Tube : beam model : analytical

Σχετικά έγγραφα
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Dr. D. Dinev, Department of Structural Mechanics, UACEG

3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

ADVANCED STRUCTURAL MECHANICS

Mechanics of Materials Lab

Chapter 7 Transformations of Stress and Strain

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ

Homework 8 Model Solution Section

Strain gauge and rosettes

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

MECHANICAL PROPERTIES OF MATERIALS

(Mechanical Properties)

E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

θ p = deg ε n = με ε t = με γ nt = μrad

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

Analyse af skrå bjælke som UPE200

τηλ:


3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Second Order Partial Differential Equations

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Chapter 2. Stress, Principal Stresses, Strain Energy

1 String with massive end-points

Το σχέδιο της μέσης τομής πλοίου

MasterSeries MasterPort Lite Sample Output

Μηχανική ανάλυση με χρήση θεωρίας επαφής: Συναρμογή σύσφιξης και εξόλκευση πείρου

Kul Finite element method I, Exercise 07/2016

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

Multilayer Ceramic Chip Capacitors

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Multilayer Ceramic Chip Capacitors

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Aerodynamics & Aeroelasticity: Beam Theory

CONSULTING Engineering Calculation Sheet

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017

Numerical Analysis FMN011

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part :

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Rectangular Polar Parametric

1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

Γεωργιουδάκης Εμμανουήλ

Μηχανική ανάλυση µε χρήση θεωρίας επαφής: Συναρµογή σύσφιξης και εξόλκευση πείρου

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

Thin Film Chip Resistors

Reminders: linear functions

Section 7.6 Double and Half Angle Formulas

Section 8.3 Trigonometric Equations

5.0 DESIGN CALCULATIONS

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

TMA4115 Matematikk 3

Spherical Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Forced Pendulum Numerical approach

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ. 6o Mάθημα: 2Δ Έλασμα

COMPOSITE SLABS DESIGN CONTENTS

Tridiagonal matrices. Gérard MEURANT. October, 2008

D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL

CORDIC Background (2A)

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 9.2 Polar Equations and Graphs

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. Ανάπτυξη Προγράμματος Ανάλυσης Επίπεδων Δικτυωμάτων

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation


Surface Mount Multilayer Chip Capacitors for Commodity Solutions

MasterSeries MasterPort Plus Sample Output

Srednicki Chapter 55

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

Μηχανικές ιδιότητες συνθέτων υλικών: διάτμηση. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

PARTIAL NOTES for 6.1 Trigonometric Identities

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά

Kul Finite element method I, Exercise 08/2016

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Linearized Lifting Surface Theory Thin-Wing Theory

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Transcript:

TUBES

Tube : beam model : analytical Tube = simply supported homogeneous & isotropic beam Load = point load (man) & distributed load (wind) z a L I x = 1 [ BH 3 bh 3] ; I z = 1 [ HB 3 hb 3] 12 12 F y x z b, B q h, H 0 < y a : u z (y) = F [ (L a)y 3 a(2l a)(l a)y ] 6EI x L a y < L : u z (y) = F [ (L a)y 3 a(2l a)(l a)y L(y a) 3] 6EI x L 0 y < L : u x (y) = q [ 1 12EI 2 y4 + Ly 3 1 2 L3 y ] z () 2 / 59

Tube : beam model : deformation and stress L = 10 [m] ; B = 1 [m] ; H = 2 [m] ; D = 0.01 [m] E = 20 GPa ; a = 0.75L ; F = 5000 [N] ; q = 500 H [N/m] 0 x 10 4 1 2 disp [m] 3 4 5 6 0 2 4 6 8 10 y [m] F q σ x,max = 0.29 [MPa] ; σ z,max = 0.56 [MPa] () 3 / 59

Tube : beam model in MARC/Mentat element 52 point load & global load 0 x 10 4 1 2 disp [m] 3 4 5 6 0 2 4 6 8 10 y [m] () 4 / 59

Tube : shell model Inc: 0 Time: 0.000e+00 Y job1 Z X 1 () 5 / 59

Tube : shell model Tube = simply supported homogeneous & isotropic shell Load = point loads on top & face loads (wind) Inc: 0 Time: 0.000e+00 4.848e-03 3.223e-03 1.598e-03-2.724e-05-1.652e-03-3.277e-03-4.902e-03-6.527e-03-8.152e-03-9.777e-03-1.140e-02 Y job1 Displacement Y Z X 1 () 6 / 59

