orean Chem. Eng. Res. Vol. 43 o. 4 August 25. 467-473 Crude 로부터정제된 분리공정에관한연구 oo Çm * Ç ** k 75-7 mte * 336-395 k e 29- ** l v l o 35-343 re o q 72- (25 4o 8 r 25 5o 3 }ˆ) A Study on the Searation Process from Crude Jungho Cho GTaekhong ee* and Jongki Park** Deartment of Chemical Engineering DongYang University yochon-dong Poongki-eu Youngu yungbook 75-7 orea *Deartment of Chemical Engineering Hoseo University San 29- Sechul-ri Baebang-myun Asan Choongnam 336-795 orea **orea Institute of Energy Research 72- Jang-dong Yuseong-gu Daeeon 35-343 orea (Received 8 Aril 25; acceted 3 May 25) k h k k v ( ) tn f ˆ ˆ m x. rml ~ l ll o k r. l l l e v rl l r ll n m. 99.999Í r ll l e v r o l intalox wire guaze ˆ SCH-8S vˆ n m. Peng- Robinson ˆ re n l l e v ˆ m. l l r n r Asen Plus m n q k l. Abstract iquid hase nitrous oxide ( ) contains air carbon monoxide water carbon dioxide and x as main imurities. It is known to be very dangerous to obtain a very ure roduct by using solidification at low temerature. In this study a new method to obtain a high urity of roduct based on a continuous distillation rocess was introduced. For the modeling of the continuous distillation rocess to obtain a roduct having a urity over 99.999Í of stream Intalox wire gauze acking- o. SCH-8S gauze acking column was used. Peng-Robinson equation of state was used for the modeling of the continuous distillation rocess and refrigeration system. Comutational results erformed in this work showed a good agreement with Asen Plus simulation results. ey words: itrous xide Continuous Distillation Modeling Peng-Robinson Equation of State. d ~ ll t n n r[]m l n ~ r[2] q [2] e [2] k l[3]l n vr o n r Table l ˆ l. ~ q l l n. silicon oxide silicon oxinitridem v n v (CVD) r d n. To whom corresondence should be addressed. E-mail: hcho@henix.dyu.ac.kr d n o mm l s r ˆ o v l tn Table. The basic roerties of Proerties Value ormal boiling oint () 84.7 Critical temerature () 39.6 Critical ressure (kpa) 7244.7 Critical volume (m 3 /k-mole).974 Acentric factor.6 Heat of formation (kj/k-mole) 86.7 Free energy of formation (kj/k-mole) 377 467
468 sr ˆ s l q 99.999Í n rr d n er. lr v k (H 4 3 ) l (e ()) v m kv m k (e (2)). H 4 3 2 4 H H 3 3 r edš o ll r k e Peng-Robinson[4] ˆ re n m m l v k q o Twu [5] rk n alha form n m. -value q o k e q ll r qn l r r m. l e v ˆl o vr (Intalox wire gauze acking - o: SCH-8S gauze) n m sl m 278.5 o r ~ R25 n l 268.5 o m. om v er d sl 5 (99.999Í) r l r l. l l o r q r n l b r m rl eˆv kk. 2. m C m v r l k o ll e Peng-Robinson ˆ r e n m. () (2) Table 2. Coefficients in Twu's alha form Comonent C C 2 C 3.626.8345 -.9267 4.2324.2.8858 3.755.922.5764.993.6765 C.746.8722 2.2365.247.897 -.95.94 - Table 3. Binary interaction arameters in Peng-Robinson equation of state mixing rules Comonent i Comonent k i.478..48.256.3 C.9.622.6.9.5 C.2.7.35 C.3 C.3.99 energy arameterm size arameter k e ()l e (2)m n m l qn Table 3l ˆ l. RT a P --------- ----------------------------------------- v b vv ( b) bv ( b) e (5)l am b energy arameterm size arameter f e (6)-(8) ˆ. a a( T c T c ) α( T r ) 2 T at ( c T c ).45724 R2 ----------- c b.778 RT c --------- P c P c e (6)l a(t r ) alha form f m l v k q o Twu alha form m l v k e l o r m e (9) ˆ. 2( C at ( r ) 2 2C 2 T r )ex [ C ( T r )] C l e (9) alha form Table 2l ˆ l. l o43 o4 25 8k (5) (6) (7) (8) (9) a mix b mix i i x i b i x i x a i a i a i a ( k i ) () () (2) o e (2) van der Waals one fluid ˆ k i k e q q r qn ˆ. t i ež o e (3) n m. b lnφˆ i i ---z ( ) ln Pv ( b) 2 x l a ------------------ a li b l -------------------- ----------------- i --- v ln ( 2)b ----------------------------- b RT 2 2bRT a b v ( 2)b (3) k lˆ o l k e (4) e (5) n m.
