Supplementary materials Ultrafast Infrared Spectroscopy of Riboflavin: Dynamics, Electronic Structure, and Vibrational Mode Analysis Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf Diller Fachbereich Physik, TU Kaiserslautern, D-67663 Kaiserslautern, Germany 1 Max-Planck-Institut für medizinische Forschung, D-69120 Heidelberg, Germany
Figure S1 Transient absorption spectra of Riboflavin in DMSO solution (c = 0.5 mm, 1 mm pathlength). For the time resolved experiments a concentration of 13 mm and a pathlength of 200 µm was used.
Conformer no-hb, B3LYP/6-31G(d) S 0 Conformer HB, B3LYP/6-31G(d) S 0 Conformer no-hb, HF/6-31G(d) S 0 Conformer HB, HF/6-31G(d) S 0 Conformer no-hb, CIS/6-31G(d) S 1 Conformer HB, CIS/6-31G(d) S 1 Figure S2 Calculated IR spectra of riboflavin.
Table S1 Equilibrium inter-nuclear distances/å, in the isoalloxazine ring of a riboflavin molecule in two conformers HB and no-hb calculated by the B3LYP, HF and CIS methods with the 6-31G(d) basis set in the S o and S 1 electronic states. Distances S 0, B3LYP S 0, HF S 1, CIS HB no-hb HB no-hb HB no-hb N1-C2 1.371 1.386 1.366 1.376 1.378 1.390 C2-O2 1.229 1.217 1.198 1.190 1.201 1.192 C2-N3 1.404 1.417 1.390 1.398 1.370 1.378 N3-H 1.015 1.015 0.999 0.999 0.998 1.998 N3-C4 1.392 1.383 1.371 1.365 1.388 1.381 C4-O4 1.216 1.217 1.188 1.190 1.194 1.196 C4-C4a 1.499 1.499 1.496 1.496 1.466 1.465 C4a-N5 1.303 1.301 1.269 1.266 1.330 1.331 N5-C5a 1.367 1.369 1.367 1.371 1.327 1.323 C5a-C6 1.413 1.411 1.403 1.401 1.407 1.411 C6-C7 1.381 1.383 1.367 1.369 1.372 1.378 C7-CI 1.509 1.509 1.510 1.510 1.506 1.506 C7-C8 1.428 1.426 1.418 1.415 1.435 1.436 C8-CII 1.509 1.509 1.510 1.510 1.507 1.507 C8-C9 1.390 1.391 1.376 1.378 1.373 1.373 C9-C9a 1.406 1.407 1.400 1.400 1.405 1.405 C9a-C5a 1.425 1.422 1.396 1.394 1.463 1.461 C9a-N10 1.387 1.391 1.388 1.391 1.357 1.360 N10-C10a 1.376 1.383 1.349 1.357 1.396 1.399 C10a-C4a 1.452 1.460 1.459 1.467 1.420 1.423 C10a-N1 1.313 1.309 1.292 1.285 1.288 1.285 N10-C1 1.480 1.473 1.476 1.471 1.473 1.469 O2-H(O)rib 2.056-2.345-2.220 -
Table S2 Löwdin atomic charges/au, and dipole moments/d, in the isoalloxazine ring of a riboflavin molecule in two conformers HB and no-hb calculated by the B3LYP, HF and CIS methods with the 6-31G(d) basis set in the S o and S 1 electronic states. S 0, B3LYP S 0, HF S 1, CIS Atoms HB no-hb HB no-hb HB no-hb N1-0.256-0.245-0.339-0.312-0.258-0.237 C2 +0.182 +0.175 +0.275 +0.271 +0.270 +0.266 O2-0.306-0.270-0.360-0.329-0.359-0.324 N3-0.246-0.253-0.310-0.316-0.304-0.309 (N3)H +0.307 +0.305 +0.327 +0.326 +0.326 +0.322 C4 +0.156 +0.156 +0.240 +0.243 +0.233 +0.237 O4-0.246-0.257-0.299-0.308-0.315-0.326 C4a -0.019-0.021-0.037-0.037-0.058-0.064 N5-0.059-0.060-0.036-0.039-0.154-0.151 C5a +0.010 +0.005-0.016-0.020 +0.073 +0.071 C6-0.142-0.144-0.132-0.133-0.185-0.186 C7-0.009-0.012-0.032-0.035 +0.034 +0.025 C8 +0.028 +0.024 +0.033 +0.031 +0.004 +0.004 C9-0.190-0.200-0.209-0.216-0.207-0.211 C9a +0.059 +0.057 +0.093 +0.091 +0.103 +0.092 N10 +0.013 +0.002-0.058-0.071-0.065-0.067 C10a +0.095 +0.086 +0.176 +0.167 +0.153 +0.143 C1` -0.194-0.218-0.172-0.192-0.171-0.195 Dipole moment 5.59 8.91 5.71 8.89 6.59 10.19
Figure S3 Calculated dipole moments for the HB (top) and no-hb (bottom) conformer (see also Table S2).
