Bessel function for complex variable

Σχετικά έγγραφα
The Heisenberg Uncertainty Principle

1. For each of the following power series, find the interval of convergence and the radius of convergence:

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

α β

The Neutrix Product of the Distributions r. x λ

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

4.6 Autoregressive Moving Average Model ARMA(1,1)

Presentation of complex number in Cartesian and polar coordinate system

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

On Generating Relations of Some Triple. Hypergeometric Functions

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Solve the difference equation


w o = R 1 p. (1) R = p =. = 1

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

IIT JEE (2013) (Trigonomtery 1) Solutions

Statistical Inference I Locally most powerful tests

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework for 1/27 Due 2/5

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Matrices and Determinants

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Ψηφιακή Επεξεργασία Εικόνας

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

derivation of the Laplacian from rectangular to spherical coordinates

2 Composition. Invertible Mappings

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

A Note on Intuitionistic Fuzzy. Equivalence Relation

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Fractional Colorings and Zykov Products of graphs

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Homework 3 Solutions

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Section 8.3 Trigonometric Equations

B.A. (PROGRAMME) 1 YEAR

ST5224: Advanced Statistical Theory II

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Lecture 26: Circular domains

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Areas and Lengths in Polar Coordinates

Example Sheet 3 Solutions

Solutions to Exercise Sheet 5

C.S. 430 Assignment 6, Sample Solutions


Inertial Navigation Mechanization and Error Equations

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Solutions: Homework 3

Areas and Lengths in Polar Coordinates

SOLVING CUBICS AND QUARTICS BY RADICALS

Degenerate Perturbation Theory

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

1. Matrix Algebra and Linear Economic Models

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Srednicki Chapter 55

EE101: Resonance in RLC circuits

Math221: HW# 1 solutions

DERIVATION OF MILES EQUATION Revision D

Lecture 22: Coherent States

4. ELECTROCHEMISTRY - II

Inverse trigonometric functions & General Solution of Trigonometric Equations

Exercises to Statistics of Material Fatigue No. 5

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

B.A. (PROGRAMME) 1 YEAR

Reminders: linear functions

Tridiagonal matrices. Gérard MEURANT. October, 2008

The Simply Typed Lambda Calculus

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Derivation of Optical-Bloch Equations

A study on generalized absolute summability factors for a triangular matrix

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

F19MC2 Solutions 9 Complex Analysis

Finite Field Problems: Solutions

( ) 2 and compare to M.

EE512: Error Control Coding

Every set of first-order formulas is equivalent to an independent set

Homework 4.1 Solutions Math 5110/6830

CRASH COURSE IN PRECALCULUS

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Other Test Constructions: Likelihood Ratio & Bayes Tests

Higher Derivative Gravity Theories

Strain gauge and rosettes

Space-Time Symmetries

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Concrete Mathematics Exercises from 30 September 2016

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Second Order RLC Filters

Transcript:

Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by { ( J ν () P ν () cos ν + π { ( N ν () P ν () si ν + π H (±) ( π < arg < π) ) π ) π ν () J ν () ± in ν () = π e±i (ν+ ) π Pν () ± iq ν () ( Q ν () si ν + ( + Q ν () cos ν + ) } π ) } π { ( π < arg < π) ( π < arg < π) () (3) (4) where P ν () ad Q ν () are poyomias give by P ν () + Q ν () Note that J ν, N ν ad H (±) ν ( C ν,k () (5) ( + C ν,k () (6) C ν,m () (4ν )(4ν 3 ) (4ν (m ) ) m!(8) m, (m ) (7) Spherica Besse fuctio are so-caed Besse, Neuma ad Hake fuctios as the soutios of Eq.(). By repacig ν by + ad defiig f () π Z + (), the Eq.() ca be rewritte as + ( + ( + ) ) f () =. (8)