Tube : shell model vs beam model disp [m] 0.01 0 0.01 0.02 0.03 0.04 0.05 disp [m] 0 x 10 4 1 2 3 4 0.06 0.07 0.08 0 2 4 6 8 10 y [m] 5 6 0 2 4 6 8 10 y [m] σ x,max 15.5 [MPa] ; σ z,max 2.5 [MPa] () 7 / 59

Tube : buckling Inc: 0:1 Time: 0.000e+00 Fac: 2.353e+00 Y lcase1 Z X 1 () 8 / 59

LINEAR PLATE BENDING AND LAMINATES

Linear plate bending () 10 / 59

Geometry the mid-plane is planar in the undeformed state, the mid-plane coincides with the global coordinate plane z = 0, the thickness h is uniform. z y x s θ h n r () 11 / 59

External loads z p x θ r y s f z (s) m b (s) s f s (s) m w (s) n f n (s) s x (x, y), s y (x, y) or s r (r, θ), s t (r, θ) p(x, y) or p(r, θ) f n (s), f s (s), f z (s) m b (s), m w (s) () 12 / 59

Displacements z θ y θ θ x T P P z S R z y x u Q v w Q u x = u z sin(θ x )cos(θ y ) u y = v z cos(θ x )sin(θ y ) u z = w + z cos(θ) z () 13 / 59

Simplifications No out-of-plane shear Kirchhoff hypotheses straight lines, perp. to mid-plane remain straight straight lines, perp. to mid-plane remain perp. to mid-plane Small rotation Constant thickness : z = z z φ x P Q z z P Q u x (x, y, z) = u(x, y) zw,x φ x u y (x, y, z) = v(x, y) zw,y u z (x, y, z) = w(x, y) + η(x, y)z 2 x () 14 / 59

Strains and curvatures ε xx = u x,x = u,x zw,xx = ε xx0 zκ xx ε yy = u y,y = v,y zw,yy = ε yy0 zκ yy γ xy = u x,y + u y,x = u,y + v,x 2zw,xy = γ xy0 zκ xy ε = ε 0 zκ z y ε xx0 ε xy0 ε xy0 ε yy0 x κ xx κ yy κ xy κ xy () 15 / 59

Stresses z plane stress state σ zz = σ xz = σ yx = 0 x y σ xx σ yx σ xy σ yy Linear elastic material behaviour ε xx ε yy = 1 1 ν 0 ν 1 0 E γ xy 0 0 2(1 + ν) σ xx σ yy σ xy = E 1 ν 2 σ xx σ yy 1 ν 0 ν 1 0 1 0 0 2 (1 ν) σ xy ε xx ε yy γ xy ; ε zz = ν E (σ xx + σ yy ) short notation : ε = Sσ σ = S 1 ε = Cε = C(ε 0 zκ ) () 16 / 59

Cross-sectional forces and moments Ñ = M = D x = N xx N yy N xy M xx M yy M xy h/2 h/2 = h/2 = h/2 h/2 h/2 σ dz = h/2 σ zx dz ; D y = {C(ε 0 h/2 zκ )} dz = hcε 0 h/2 1 σ z dz = {C(ε 0 zκ )}z dz = h/2 12 h3 Cκ h/2 h/2 σ zy dz z y N xx N xy N xy D y N yy x D x M xx M yy M xy M xy () 17 / 59

Stiffness- and compliance matrix [ Ñ M ] = [ Ch 0 0 Ch 3 /12 ][ ε 0 κ ] [ ε 0 κ ] [ ][ S/h 0 Ñ = 0 12S/h 3 M ] () 18 / 59

Orthotropic plate 2 y α 1 x ε 11 ε 22 γ 12 σ 11 σ 22 σ 12 = E1 1 ν 21 E2 1 0 ν 12 E1 1 E2 1 0 0 0 G 1 1 = 1 ν 21 ν 12 12 σ 11 σ 22 σ 12 E 1 ν 21 E 1 0 ν 12 E 2 E 2 0 0 0 (1 ν 21 ν 12 )G 12 ε 11 ε 22 γ 12 () 19 / 59

Transformation c = cos(α) ; s = sin(α) ε xx ε yy = c2 s 2 cs s 2 c 2 cs 2cs 2cs c 2 s 2 γ xy σ xx σ yy σ xy = c2 s 2 2cs s 2 c 2 2cs cs cs c 2 s 2 ε 11 ε 22 σ 11 σ 22 σ 12 γ 12 = T ε 1 ε ε = T σ 1 σ σ ε = T 1 ε ε = T 1 ε S σ = T 1 ε S T σ = S σ σ = T σ 1 σ σ = T 1 σ C ε = T 1 σ C T ε = C ε ε () 20 / 59