Table S3. Intrinsic harmonic force constants/mdyn/å and intrinsic frequencies/cm -1 (indicated in brackets) in the isoalloxazine ring of a riboflavin molecule in two conformations HB and no-hb calculated by the B3LYP, HF and CIS methods with the 6-31G(d) basis set in the S o and S 1 electronic states. Distance* S 0, B3LYP S 0, HF S 1, CIS HB no-hb HB no-hb HB no-hb N1-C2 5.07 (1154) 4.67 (1108) 5.79 (1234) 5.60 (1213) 5.41 (1192) 5.11 (1159) C2-O2 10.88 (1641) 11.73 (1704) 13.78 (1847) 14.48 (1893) 13.40 (1822) 14.15 (1872) C2-N3 4.26 (1057) 3.88 (1010) 5.25 (1174) 4.99 (1145) 5.84 (1238) 5.58 (1210) N3-H 7.11 (3582) 7.12 (3584) 8.19 (3844) 8.19 (3845) 8.20 (3847) 8.09 (3821) N3-C4 4.67 (1108) 5.00 (1147) 5.88 (1242) 6.11 (1266) 5.26 (1176) 5.52 (1204) C4-O4 11.98 (1722) 11.87 (1714) 14.82 (1915) 14.71 (1908) 14.11 (1869) 14.03 (1864) C4-C4a 3.43 (985) 3.45 (988) 4.23 (1094) 4.24 (1095) 4.54 (1133) 4.58 (1139) C4a-N5 7.73 (1424) 7.90 (1441) 10.08 (1627) 10.37 (1650) 7.37 (1392) 7.30 (1384) N5-C5a 5.34 (1184) 5.30 (1180) 5.75 (1229) 5.74 (1228) 7.39 (1393) 7.54 (1407) C5a-C6 5.41 (1236) 5.45 (1242) 6.04 (1307) 6.10 (1313) 5.68 (1268) 5.59 (1247) C6-C7 6.40 (1345) 6.36 (1341) 7.25 (1432) 7.16 (1423) 6.51 (1357) 6.83 (1390) C7-CI 3.91 (1052) 3.91 (1052) 4.43 (1120) 4.43 (1120) 4.43 (1120) 4.45 (1122) C7-C8 4.81 (1167) 4.87 (1174) 5.33 (1228) 5.41 (1237) 5.02 (1192) 5.00 (1189) C8-CII 3.90 (1050) 3.89 (1050) 4.40 (1116) 4.40 (1116) 4.42 (1118) 4.45 (1123) C8-C9 6.06 (1310) 6.02 (1305) 6.85 (1392) 6.78 (1385) 7.00 (1407) 6.98 (1405) C9-C9a 5.43 (1239) 5.41 (1237) 5.85 (1286) 5.88 (1288) 5.60 (1259) 5.66 (1265) C9a-C5a 4.55 (1135) 4.64 (1146) 5.68 (1268) 5.73 (1273) 4.26 (1098) 4.28 (1100) C9a-N10 5.07 (1154) 4.98 (1144) 5.85 (1206) 5.47 (1198) 6.51 (1307) 6.40 (1296) N10-C10a 5.22 (1171) 5.01 (1148) 6.46 (1302) 6.22 (1278) 4.62 (1101) 4.57 (1095) C10a-C4a 3.93 (1054) 3.79 (1035) 4.39 (1115) 4.33 (1116) 4.90 (1178) 4.79 (1165) C10a-N1 7.45 (1399) 7.58 (1411) 8.70 (1511) 9.15 (1550) 8.91 (1529) 8.91 (1530) N10-C1 3.43 (950) 3.60 (972) 4.06 (1033) 4.18 (1047) 5.41 (1029) 4.14 (1043) * The set of internal coordinates was created by an automated procedure implemented in the PC GAMESS program.