The spherica Besse j (), Neuma (), ad Hake h (±) () fuctios are give by π j () J + () = { P + () cos ( + ) π Q + () si ( + ) π } () h (±) () π N + () = { P + () si ( + ) π + Q + () cos ( + ) π } ( π < arg < π) π H(±) () = j + () ± i () = e±i (+) π P + () ± iq + () { ( π < arg < π) ( π < arg < π) (9) () () where P + () + ( C +,k () () Q + + () ( + C +,k () (3) C +,m () (( + ) )(( + ) 3 ) (( + ) (m ) ) m!(8) m, = ( + m)! m!() m ( m)!. ( m < + ) (4) Therefore we, fiay, obtai Spherica besse fuctio h (±) + e±i () = ( i) ( ±i ( + k)! k!( k)! (5) Note that the symmetric properties of h (±) () ca be obtaied from Eq.(5) as ( ) = ( ) + e i (+i) ( + e i ) = (+i) ( i k ( + k)! k!( ( k)! = ( ) h ( ) () (6) ( i ( + k)! k!( ( k)! = h( ) () (7) Aso Eqs.(9) ad () ca be rewritte as j () = () = i () + h ( ) () () h ( ) () (8) (9) Usig Eq.(6), the symmetric properties of j ad ca be obtaied as j ( ) = ( ) = i ( ) + h ( ) ( ) ( ) h ( ) ( ) = ( ) h ( ) () + () = ( ) j () () = ( ) h ( ) () () = ( ) + () () i

3 Asymtotic behaviour & Wroskia From Eq.(5), we ca get the asymtotic behabiour of the spherica Hake fuctio at the imit of as im h(±) e±i () = im ( i)+ (±i ( + k)! e±i k!( ( i)+ ( k)! π e±i = ( i). () Usig Eq.(), the asymtotic behaviour of j ad ca be aso obtaied as j () si π, (3) () cos π. (4) Now et us itroduce oe of the very importat quatity, the so-caed Wroskia. The Wroskia is defied by usig two kids of the ieary idepedet fuctios as W (f (), f () ) f () () () f () f () () () f () (5) Usig the fact f () obey + ( ) ( + ) f () =, (6) the derivative of the Wroskia is give as W (f (), f () ) = f () = f () () () f () f () () () f () ( ) ( + ) () f () () ( ) ( + ) f () () =. (7) +f () () The, we ca fid that the Wroskia is a costat for. Therefore, the Wroskia ca be cacuated by usig the asymtotic property of f () at the imit of as W (f (), f () ) = im f () () () f () f () () () f () = cost. (8) Wroskias for Besse fuctios Thus we ca obtai the foowig resuts. W (j, ) = im j () () () j () =, (9) W (j, h (±) ) = im W (, h (±) ) = im W (, h ( ) ) = im j () h(±) () h(±) () h( ) () h (±) () h (±) () h ( ) () j () = ±i (3) () () = (3) () h(+) () = i (3) 3

4 Recurrece formua Usig Eq.(5), we ca obtai h (±) + e±i () = ( i) + h (±) () = ( i) + e ±i h (±) () = ( i) + e ±i + h (±) h (±) () () = ( i) e ±i ( + k)! k!( k)! k ( + k)! k!( k)! (+k+) ( + k)! k!( k)! k ( + k)! k!( k)! ( ±i +( i) + e ±i k ( k)( + k)! k!( k)! = ( i) e ±i +( i) + e ±i + k ( + k + )! (k + )!( k )! + ( i) e ±i ( ±i k ( k)( + k)! k!( k)! ( + ±i = ( i) e ±i k ( + k)! ( k )! (k + )! + ( i) e ±i ( ±i = ( i) e ±i k ( + k )! + ( i) e ±i ( k )! k! ( ±i = ( i) e ±i k ( + k )! = + h (±) () (36) ( k )! k! ( ±i = ( i) e ±i (+k+) ( + k)! k!( k)! ( ±i ( i) + e ±i (+k+) ( + k + )! k!( k)! = ( i) e ±i + (+k+) ( + k + )! (k + )!( k )! + ( i) e ±i (+) ( ( ) ±i ( i) + e ±i (+k+) ( + k + )! ±i ( i) + e ±i (+) ( + )! k!( k)!! = ( i) e ±i + (+k+) ( + k + )! (k + )!( k)! +( i) e ±i (+) ( i) + e ±i ( ±i = ( i) e ±i (+k+) ( + k + )! k!( k + )! +( i) e ±i (+) + ( i) e ±i + = ( i) e ±i ) (+) ( + )!! ) + (+) ( + )! ( + )! (33) (34) (35) ( ±i (+k+) ( + k + )! k!( k + )! = h (±) + () (37) 4