Laminates () 21 / 59

Laminates z k 1 z k y x () 21 / 59

Ply strains z k 1 z k y 2 y x x α 1 strains in ply k with ε = ε 0 k(z) zκ T ε = k ε (z) = T ε,k ε k(z) s 2 c 2 cs c2 s 2 cs 2cs 2cs c 2 s 2 () 22 / 59

Ply stresses Constitutive relation in material coordinate system for ply k k σ = C k ε k σ k = T 1 σ,k C k T ε,k ε k = C k ε k = C k (ε 0 zκ ) transformation matrices T σ = c2 s 2 2cs s 2 c 2 2cs ; T 1 cs cs c 2 s 2 σ = c2 s 2 2cs s 2 c 2 2cs cs cs c 2 s 2 z k 1 z k y x () 23 / 59

ABD-matrix z k 1 z k y x zk Ñ k = σ k dz = (z k z k 1 )C k ε 0 1 2 (z2 k z2 k 1 )C k κ = A k ε 0 + B k κ z k 1 zk k M = σ k z dz = 1 2 (z2 k z2 k 1 )C k ε 0 + 1 3 (z3 k z3 k 1 )C k κ = B k ε 0 + D k κ z k 1 summation over all plies Ñ = [ Ñ M n Ñ k = Aε 0 + B κ ] [ ] [ A B = ε 0 B D κ k=1 ] ; M = [ ε 0 κ n k = Bε 0 + M Dκ k=1 ] [ ] [ ] a b Ñ = b d M () 24 / 59

ABD-matrix A 11 A 12 A 13 B 11 B 12 B 13 A 22 A 23 B 12 B 22 B 23 A 33 B 13 B 23 B 33 D 12 D 13 D 11 D 22 D 23 D 33 () 25 / 59

Stacking cross-ply orthotropic plies material directions = global directions. A 13 = A 23 = 0 angle-ply orthotropic plies each ply material direction 1 is rotated over α o w.r.t. global direction x. regular angle-ply orthotropic plies subsequent plies have material direction 1 rotated alternatingly over α o and α o w.r.t. the global x-axis. even number of plies A 13 = A 23 = 0 symmetric symmetric stacking w.r.t. mid-plane B = 0 anti-symm. anti-symmetric stacking w.r.t. mid-plane D 13 = D 23 = 0 quasi-isotropic α k = k π n with k = 1,.., n (n = number of plies) () 26 / 59

Damage fibre rupture fibre buckling matrix cracking fibre-matrix de-adhesion interlaminar delamination : Inter Laminar Shear Stress (ILSS) ils xx = σ xxb σ xxt ; ils yy = σ yyb σ yyt ; ils xy = σ xyb σ xyt b = bottom of top layer ; t = top of bottom layer () 27 / 59

Random 4-ply laminate : Matlab LAM : IL4r.m ============================================================ Laminate build-up (lam) z- z+ ang El Et nutl Gl 2.000 3.000 90.000 150.000 30.000 0.300 10.000 1.000 2.000 45.000 100.000 25.000 0.200 20.000 0.000 1.000 0.000 110.000 21.000 0.300 15.000-1.000 0.000 30.000 90.000 17.000 0.200 10.000 ------------------------------------------------------------ Mechanical load (ld) [Nxx Nyy Nxy Mxx Myy Mxy] = [ 100.00 0.00 0.00 100.00 0.00 0.00 ] ------------------------------------------------------------ Stiffness matrix 2.57e+08 4.45e+07 4.15e+07-1.83e+05-3.98e+04-1.71e+04 4.45e+07 2.52e+08 2.83e+07-3.98e+04-4.62e+05-2.37e+04 4.15e+07 2.83e+07 7.55e+07-1.71e+04-2.37e+04-6.53e+04-1.83e+05-3.98e+04-1.71e+04 3.77e+02 9.80e+01 5.17e+01-3.98e+04-4.62e+05-2.37e+04 9.80e+01 1.11e+03 4.73e+01-1.71e+04-2.37e+04-6.53e+04 5.17e+01 4.73e+01 1.43e+02 ------------------------------------------------------------ Strains in the mid-plane (e0) [ exx eyy exy ] = [ 3.810e-04-1.079e-04-3.102e-04 ] Curvatures of the mid-plane (kr) [ kxx kyy kxy ] = [ 4.784e-01-6.892e-02-2.637e-01 ] ============================================================ () 28 / 59

