Constitutive Relations in Chiral Media

Σχετικά έγγραφα
6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Space-Time Symmetries

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Geodesic Equations for the Wormhole Metric

Note: Please use the actual date you accessed this material in your citation.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

3+1 Splitting of the Generalized Harmonic Equations

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering


Derivation of Optical-Bloch Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

High order interpolation function for surface contact problem

Tutorial problem set 6,

1 Lorentz transformation of the Maxwell equations

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Dark matter from Dark Energy-Baryonic Matter Couplings

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Symmetric Stress-Energy Tensor

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Lifting Entry (continued)

Second Order Partial Differential Equations

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Partial Differential Equations in Biology The boundary element method. March 26, 2013

The Jordan Form of Complex Tridiagonal Matrices

Physics 582, Problem Set 2 Solutions

Srednicki Chapter 55

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SPECIAL FUNCTIONS and POLYNOMIALS

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Homework 3 Solutions

For a wave characterized by the electric field

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Symmetry. March 31, 2013

Dirac Matrices and Lorentz Spinors

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Higher Derivative Gravity Theories

Eulerian Simulation of Large Deformations

MATSEC Intermediate Past Papers Index L. Bonello, A. Vella

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

EE512: Error Control Coding

Example 1: THE ELECTRIC DIPOLE

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

TUNING FORK TUNES. exploring new scanning probe applications

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

ADVANCED STRUCTURAL MECHANICS

CURVILINEAR COORDINATES

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Jordan Form of a Square Matrix

Quantum Electrodynamics

Reminders: linear functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Electronic Supplementary Information (ESI)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

D Alembert s Solution to the Wave Equation

ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων. Διαλέξεις 8-9. Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2014

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Calculating the propagation delay of coaxial cable

Α Ρ Ι Θ Μ Ο Σ : 6.913

Concrete Mathematics Exercises from 30 September 2016

Γe jβ 0 z Be jβz 0 < z < t t < z The associated magnetic fields are found using Maxwell s equation H = 1. e jβ 0 z = ˆx β 0

Relativistic particle dynamics and deformed symmetry

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Dynamics of cold molecules in external electromagnetic fields. Roman Krems University of British Columbia

A Short Introduction to Tensors

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Numerical Analysis FMN011

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

( ) 2 and compare to M.

Errata 18/05/2018. Chapter 1. Chapter 2

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Thirring Model. Brian Williams. April 13, 2010

14 Lesson 2: The Omega Verb - Present Tense

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

ANTENNAS and WAVE PROPAGATION. Solution Manual

Homework 8 Model Solution Section

Generating Set of the Complete Semigroups of Binary Relations

On the Galois Group of Linear Difference-Differential Equations

Hadronic Tau Decays at BaBar

the total number of electrons passing through the lamp.

Every set of first-order formulas is equivalent to an independent set

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Dirac Matrices and Lorentz Spinors

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Sampling Basics (1B) Young Won Lim 9/21/13

Transcript:

Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010

Optical Activity Polarization Rotation - Observed early 19 th century - Independent of wave-vector orientation - Independent of linear polarization Resolved though Biisotropic Constitutive Relations - Consistent with treatment of sub-wavelength chiral objects - Constrained by Covariance Requirements

Example of Chiral Object

Induced Dipole Moments Direct Dependencies p = 1 2 l ldlλ and m = l r 2 dl I

Induced Dipole Moments Direct Dependencies p = 1 2 Specific Case - Solenoid l ldlλ and m = l r 2 dl I p 1 2ẑ h hdh λ h = ẑnπr h hdh λ l m ı πr r I ı = (±)ẑnπr 2 h dh I l

Dipole Interdependence Inspection of Magnetic Dipole m z = (±)nπr 2 h dh I l

Dipole Interdependence Inspection of Magnetic Dipole m z = (±)nπr 2 h dh I l = (±)nπr 2 h [d(hi l) h I l h dh] = ( )nπr 2 l h h h I l l dh = (±)nπr 2 2nπr h hdh λ l t = (±)nπr 2 2 t (nπr h hdhλ l)

Dipole Interdependence Inspection of Magnetic Dipole m z = (±)nπr 2 h dh I l = (±)nπr 2 h [d(hi l) h I l h dh] = ( )nπr 2 l h h h I l l dh = (±)nπr 2 2nπr h hdh λ l t = (±)nπr 2 2 t (nπr h hdhλ l) Dipole Coupling m = (±)2nπr 2 t p harmonic case m = (±)2nπr 2 ıω p

