution. Hence, its solution is φ u cos ( μ ) d du u c sinh cv S v dv [ ] /2 μ, < u <, cosh vc cosh uc 2 <μ < 2, 3.2 R p φ u du [ ] /2 μ. 3.2 cosh cu cosh cp Sustituting the expression for φ u from 3.2 into 3.2, integrting y prts, nd finlly interchnging the order of integrtions in second integrl, we rrive t R p c cos ( μ ) [ S v sinh cv dv [ ] /2 μ [ ] /2 μ cosh c cosh cp cosh cv cosh c ( ) 2 μ S v sinh cv dv 3.22 v c sinh cu du [ ] 3/2 μ [ ] /2 μ ]. cosh cu cosh cp cosh cv cosh cu

B. M. Singh et l. 7 The integrl v c sinh cu du [ ] 3/2 μ [ ] /2 μ cosh cu cosh cp cosh cv cosh cu cosh cv cosh c /2 μ μ /2 cosh cv cosh cp cosh c cosh cp 3.23 p<<v, 2 <μ < 2 together with 3.22 le to R p c cos ( ) μ ( ) /2 μ cosh c cosh pc S ν sinh cν dν [ ][ ] /2 μ. cosh νc cosh pc cosh νc cosh c 3.24 From 3.9, 3.2, nd 3.24, weotin I t S ν K ν, t dν, 3.25 c 2 cos ( ) ( ) μ cos μ2 sinh ct sinh cν K ν, t 2[ cosh ct cosh c ] /2 μ 2 [ ] /2 μ cosh cν cosh c ( ) μ μ cosh c cosh cp 2 dp [ ][ ]. cosh ct cosh cp cosh cν cosh cp 3.26 From 3.25, 3.6 cn e written s S t S ν K ν, t dν cos ( ) μ 2 d dt t c sinh cα F α dα [ ] /2 μ2, < t <. 3.27 cosh ct cosh cα Eqution 3.27 is Fredholm integrl eqution of the second kind with kernel K ν, t. The kernel is defined y 3.26. The integrl in 3.26 cnnot e solved nlyticlly, ut for prticulr vlues of μ nd μ 2 the vlues of K ν, t cn e found numericlly. Hence, the numericl solution of Fredholm integrl eqution 3.27 cn e otined for prticulr vlue of f α, μ,ndμ 2 to find numericl vlues of S t. Mking use of 3.2, 3.,nd 3.,the numericl results for ψ t cn e otined. Finlly, mking use of 3.4 the numericl results for A τ cn e otined.

8 Astrct nd Applied Anlysis 4. Triple integrl equtions with generlized Legendre functions: set II In this section, we will find the solution of the following triple integrl equtions: τa τ P μ ] cosh αc dτ, <α<, 4. ( sinh τf 2 μ 2 i τ ) ( c 2 μ 2 i τ ) A τ P μ ] 2 c cosh αc dτ f α, <α<, 4.2 τa τ P μ 3 cosh αc ] dτ, < α, 4.3 μ > /2, /2 <μ 2 < /2, /2 <μ 3 < /2. We ssume tht τa τ P μ 3 cosh αc ] dτ M α, <α<. 4.4 The inversion formul for generlized Mehler-Fock trnsforms 2.4 together with 4.3 nd 4.4 implies tht A τ f ( sinh fτ 2 2 μ 3 i τ ) ( c 2 μ 3 i τ ) c 4.5 sinh uc P μ [ ] 3 /2 i τ/c cosh uc M u du. Multiplying 4. y sinh αc μ / cosh xc cosh αc /2 μ, integrting oth sides fromtox nd with respect to α, nd then using 2.6 we otin A τ sin xτ dτ, <x<. 4.6 Sustituting the vlue of A τ from 4.5 into 4.6, interchnging the order of integrtions, nd using the integrl 2.2, weget x sinh uc M u du [ ] /2 μ3, μ 3 >, <x<. 4.7 cosh xc cosh uc 2 Sustituting the vlue of A τ from 4.5 into 4.2 nd interchnging the order of integrtions we rrive t sinh uc M u K 2 u, α du f α, <α<, 4.8