w Random 4-ply laminate : results 3 2 xx yy xy 3 2 11 22 33 z [mm] 1 z [mm] 1 0 0 1 4 2 0 2 4 6 σ [Pa] x 10 7 1 4 2 0 2 4 6 σ [Pa] x 10 7 0.5 0.4 3 2 xx yy xy 3 2 11 22 33 0.3 0.2 0.1 z [mm] 1 z [mm] 1 0 0.1 0 0 0.2 1 0.5 0 y 0.5 1 1 0.5 x 0 0.5 1 1 1.5 1 0.5 0 0.5 1 ε [ ] x 10 3 1 1.5 1 0.5 0 0.5 1 ε [ ] x 10 3 () 29 / 59

MSC MARC/MENTAT SHELL ELEMENTS

Cross-sectional forces and moments LAM x z y N xx N xy D x M xx N xy M yy D y N yy M xy M xy MSC.Marc/Mentat x z y N x N y N x M x N y M y M y M x () 31 / 59

Bending of a strip H W z y L F z x F x M y length L 1 m width W 0.1 m heigth H 0.05 m Young s modulus E 150 GPa Poisson s ratio ν 0.3 - axial end force F x 100 N lateral end force F z 100 N bending end moment M y 100 Nm () 32 / 59

Bending of a strip Inc: 0 Time: 0.000e+00 Inc: 0 Time: 0.000e+00 Inc: 0 Time: 0.000e+00 2.000e+02 1.900e+02 1.800e+02 1.700e+02 1.600e+02 1.500e+02 1.400e+02 1.300e+02 1.200e+02 1.100e+02-2.443e+06-2.693e+06-2.943e+06-3.192e+06-3.442e+06-3.692e+06-3.942e+06-4.192e+06-4.442e+06-4.692e+06 4.362e+06 3.494e+06 2.626e+06 1.759e+06 8.911e+05 2.343e+04-8.442e+05-1.712e+06-2.580e+06-3.447e+06 1.000e+02 Z -4.941e+06 Z -4.315e+06 Z job1 X Y job1 X Y job1 X Y Beam Bending Moment Local Y 4 Comp 11 of Stress Layer 1 4 Comp 11 of Stress 4 exact beam shell 3D axial end displacement u x 0.133 0.133 0.133 0.133 µm lateral end displacement u z 0.533 0.533 0.531 0.392 mm end rotation φ y 0.00096 0.00096 0.00097 - deg maximum axial stress σ 4.82-4.94 4.35 MPa stripbeam.proc ; stripplate.proc ; strip3dsol.proc () 33 / 59

Local/global stress components Inc: 0 Time: 0.000e+00-2.443e+06-2.693e+06-2.943e+06-3.192e+06-3.442e+06-3.692e+06-3.942e+06-4.192e+06-4.442e+06-4.692e+06-4.941e+06 Z job1 X Y Comp 11 of Stress Layer 1 4 Inc: 0 Time: 0.000e+00 Inc: 0 Time: 0.000e+00 1.067e+03-2.443e+06-4.932e+05-2.693e+06-9.874e+05-2.943e+06-1.482e+06-3.192e+06-1.976e+06-3.442e+06-2.470e+06-3.692e+06-2.964e+06-3.942e+06-3.459e+06-4.192e+06-3.953e+06-4.442e+06-4.447e+06-4.692e+06-4.941e+06 Z -4.941e+06 Z job1 X Y job1 X Y Comp 11 of Stress Layer 1 4 Comp 11 of Global Stress Layer 1 4 () 34 / 59

Orthotropic plate 2 = t y z = 3 = t α 1 = l x () 35 / 59

Orthotropic plate 2 = t y α z = 3 = t 1 = l x MSC E 1 E 11 E l E 2 E 22 E t E 3 E 33 E t G 12 G 12 G lt E t G 23 G 23 2(1 + ν tt ) G 31 G 31 G lt ν 12 ν 12 ν lt ν 23 ν 23 ν tt E 3 ν 31 ν 31 ν 13 = E t ν lt E 1 E l ν 21 ν 21 ν 32 ν 32 ν 13 ν 13 () 35 / 59

Orthotropic plate 2 = t y MSC α z = 3 = t y 1 = l x E 1 E 11 E l E 2 E 22 E t E 3 E 33 E t G 12 G 12 G lt E t G 23 G 23 2(1 + ν tt ) G 31 G 31 G lt ν 12 ν 12 ν lt ν 23 ν 23 ν tt F x M y z F x x E 3 ν 31 ν 31 ν 13 = E t ν lt E 1 E l ν 21 ν 21 ν 32 ν 32 M y ν 13 ν 13 () 36 / 59