Constitutive Relations Polarization Vectors p =γ pe E ẑ +γ pb B ẑ m =γ mb Ḃ ẑ +γ me Ė ẑ

Constitutive Relations Polarization Vectors p =γ pe E ẑ +γ pb B ẑ m =γ mb Ḃ ẑ +γ me Ė ẑ P =ǫ o {χ e E +χ eb B} M = 1 µ o {χ b B +χ be E}

Constitutive Relations Polarization Vectors p =γ pe E ẑ +γ pb B ẑ m =γ mb Ḃ ẑ +γ me Ė ẑ P =ǫ o {χ e E +χ eb B} M = 1 µ o {χ b B +χ be E} Example Cases D =ǫe +ξ db B H = 1 µ B +ξ hee } with ξ db =ξ he =ξ

Constitutive Relations Polarization Vectors p =γ pe E ẑ +γ pb B ẑ m =γ mb Ḃ ẑ +γ me Ė ẑ P =ǫ o {χ e E +χ eb B} M = 1 µ o {χ b B +χ be E} Example Cases D =ǫe +ξ db B H = 1 µ B +ξ hee } with ξ db =ξ he =ξ General Linear Form D =ǫe +αb H = 1 µ B +βe } with {α, β} unrelated

Maxwell s Wave Equation Source Free, Harmonic Maxwell Equations B = 0 E ıωb = 0 D = 0 H+ ıωd = 0

Maxwell s Wave Equation Source Free, Harmonic Maxwell Equations B = 0 E ıωb = 0 D = 0 H+ ıωd = 0 Use of Constitutive Equations ( 1 B +βe) = ıω(ǫe +αb) µ

Maxwell s Wave Equation Source Free, Harmonic Maxwell Equations B = 0 E ıωb = 0 D = 0 H+ ıωd = 0 Use of Constitutive Equations ( 1 B +βe) = ıω(ǫe +αb) µ Curl Wave Equation E = ıω B

Maxwell s Wave Equation Source Free, Harmonic Maxwell Equations B = 0 E ıωb = 0 D = 0 H+ ıωd = 0 Use of Constitutive Equations ( 1 B +βe) = ıω(ǫe +αb) µ Curl Wave Equation E = ıω B 2 E +κ 2 E +δ E = 0 κ 2 = ω2 c2, δ = ıωµ(α +β)

Maxwell Revisited Divergeance of D D = (ǫe +αb) E = 0

Maxwell Revisited Divergeance of D D = (ǫe +αb) E = 0 Curl of H H+ ıωd = ( 1 B +βe) + ıω(ǫe +αb) µ = 1 B+ ıωǫe + [β E+ ıωαb] µ B+ ıωµǫe = µ[α +β] E

Maxwell Revisited Divergeance of D Curl of H D = (ǫe +αb) E = 0 H+ ıωd = ( 1 B +βe) + ıω(ǫe +αb) µ = 1 B+ ıωǫe + [β E+ ıωαb] µ B+ ıωµǫe = µ[α +β] E Ambiguous Representations D =ǫe +αb D =ǫe H = 1 µ B αe H = 1 µ B for α = β

Four-Vector and Tensor Notation Invariance of Charge s := { ρ, J} A := { ϕ, A }

Four-Vector and Tensor Notation Invariance of Charge s := { ρ, J} A := { ϕ, A } Vacuum Field Tensor F µν = µ A ν ν A µ A ν = g νσ A σ

Four-Vector and Tensor Notation Invariance of Charge s := { ρ, J} A := { ϕ, A } Vacuum Field Tensor F µν = µ A ν ν A µ A ν = g νσ A σ Covariant Maxwell s Equations [σ F µν] = 0 and ν G µν = s µ

Field Tensor Elements Vacuum Field Tensor [F µν ] = 0 E x E y E z E x 0 B z B y E y B z 0 B x E z B y B x 0 Material Field Tensor [G µν ] = 0 D x D y D z D x 0 H z H y D y H z 0 H x D z H y H x 0

Field Tensor Elements Vacuum Field Tensor [F µν ] = 0 E x E y E z E x 0 B z B y E y B z 0 B x E z B y B x 0 Material Field Tensor [G µν ] = 0 D x D y D z D x 0 H z H y D y H z 0 H x D z H y H x 0 Covariant Constitutive Relation G σκ =χ σκµν F µν