B. M. Singh et l. 9 K 2 u, α ( f 2 ) ( 2 μ 2 i τ ) ( c 2 μ 3 i τ ) ( c 2 μ 3 i τ ) c 2 μ 2 i τ c 4.9 sinh 2 fτ P μ [ ] 3 μ /2 i τ/c cosh uc P 2 [ ] /2 i τ/c cosh αc dτ, nd then 2.8 nd 2.2 imply tht c K 2 u, α ( ) ( )[ ] μ2 [ ] μ3 /2 μ 2 /2 μ3 sinh αc sinh uc mx α,u [ ] /2 μ2 [ ] /2 μ3, cosh sc cosh αc cosh sc cosh uc 4. μ 3 > 2, μ 2 > 2. Eqution 4.7 is n Ael-type eqution nd hs the form 2.9. Hence, the solution of 4.7 is M u, <u<. 4. Using 4. nd 2.5, 4.8 cn e written in the form [ sinh uc ] μ3 M u du mx α,u [ ] /2 μ2 [ ] /2 μ3 cosh sc cosh αc cosh sc cosh uc ( ) ( )[ ] μ3 /2 μ 2 /2 μ2 sinh αc f α F α, c sy, <α<. 4.2 Using the formul du mx α,u α s du du, 4.3 we cn write 4.2 in the form α S s [ ] /2 μ2 F α cosh sc cosh αc [ cosh sc cosh αc ] /2 μ2 M u [ sinh uc ] μ 3 du [ ] /2 μ2, <α<, cosh sc cosh uc 4.4

Astrct nd Applied Anlysis S s s M u [ sinh uc ] μ 3 du [ ] /2 μ2, < s <. 4.5 cosh sc cosh αc Assuming tht the right-hnd side of 4.4 is known function eqution nd 4.4 hs the form of 2., hence the solution of 4.4 cn e written s S s c cos ( ) d F α sinh αc dα μ 2 [ ] /2 μ2 I s, <s<, s cosh αc cosh sc 2 <μ 2 < 2, 4.6 I s c cos ( ) d sinh αc dα μ 2 [ ] /2 μ2 cosh αc cosh sc s dp M u [ sinh cu ] μ 3 dα [ ] /2 μ2 [ ] /2 μ3, < s <. cosh pc cosh αc cosh pc cosh uc 4.7 Eqution 4.7 is simplified to I s c cos ( ) μ 2 sinh sc [ ] /2 μ2 cosh c cosh sc M u [ sinh cu ] μ 3 du [ ] /2 μ3, <s<. cosh cp cosh cu [ cosh cp cosh c ] /2 μ2 dp [ cosh sc cosh cp ] 4.8 Let R p M u [ sinh cu ] μ 3 du [ ] /2 μ3. 4.9 cosh pc cosh uc Eqution 4.5 is of the form of 2.9. Hence, its solution is M u [ sinh cu ] μ 3 c cos ( ) μ 3 d du u S s sinh sc [ ] /2 μ3, < u <. 4.2 cosh uc cosh sc

B. M. Singh et l. Sustituting the expression for M u from 4.2 into 4.9 nd integrting y prts nd then using the following integrl: s c sinh uc du ( ) 3/2 μ3 ( ) /2 μ3 cosh pc cosh uc cosh uc cosh sc [ cosh c cosh cs ] /2 μ 3 ( /2 μ3 )[ cosh cs cosh cp ][ cosh cp cosh c ] /2 μ3, 4.2 s<<p, 2 <μ 2 < 2, we find tht R p c cos ( μ 3 ) ( ) /2 μ3 cosh cp cosh c S u sinh cu du [ ][ ] /2 μ3. cosh cp cosh uc cosh c cosh cu 4.22 Mking use of 4.8, 4.9,nd 4.22, wefindtht I s S u K 2 u, s du, 4.23 c 2 cos ( ) ( ) μ 2 cos μ3 sinh sc sinh uc K 2 u, s 2[ cosh c cosh sc ] /2 μ 2 [ ] /2 μ3 cosh c cosh cu [ ] μ2 μ cosh cp cosh c 3 dp [ ][ ]. cosh sc cosh cp cosh cp cosh cu 4.24 Using 4.7 nd 4.23, 4.6 cn e written in the form S s S u K 2 u, s du c cos ( ) d μ 2 s F α sinh αc dα [ ] /2 μ2, < s <. cosh αc cosh sc 4.25 Eqution 4.25 is Fredholm integrl eqution of the second kind with kernel defined y 4.24. The Fredholm integrl eqution 4.25 my e solved to find numericl vlues of S s for prticulr vlues of f α. And hence from 4.2 nd 4.5, the numericl vlues for A τ cn e otined for prticulr vlues of f α, μ 2,ndμ 3.