Orthotropic plate : deformation and stress-11 in layer 1 Inc: 0 Time: 0.000e+00-3.710e+07-3.714e+07-3.718e+07-3.721e+07-3.725e+07-3.729e+07-3.733e+07-3.736e+07-3.740e+07-3.744e+07-3.748e+07 Z job1 Comp 11 of Stress Layer 1 X Y 4 plate20x20ortm1p4.proc ; ortm1p4.m () 37 / 59

Laminated plate : ply properties For each ply : (MAIN MENU) (PREPROCESSING) MATERIAL PROPERTIES ORIENTATION NEW EDGE12 ANGLE 0 MATERIAL PROPERTIES NEW (type) STANDARD STRUCTURAL ELASTO-PLASTIC ORTHOTROPIC E1 E2 E3 N12 N23 N31 G12 G23 G31 OK () 38 / 59

Laminated plate : stacking NEW (type) COMPOSITE (DATA CATAGORIES) GENERAL ABSOLUTE THICKNESS Toggle! APPEND material 1 THICKNESS 0.001 ANGLE 90 APPEND material 2 THICKNESS 0.001 ANGLE 45 etc OK (ELEMENTS) ADD (ALL) EXIST. RETURN () 39 / 59

Laminated plate : loading and results y M y F x z F x M y x Inc: 0 Time: 0.000e+00-2.404e+07-2.407e+07-2.409e+07-2.412e+07-2.414e+07-2.417e+07-2.419e+07-2.421e+07-2.424e+07-2.426e+07-2.429e+07 Z job1 Comp 11 of Stress Layer 1 X Y 4 plate20x20ortm4p4.proc ; ortm4p4.m () 40 / 59

RECTANGULAR TUBE

Tube : buckling : FEM K ũ = f e ũ = K 1 f e σ K g (σ) K : linear stiffness matrix ũ : nodal displacements σ : stresses : proportional with f e K g : geometric or stress stiffness matrix : proportional with σ K + K g : total stiffness matrix () 42 / 59

Tube : buckling : FEM K ũ = f e ũ = K 1 f e σ K g (σ) K : linear stiffness matrix ũ : nodal displacements σ : stresses : proportional with f e K g : geometric or stress stiffness matrix : proportional with σ K + K g : total stiffness matrix [ K + λ Kg (σ) ] α = 0 λ i α i λ i : buckling factors λ i f e : buckling forces α i : buckling modes minλ i : collaps load factor () 42 / 59

Tube : buckling : MARC/Mentat LOADCASE NEW BUCKLE RETURN JOB PROPERTIES select loadcase STRUCTURAL buckle OK RUN SUBMIT RESULTS OPEN DEFAULT NEXT () 43 / 59

Tube : deformation Inc: 0 Time: 0.000e+00 4.848e-03 3.223e-03 1.598e-03-2.724e-05-1.652e-03-3.277e-03-4.902e-03-6.527e-03-8.152e-03-9.777e-03-1.140e-02 Y job1 Displacement Y Z X 1 Buckling modes () 44 / 59

Inc: 0:1 Time: 0.000e+00 Fac: 2.353e+00 Y lcase1 Z X 1 () 45 / 59

Inc: 0:2 Time: 0.000e+00 Fac: 3.991e+00 Y lcase1 Z X 1 () 46 / 59

Inc: 0:3 Time: 0.000e+00 Fac: -4.675e+00 Y lcase1 Z X 1 () 47 / 59

Inc: 0:4 Time: 0.000e+00 Fac: 4.702e+00 Y lcase1 Z X 1 () 48 / 59

Tube : inside loads and wind load Inc: 0 Time: 0.000e+00 4.877e-03 3.467e-03 2.057e-03 6.473e-04-7.627e-04-2.173e-03-3.583e-03-4.993e-03-6.402e-03-7.812e-03-9.222e-03 Y job1 Displacement Y Z X 1 () 49 / 59

Tube : deformation disp [m] 0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 2 4 6 8 10 y [m] Buckling modes () 50 / 59

Inc: 0:1 Time: 0.000e+00 Fac: 2.698e+00 Y lcase1 Z X 1 () 51 / 59

Inc: 0:2 Time: 0.000e+00 Fac: -3.769e+00 Y lcase1 Z X 1 () 52 / 59

OPTIMIZATION

Optimization theory and procedures See slides Pascal Etman for background information. Use examples from download page as starting point Optimization with MSC.Marc/Mentat is also possible. This will not be discussed here. () 54 / 59