Recurrece formuas We ca derive the foowig recurrece formuas usig Eqs.(36) ad (37) as + h (±) () = h (±) () + h(±) + () (38) ( + ) h(±) () = h (±) () ( + )h(±) + () (39) 5 Wave fuctio of free partice The Schrodiger equatio for the free partice ca be expressed as m χ(k, k; r) = E(k)χ(k, k; r), (4) i χ(k, k; r) = kχ(k, k; r), (4) where k is a uit vector which gives the directio of the mometum vector, i.e., k = k k. Aso E(k) = k m with compex k. χ(k, k; r) is kow to be χ(k, k; r) = e +ik r = i j (π) 3 (π) 3 (kr)y ( r)y ( k). (4) The compex cojugate of this fuctio is χ (k, k; r) = e ik r (π) 3 ( i) j (k r)y ( r)y ( k) = χ( k, k; r) = (π) 3 (π) 3 i j ( kr)y ( r)y ( k) χ(k, k; r) = (π) 3 i j ( kr)y ( r)y ( k) = (Usig j (k r) = j (kr), j ( kr) = ( ) j (kr) ad Y ( k) = ( ) Y ( k)) ( i) j (π) 3 (kr)y( r)y ( k) (43) (π) 3 (π) 3 (Note that k = k if k is rea. I this study, we cosider the compex k i most of the cases.) From the defiitio of the Deta fuctio, we get δ(r r ) Y ( r) π δ(k k ) dke +ik (r r ) = dre ) r +i(k k = Y ( k) π dkk j (kr)j (kr ) Y( r ) (44) drr j (kr)j (k r) Y( k ). (45) the orthogoa & competeess reatio for the spherica Besse fuctio Thus we obtai the orthogoa & competeess reatio for the spherica Besse fuctio as δ(r r ) = π δ(k k ) = π dk(kr) j (kr)j (kr ) (46) dr(kr) j (kr)j (k r) (47) 5

the orthogoa ad competeess reatio for χ I terms of the free partice wave fuctio χ, the orthogoa ad competeess reatio is give by drχ (k, k; r)χ(k, k ; r) = δ(k k ) (48) dkχ(k, k; r)χ (k, k; r ) = δ(r r ) (49) 6 Free partice Gree s fuctio The free partice Gree s fuctio is defied by E(k) + m G F (rr ; k) = δ(r r ). (5) It is very easy to prove G F (rr ; k) ca be represeted as G F (rr ; k) = m dq χ(q, q; r)χ (q, q; r ) q k. (5) I the expressio of the partia wave expasio, this ca be rewritte as G F (rr ; k) = m π = m π = m Y ( r)y ( r ) Y ( r)y ( r ) Y ( r)y ( r ) dq q j (qr)j (qr ) q k dq dq q k + q + k q k + q + k qj (qr)j (qr ) qj (qr < ) + h ( ). (5) If we suppose k = k e +iθ with < θ < π, the Eq.(5) ca be cacuated as Eq.(5) = m Y ( r)y ( r C + q k qj (qr < ) m Y ( r)y ( r C q + k qj (qr < )h ( ) = m i Y ( r)y ( r )kj (kr < ) (kr > ) m i Y ( r)y ( r )kj ( kr < )h ( ) ( kr > ) = m ik Y ( r)y ( r )j (kr < ) (kr > ) = m e +ik r r r r (53) where C + (C ) is the coutour itegra path o the upper (ower) regio of the compex mometum q pae (see Fig.). We cosider that (qr)(h ( ) (qr)) is coverged at the imit of q o the upper(ower) regio of the compex q-pae. 6

Figure : Cotour path C ± o the compex mometum q-pae. Therefore G F (rr ; k ) = m Y ( r)y ( r C + q + k qj (qr < ) m Y ( r)y ( r C q k qj (qr < )h ( ) i Y ( r)y ( r )k j ( k r < ) ( k r > ) + m i Y ( r)y ( r )k j (k r < )h ( ) (k r > ) = m = m ik Y ( r)y ( r )j (k r < )h ( ) (k r > ) = m e ik r r r r (54) 7