H liquid H vaor i i liq x i H i H ex va x i H i H liq Crude rr rl l 469 (4) (5) o e (4) k~ ˆ lˆ f m s tlv m s l i lˆ. w k~ l k r t. e (5) ~ lˆ f k~ ˆ lˆ l v ql s l. Peng-Robinson ˆ re ˆ re k~ l r lv k r [6]. l l k o e (6) API method n m [7]. ρ act ρ 6 C act -------- C 6 (6) 3. o l e v r l r o r n Fig. l ˆ l. o s m k o s k Table 4l nk k. r v to v l v Fig. 2l ˆ l. Fig. 2l V S v S l l k side stream k side stream o F l o. y x z F V F l o. H h h F V F lˆ q n l l l. Fig. 2l ˆ m ˆrl ˆr v m ˆr ~ w m. k l e t e v ˆ l l n tn. k ˆ r o v m side stream s v e (7) e (8). l l : ρ act k~ er ρ 6 Fl k~ o 6 C act er l r q C 6 Fl r q o 6 ˆ. v V --------------- l s S v -----------------l (7) (8) Fig.. A schematic diagram of the continuous distillation column. orean Chem. Eng. Res. Vol. 43 o. 4 August 25
47 sr ˆ s Fig. 2. Heat and material balance around a general distillation stage. l l l k -value l l o o. Fig. 2l ˆ r v l l v v e (9) e. l v s l s v l f (9) l l ~q ~q. k l o k o. v e (2) (2) e. v l V (2) (2) o e (9)l e (7) (8) l r e (22) m. l S l ( S v V ) V -------------------------------------------- l ------------------------- l f (22) l k side stream o k s -value k r o k l l ˆ l i k o l l re. ˆ lr l r l r v l v ˆ n lr l l v e (23). h V H h V H S l h S l H F h F q (23) o e (23) ˆ l l re. l k ˆ r. ˆr v e eˆ q v r e ˆr r. to v l v Fig. 3l ˆ l. Fig. 3l ˆ o43 o4 25 8k Fig. 3. Heat and material balance around a artial condenser. l l v vm e n e (24). V --------------- l l V --------------- l o e (24) r e (25) l. l V -------------------------------------- l V (24) (25) e ˆr r l o o e (26). v o V --------------- l (26) l l l v l. q c H V H V h q c ( H h )V (27) (28) l l q c ˆr r v k eˆ n l. h ˆr r r k lˆ. q l s y k s x ˆl r q. q to v l v Fig. 4l ˆ l. q l l e v v e (29) e llv. V ---------------------------l l l (29) o e (29) r e (3) l l. l V --------------------------------------------l (3) l l H h h V lˆ. o e (22)l tlv V z f F S l S v
Crude rr rl l 47 l. a B (36) C b ----- a a i B A i b i ( i 2 3 4 ) b i C i a i ---- ( i 2 3 4 ) (37) (38) (39) Fig. 4. Heat and material balance around a kettle-tye reboiler. ˆ l l re l l tlv. v l l l re. B C A 2 B 2 C 2 A B C A B C A B l l l e. (3) (33) (34) (35) o e (3) Tridiagonal Thomas [8] n d l e. l e n r a b c n l k l tlv 2 l D D 2 D D A ( 234... ) (32) S ( S v ) l v V ----------------------------------------------------- -------------------------------------------- ( V S ( S V ) l v ------------------------------------------------------- -------------- ( S ( S V B l v ) -------------------------------------------- ( 234... -) S ( S v v ) V ------------------------------------------------------- -------------------------------------------------- ( V S ( S V v ) V ----------------------------------------------- ----------- ( V C -------------------------- ( 2 3 ) D f ( 2 3 ) D D c ----- a D c i A i c i i ------------------------ ( i 2 3 4 ) a i (4) (4) l k l tlv v. l c l c i b i l i (42) (43) ˆrl v v v l k o e tlv. V V F k S lk k k S vk (44) o e (44) e (23)l l r e (45)m o l e llv. (45) ˆrr o V m tlv ˆr v o V ˆ l o o e (24)l l r. l k o o l l l θ method[9] k v rn m. θ method l l k o tlv ˆr r o s r t. r θ e (46) seˆ r. (46) o e (46) e v θ ewton d v. o e (46) ~ e (47) l. k ( H h )V ( h H )V v F k S k S vk h S h S v k k k v F k S k S vk h F h F q V f( θ) k C C k k F z F S l z Sl S vsv --------------------------------------------------------------------------------- θ x ------------------------ V H F z F S l z Sl S v z Sv ---------------------------------------------------------------------------------------- θ V x ------------------------- V (47) orean Chem. Eng. Res. Vol. 43 o. 4 August 25