Cyclic analysis 4-ply laminate : laminate0 lam.m matrix lam with laminate stacking 3 z [mm] 2 1 0 xx yy xy z [mm] 2 1 0 11 22 12 2 1 1 w 1 0 1 2 3 1 0.5 0 y 0.5 1 1 0.5 x 0 0.5 1 z [mm] 2 5 0 5 7 σ [Pa] x 10 2 1 0 1 xx yy xy 2 0.01 0.005 0 0.005 0.01 ε [ ] z [mm] 2 2 0 2 4 6 7 σ [Pa] x 10 2 1 0 1 11 22 12 2 0.02 0.01 0 0.01 0.02 ε [ ] Two design variables : ply angles Cyclic variation of design variables in 2 nested loops : laminate0 cyc.m Plot results in 3-d plots and contour plot () 55 / 59

Surface plots x 10 7 6 5 Curvature 4 2 0 2 4 Stress xx 4 3 2 1 6 100 80 60 x2 40 20 0 100 80 60 x1 40 20 0 0 100 80 60 x2 40 20 0 100 80 60 x1 40 20 0 0.94 1.5 0.96 1 Stress 11/Tl 1 0.98 1 1.02 ilsxx1/ilss 1 0.5 0 0.5 1.04 100 80 60 x2 40 20 0 100 80 60 x1 40 20 0 1 100 80 60 x2 40 20 0 100 80 60 x1 40 20 0 () 56 / 59

Contour plot 90 80 70 60 50 x2 40 30 20 10 0 90 80 70 60 50 40 30 20 10 0 x1 () 57 / 59

Searching algorithms laminate0 opt.m ; laminate0 obj.m ; laminate0 con.m fmincon : output and results Max Line search Directional First-order Iter F-count f(x) constraint steplength derivative optimality Procedure 0 3 3.09808e+08 2.701 Infeasible start point 1 5 3.09808e+08 2.701 2-5.01e+09 5.51e+09 2 7 3.09808e+08 2.701 2-5.01e+09 5.51e+09 Hessian not updated 3 9 3.09808e+08 2.701 2-5.01e+09 5.51e+09 Hessian not updated 4 11 3.09808e+08 2.701 2-5.01e+09 5.51e+09 Hessian not updated 5 14 411620 0.4799 1-2.8e+08 1.85e+08 Hessian not updated 15 44 1.65446e+08 0 1-5.48e+08 3.52e+08 16 47 1.6372e-05 0 1 152 1.43e+07 Hessian modified twice 17 69 5.11047e-08-2.376e-06 1.91e-06 1.12 1.13 18 72 5.58125e-10-2.232e-06 1-7.75e-10 0.0455 Optimization terminated: magnitude of directional derivative in search direction less than 2*options.TolFun and maximum constraint violation is less than options.tolcon. No active inequalities. ========================================================== Initial ply angles : -60.0000 50.0000 Initial curvature : 1.76 Initial constraints : -0.8302-0.4656-0.6674-1.0000-1.0000 : 0.2993-0.8302-0.4656-0.6674 2.7009 Optimized ply angles : -0.0000 0.0000 Optimized curvature : 2.362e-09 Optimized constraints : -1.0000-1.0000-1.0000-1.0000-1.0000 : -1.0000-1.0000-1.0000-1.0000-0.9995 ========================================================== () 58 / 59

Searching algorithms laminate0 opt.m ; laminate0 obj.m ; laminate0 con.m patternsearch : output and results max Iter f-count f(x) constraint MeshSize Method 0 1 3.09808e+08 2.701 1 1 12 4.11222e+07 0 0.001 Increase penalty 2 112 18.7301 0 1e-05 Increase penalty 3 200 0.943907 0 1e-07 Increase penalty Maximum number of function evaluations exceeded: increase options.maxfunevals. ========================================================== Initial ply angles : -60.0000 50.0000 Initial curvature : 1.76 Initial constraints : -0.8302-0.4656-0.6674-1.0000-1.0000 : 0.2993-0.8302-0.4656-0.6674 2.7009 Optimized ply angles : -4.7072 23.5991 Optimized curvature : 9.715e-05 Optimized constraints : -0.5595-0.8952-0.6647-1.0000-1.0000 : -0.4970-0.5595-0.8952-0.6647-0.9989 ========================================================== () 59 / 59