2 Astrct nd Applied Anlysis 5. Conclusions The solution of the two sets of triple integrl equtions involving generlized Legendre functions is reduced to the solution of Fredholm integrl equtions of the second kind which cn e solved numericlly. References A. A. Bloin, Solutions of certin dul integrl equtions, Prikldny Mtemtik i Mekhnik, vol. 28, no. 6, pp. 5 23, 964, English trnsltion in Journl of Applied Mthemtics nd Mechnics, vol. 28, no. 6, pp. 227 236, 964. 2 R. S. Pthk, On clss of dul integrl equtions, Koninklijke Nederlne Akdemie vn Wetenschppen, vol. 4, no. 4, pp. 49 5, 978. 3 B. N. Mndl, A note on dul integrl equtions involving ssocited Legendre function, Interntionl Journl of Mthemtics nd Mthemticl Sciences, vol. 5, no. 3, pp. 6 64, 992. 4 B. M. Singh, J. Rokne, nd R. S. Dhliwl, The study of dul integrl equtions with generlized Legendre functions, Journl of Mthemticl Anlysis nd Applictions, vol. 34, no. 2, pp. 725 733, 25. 5 K. N. Srivstv, On some triple integrl equtions involving Legendre functions of imginry rgument, Journl of Muln Azd College of Technology, vol., pp. 54 67, 968. 6 J. C. Cooke, Triple integrl equtions, The Qurterly Journl of Mechnics nd Applied Mthemtics, vol. 6, no. 2, pp. 93 23, 963. 7 J. C. Cooke, Some further triple integrl eqution solutions, Proceedings of the Edinurgh Mthemticl Society, vol. 3, pp. 33 36, 963. 8 J. C. Cooke, The solution of triple integrl equtions in opertionl form, The Qurterly Journl of Mechnics nd Applied Mthemtics, vol. 8, no., pp. 57 72, 965. 9 J. C. Cooke, The solution of triple nd qudruple integrl equtions nd Fourier-Bessel series, The Qurterly Journl of Mechnics nd Applied Mthemtics, vol. 25, no. 2, pp. 247 263, 972. C. J. Trnter, Some triple integrl equtions, Proceedings of the Glsgow Mthemticl Assocition, vol. 4, pp. 2 23, 96. E. R. Love nd D. L. Clements, A trnsformtion of Cooke s tretment of some triple integrl equtions, Journl of the Austrlin Mthemticl Society. Series B, vol. 9, no. 3, pp. 259 288, 976. 2 N. Srivstv, On triple integrl equtions involving Bessel function s kernel, Journl of Muln Azd College of Technology, vol. 2, pp. 39 5, 988. 3 I. N. Sneddon, Mixed Boundry Vlue Prolems in Potentil Theory, North-Hollnd, Amsterdm, The Netherln, 966. 4 A. Erdélyi, W. Mgnus, F. Oerhettinger, nd F. G. Tricomi, Tles of Integrl Trnsforms. Vol. II,McGrw Hill, New York, NY, USA, 954. 5 A. Erdélyi, W. Mgnus, F. Oerhettinger, nd F. G. Tricomi, Tles of Integrl Trnsforms. Vol. I,McGrw Hill, New York, NY, USA, 954. 6 W. Mgnus, F. Oerhettinger, nd R. P. Soni, Formuls nd Theorems for the Specil Functions of Mthemticl Physics, Die Grundlehren der Mthemtischen Wissenschften. 52, Springer, New York, NY, USA, 966.