472 sr ˆ s ewton o e (48) v k v. θ k f ( θk ) ------------------------------------------------------------------------------------------------------------------------------------------ F z F S l z Sl S v z x Sv ------------------------ C V ----------------------------------------------------------------------------------------------------------------------------- θ x ------------------------ 2 V θ k (48) m v θ n l k o r. F z F S l z Sl S v z Sv ( V x V ) corr. ---------------------------------------------------------------------------------------- θ x ------------------------ V o43 o4 25 8k (49) (5) (5) o e (49)m e (5)l ˆr ˆr r o k. 4. y o Table 4m m k o s e 2 g ql m. nrk n l overhead reflux drum slm 278.5 l sr m v ˆ nrk 3874 kpa. v ˆ 3 rn m tl q l. o k ˆ r 3 t m s ms Ž v k r ~ R25 n m m 268.5 m. n l r ˆr 99.999Í r ( x ) corr. ( V x V ) corr. θ x ------------------------ V x V ( l ) corr. l ( V x V ) ( ) corr. ( x -- ---------------------------- ) corr. -------------------------------------- 2 ( V x V ) ( x ) Table 4. Feed stream information Comonent Mole 99.76 7.4 3.8.22 C. 4. 3 5. 3 Temerature () 298.5 Pressure (kpa) 6374 Flow rate (g/hr) 22 Fig. 5. Temerature rofiles vs. tay number. ll. o ˆrl 95Í m. ˆ ˆr m 28.25 m 28.65 v ˆ l m v k k. o q~ t. v ˆ r~ m Fig. 5l ˆ l. ˆ v l 5 sq m m q heat duty 3669 J/hrm 365 J/hr. 268.5 R25 o 2655 g/hr. l l r ql v ˆ t l l v v Table 5l ˆ l. Table 6 l l l ee r l v v n r Asen Plus n m m v v l l. 5. l l d ~ ll t n 99.999Í d v o r ql m. r o l l e v k r o n alha form Peng-Robinson ˆ re n Table 5. Heat and material balance around urification column Stream name Feed To roduct Bottom roduct Comonent Mole ercent 99.76 95.3283 99.999 7.4 3.44..8.2255..22 4.246. C. 4.92 3.. 3 2.7477 3 9.345 4 5. 3.956.9753 8 Temerature () 298.5 278.694 28.6227 Pressure (kpa) 6374 3825 3877 Flow rate (g/hr) 22.942 2.958 Enthaly (J/Hr) 25 2475 35873 Molecular weight 43.979 43.2267 44.3
Crude rr rl l 473 Table 6. Heat and material balance comarison between comutation modeling erformed in this work and modeling work using Asen Plus Stream name To roduct Bottom roduct Comonent This work Asen Plus This work Asen Plus 95.3283 95.3296 99.999 99.999.44.44..38 33.2255.2255..5 22 4.246 4.246. 9.94 26 C.92 3.9 3. 6.72 29 2.7477 3.4 3 9.345 4 9.78 4.956.956.9753 8. Temerature () 278.7 275.48 28.6227 278.8 Pressure (kpa) 3825 3825 3877 3877 Flow rate (g/hr).942.94 2.958 2.959 Molecular weight 43.2267 43.2267 44.3 44.288 m. l l e r l l v v n r Asen Plus n l v vm l l l. k R : gas constant [J/g-mole] T : absolute temerature [] P : ressure [kpa] T c : critical temerature [] P c : critical ressure [kpa] v : molar volume [m 3 /g-mole] a : energy arameter [kpa m 6 2 /g-mol 2 ] b : co-volume arameter [m 3 /g-mol] a(t c P c ) : energy arameter in Peng-Robinson