Constitutive Tensor Relation General Linear Medium χ σκµν F 01 F 02 F 03 F 23 F 31 F 12 E x E y E z B x B y B z G 01 D x ǫ 11 ǫ 12 ǫ 13 α 11 α 12 α 13 G 02 D y ǫ 21 ǫ 22 ǫ 23 α 21 α 22 α 23 G 03 D z ǫ 31 ǫ 32 ǫ 33 α 31 α 32 α 33 G 23 H x β 11 β 12 β 13 ζ 11 ζ 12 ζ 13 G 31 H y β 21 β 22 β 23 ζ 21 ζ 22 ζ 23 G 12 H z β 31 β 32 β 33 ζ 31 ζ 32 ζ 33 Linear Biisotropic Medium χ σκµν F 01 F 02 F 03 F 23 F 31 F 12 E x E y E z B x B y B z G 01 D x ǫ 0 0 α 0 0 G 02 D y 0 ǫ 0 0 α 0 G 03 D z 0 0 ǫ 0 0 α G 23 H x β 0 0 ζ 0 0 G 31 H y 0 β 0 0 ζ 0 G 12 H z 0 0 β 0 0 ζ

Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ =χ σκµν F µν

Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ =χ σκµν F µν χ σκµν = χ κσµν = χ σκνµ

Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ =χ σκµν F µν χ σκµν = χ κσµν = χ σκνµ Lagrangian L = 1 8 χµνσκ F µν F σκ

Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ =χ σκµν F µν χ σκµν = χ κσµν = χ σκνµ Lagrangian L = 1 8 χµνσκ F µν F σκ Euler-Lagrange Derivitive uniform media L x λ ( A η / x λ ) = ( L ),λ = 0 A η,λ

Consequence of Lagrange Derivitive Computing the Lagrange Derivitive 4 L =χ µνσκ (F µνf σκ) A η,λ (A η,λ )

Consequence of Lagrange Derivitive Computing the Lagrange Derivitive 4 L =χ µνσκ (F µνf σκ) A η,λ (A η,λ ) =A [µ,ν] (χ µνηλ χ µνλη ) +A [σ,κ] (χ ηλσκ χ λησκ ) = F µν (χ µνηλ +χ ηλµν ) = F µν χ µνηλ + G ηλ

Consequence of Lagrange Derivitive Computing the Lagrange Derivitive 4 L =χ µνσκ (F µνf σκ) A η,λ (A η,λ ) =A [µ,ν] (χ µνηλ χ µνλη ) +A [σ,κ] (χ ηλσκ χ λησκ ) = F µν (χ µνηλ +χ ηλµν ) = F µν χ µνηλ + G ηλ ( L A η,λ ),λ = 0 F µν,λ χ µνηλ + G ηλ,λ = 0

General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν =±χ µνηλ

General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν =±χ µνηλ Sub-Matrix Symmetries ǫ ij =ǫ ji ζ kl =ζ lk α mn =±β nm

General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν =±χ µνηλ Sub-Matrix Symmetries ǫ ij =ǫ ji ζ kl =ζ lk α mn =±β nm Uniform Biisotropic Linear Media α =β = ıγ

General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν =±χ µνηλ Sub-Matrix Symmetries ǫ ij =ǫ ji ζ kl =ζ lk α mn =±β nm Uniform Biisotropic Linear Media α =β = ıγ This is the punch-line!

Concluding Remarks Chiral Coupling D =ǫe H = 1 µ B Coupling Coefficients D =ǫe +αb H = 1 µ B +βe α =β required for covariant theory Antisymmetric Biisotropic Media is A BooJum, You See!

Sources Texts 1 Jackson, J.D. : Classical Electrodynamics, Third Edition, 1999 2 Kritikos and Jaggard : Recent Advances in Electromagnetic Theory, 1990 3 Lakhtakia et al : Time-Harmonic Electromagnetic Fields in Chiral Media, 1989 4 Post, E. J. : Formal Structure of Electromagnetics, 1962 5 Shelkunoff, I.S. : Antennas: Theory and Practice, 1952 Papers 1 Jaggard et al : On Electromagnetic Waves in Chiral Media, 1978 2 Lakhtakia and Weiglhofer : Are Linear, Nonreciprocal, Biisotropic Media Forbidden?, 1994 3 Lakhtakia, A. : The Tellegen Medium is a A BooJum, You See, 1994 4 Tellegen, B. D. H., The gyrator, A New Electric Network Element, 1948