equation at critical temerature [kpa m 6 2 /g-mol 2 ] α(t r ) : alha function C C 2 C 3 : coefficients in alha form a mix : mixture energy arameter [kpa m 6 2 /g-mol 2 ] b mix : mixture co-volume arameter [m 3 /g-mol] a i : energy arameter for comonent i [kpa m 6 2 /g-mol 2 ] b i : co-volume arameter for comonent i [m 3 /g-mol] a i : energy arameter between comonent i and [kpa m 6 2 /g-mol 2 ] x i x x l : mole fraction of comonent i and l k i : binary interaction arameter in van der Waals mixing rule φˆ i : fugacity coefficient of comonent i in a mixture Z : comressibility factor ρ : actual liquid density [m 3 act /g-mole] ρ : liquid density at 6 o F [m 3 6 /g-mole] C act : actual correction factor C 6 : correction factor at 6 o F : total molar flow rate feeding to the late F V S v S l : total vaor molar flow rate coming out of the late : total liquid molar flow rate coming out of the late : total vaor side draw flow rate coming of the late : total liquid side draw flow rate coming of the late x y z F : mole fraction contained in V and F resectively : -value of comonent at the late f : molar flow rate of comonent '' feeding to the late l : liquid molar flow rate of comonent coming out of the late v : vaor molar flow rate of comonent coming out of the late s : side stream molar flow rate of comonent coming out of the late h F : total molar enthaly feeding to the late h : total liquid molar enthaly coming out of the late : total vaor molar enthaly coming out of the late H q c h : overhead condenser heat duty : saturated liquid molar enthaly of overhead roduct y. Wrights A. J. History of Anesthesia Early Use of itrous xide Educational Synoses in Anesthesia and Critical Medical Care 3(6) -(996). 2. htt://www.absoluteastronomy.com/encycloedia/n/ni/nitrous_oxide. htm. 3. Sullivan I. and Benger J. itrous xide in Emergency Medicine Emerg. Med J. 2() 24-27(23). 4. Peng D. Y. and Robinson D. B. A ew Two-constants Equation of State for Fluids and Fluid Mixtures Ind. Chem. Fundam. 5() 59-64(976). 5. Twu C. H. Bluck D. Cunningham J. R. and Coon J. E. A Cubic Equation of State with a ew Alha Function and ew Mixing Rule Fluid Phase Equil. 69() 33-5(99). 6. Twu C. H. Coon J. E. and Cunningham J. R. A ew Cubic Equation of State Fluid Phase Equil. 75(4) 65-79(992). 7. Daubert T. E. Technical Data Book - Petroleum Refining 6th ed. American Petoleum Institute(997). 8. Jenson V. G. and Jeffreys G. V. Mathematical Methods in Chemical Engineering 2nd ed. United Publishing & Promotion Co. td(977). 9. Holland C. D. Fundamentals of Multicomonent Distillation st ed. McGraw-Hill Book Comany(98).. Yong P. S. Moon H. M. and Yi S. C. Exergy Analysis of Cryogenic Air Searation Process for Cenerating itrogen Journal of Industrial and Engineering Chemistry 8(6) 499-55 (22).. ee J. Y. Yeo Y.. Moon H. M. and Park D. S. Modeling and Simulation of Sulfur Hexafluoride (SF 6 ) Purification Process orean J. Chem. Eng. 7(2) 252-256(2). 2. Prausnitz J. M. ichitenthaler R.. and Azevedo E. G. Molecular Thermodynamics of Fluid Phase Equilibria 3rd ed. Prentice- Hall Inc.(998). 3. Walas S. M. Phase Equilibria in Chemical Engineering st ed. Butterworth Publishers.(985). orean Chem. Eng. Res. Vol. 43 o. 4 August 25