Table S4. Ground state harmonic vibrational frequencies/cm -1 and IR intensities/d 2 amu -1 Å -2 of a riboflavin molecule in the HB and no-hb conformers computed by the B3LYP/6-31G(d) method. Frequency (IR intensity) Major components of the normal mode in internal coordinates (ν - bond stretching, δ angle bending, ρ torsion deformation) HB no-hb Isoalloxazine Ribityl 1815 (7.8) νc4o4 1812 (6.1) ν(c4o4, C2O2)in-phase 1804 (15.0) ν(c2o2, C4O4)out-of-phase 1760 (16.5) νc2o2, δhn3c 1681 (0.4) 1682 (0.4) ν(c6c7, C8C9, C5aC6, C9C9a, N5C4a) 1632 (21.3) 1635 (17.9) ν(n5c4a,c10an1, C8C9) 1591 (10.7) 1594 (10.3) ν(c7c8, C8C9, C5aC9a, N10C10a, C10aN1) 1573 (0.1) 1576 (0.1) ν(n5c4a, C10aN1) 1542 (0.1) δhch 1538 (0.3) 1540 (0.5) ν(c7c8, C5aN5), δ(hc I H, HC II H) δhch 1529 (0.1) 1527 (0.4) δ(hch, HCN) 1522 (1.3) 1523 (0.4) δ(hc I H, HC II H), ν(n5c4a, C9C9a) δ(hch, HCN) 1521 (0.4) 1521 (1.3) δ(hc I H, HC II H) ν(c6c5a, C9aN10) 1518 (0.2) 1517 (0.9) δ(hc I H, HC II H, HC9C), ν(c7c8, C6C5a, C9C9a) δ(hch, HCN) 1504 (0.0) 1506 (0.0) δ(hc I H, HC II H) 1501 (0.1) νcc, δ(hcc, HOC, HCO) 1501 (0.8) δ(hcc, HOC, HCO) 1489 (1.2) νcc, δ(hcc, HOC, HCO) 1479 (0.8) 1476 (0.7) ν(c7c6, C8C9, C4C4a, C9aN10, N5C4a) δ(hcc, HCN) 1462 (0.1) νcc, δ(hcc, HCH, HOC, HCO) 1457 (0.5) 1458 (0.0) νcc, δ(hcc, HCH, HOC, HCO) 1452 (0.1) 1451 (0.1) δ(hc I C7, HC II C8) 1440 (0.3) 1440 (0.0) δ(hc I C7, HC II C8) 1434 (0.0) δ(hcc, HOC, HCO) 1435 (1.9) 1428 (1.1) ν(c6c7, C4aC10a, C5aN5, N1C2) δ(hcn,hcc, HCH, HCO) 1418 (2.2) ν(c6c7, C8C9, C5aN5, C4aC10a, N1C2) δ(hcn, HCC, HOC, HCO) 1416 (0.5) δ(hcn, HCC, HOC, HCO) 1410 (1.5) δ(hcn, HCC, HOC, HCO) 1405 (0.0) 1411 (0.1) δhn3c, ν(n3c4, C2O2, C4C4a C2N3) 1409 (0.0) δ(hcn, HCC, HOC, HCO) 1400 (0.1) δ(hcc, HCO) 1393 (0.6) νc4c4a νcc, δ(hcc, HOC, HCO)
1389 (1.5) 1384 (0.6) ν(c6c7, C8C9, C4aC4, C2N3, N3C4, C4aC10a) 1385 (0.0) δ(hcc, HCO, HOC) 1380 (1.9) ν(n10c10a, C10aC4a, C9aC5a, C9C9a) δhcc 1375 (0.4) ν(n10c10a, C5aC6, C7C8, C8C9) δhcc 1374 (4.3) νn10c10a δ(hcc, HCN, HOC, HCO) 1371 (0.5) δ(hcc, HCN, HOC, HCO) 1355 (0.2) ν(c5ac9a, C9C9a, N10C10a, C4N3) δ(hc6c, HN3C) δ(hcc, HCO) 1346 (0.2) 1345 (0.2) ν(c6c5a, C7C8, C9C9a, C9aN10, C4N3) νcc, δ(hcc, HCN, HOC) 1334 (0.3) 1325 (0.0) δ(hcc, HCO, HOC) 1320 (0.0) 1322 (0.4) δ(hc6c, HC9C), ν(c9c9a, C5aN5) 1305 (0.6) 1303 (1.0) δ(hc6c, HC9C), ν(c7c I, C9aN10, N5C5a, N10C1 ) δhcn10 1299 (4.8) νn5c5a δ(hcc, HCN, HOC) 1296 (0.4) δ(hcc, HCN, HOC) 1280 (0.5) 1278 (0.2) δ(hcc, HCO, HOC) 1257 (2.2) 1268 (3.9) ν(c8c II, C9C9a, C4C4a, C4aC10a, N1C2, C2N3, N3C4) δhcc 1257 (0.5) νco, δ(hcc, HCO, HOC) 1247 (0.8) 1244 (2.1) ν(c7c I, C8C II, N1C2, N3C4), δ(hc6c, HC9C) 1233 (1.6) δ(hcc, HCO, HOC) 1220 (1.0) δ(hcc, HCO, HOC) 1200 (0.6) 1202 (0.7) ν(c9an10, C5aN5, N1C2, C2N3, N3C4), δ(hc6c, HN3C) 1182 (0.3) ν(cc, CO), δ(hcc, HCO, HOC) 1173 (1.0) 1172 (1.4) ν(c7c I, N10C1, N10C10a, C4C4a), δ(hc6c, HC I C7, HC II C8) 1156 (0.4) 1155 (0.9) ν(c7c I, C8C II ) νco, δ(hcc, HCN10) 1143 (0.65) 1142 (0.5) ν(cc, CO), δ(hcc, HCO, HOC) 1120 (0.5) 1121 (0.7) ν(co, CC) δ(hcc, CCC, HCO, HOC) 1102 (1.4) 1100 (3.2) ν(co, CC) 1094 (0.8) νco 1085 (0.8) νco 1084 (0.0) 1084 (0.2) δ(hc I C7, HC II C8), ρhccc in ring I νco 1065 (0.5) 1079 (0.3) ν(cc, CO)
Table S5. The S 1 excited state harmonic vibrational frequencies/cm -1 and IR intensities/d 2 amu -1 Å -2 computed by the CIS/6-31G(d) method for the riboflavin molecule in the two conformers HB and no-hb. Frequency (IR intensity) Major components of the normal mode in internal coordinates (ν - bond stretching, δ angle bending, ρ torsion deformation) HB no-hb Isoalloxazine Ribityl 1988 (22.1) νc2o2 1972 (13.8) νc4o4 1966 (15.6) νc4o4 1947 (27.9) νc2o2 1768 (12.0) 1770 (9.0) ν( C10aN1, C8C9, C6C7) 1749 (2.5) 1740 (3.8) ν(c10an1, C8C9) 1689 (4.5) 1688 (2.8) ν( C9aN10, C6C7, C5aC9a) 1672 (0.1) δhch 1659 (7.0) 1667 (3.0) ν(n5c5a, N5C4a, C5aC6) δhch 1659 (2.1) δhch 1657 (3.4) ν(c5an5, C5aC6, N5C4a) δhch 1652 (1.0) 1654 (1.5) δ(hc I H, HC II H), ν(c9c9a, C7C8) δ(hch, HCN) 1640 (0.8) 1642 (0.2) νcc, δ(hcc, HOC, HCO) 1634 (0.4) 1634 (0.4) δ(hc I H, HC II H) δhcc 1623 (0.5) δ(hc I H, HC II H) ν(n5c4a) 1623 (0.1) 1620 (1.4) δ(hc I H, HC II H), ν(c7c8, C9aC5a) 1619 (0.0) 1619 (0.0) δ(hc I H, HC II H) 1618 (0.6) νcc, δ(hcc, HOC, HCO) 1617 (1.2) δ(hc I H, HC II H) ν(c6c7, C7C8, C9aC5a, C9aN10) 1603 (1.3) ν(n5c4a, C4aC4) νcc, δ(hcc, HOC, HCO) 1600 (0.1) ν(cc,co), δ(hcc, HOC, HCO) 1592 (1.3) 1595 (1.1) ν(n5c4a, C9aN10) νcc, δ(hch, HCN, HOC, HCO) 1584 (0.4) ν(cc, CO), δhcc 1571 (0.4) 1572 (0.1) δ(hc I H, HC II H, HC I C7, HC II C8 ) 1571 (0.4) δ(hcc, HOC, HCO) 1566 (3.5) 1567 (0.9) δhn3c, ν(n10c10a, C4aC10a, N1C2) 1563 (0.2) δ(hc I H, HC II H, HC I C7, HC II C8, HN3C) δhcc 1560 (0.4) 1561 (0.0) δ(hc I H, HC II H, HC I C7, HC II C8, HN3C) δ(hcn, HCC) 1541 (0.4) δ(hcc, HOC, HCO) 1537 (2.7) ν(c5ac6, C6C7, C4aN5, C4aC10a, N1C2) 1535 (3.0) 1534 (0.2) δhn3c, ν(c4ac10a, N1C2, C6C5a, C5aN5, N5C4a, C9aN10) δ(hcc, HOC, HCO) 1533 (1.2) ν(c5ac6, C6C7, C5aN5, C4aN5, C4aC10a, N1C2)
1530 (2.3) 1531 (0.2) δ(hcc, HCO, HOC) 1523 (7.6) ν( N1C2, N2N3, N3C4, C4aC4, C4aC10a, C9aN10) 1517 (0.4) ν( C9aN10, C5aN5, C6C7, N3C4) δ(hcc, HCN) 1499 (0.6) 1487 (2.0) δ(hcc, HOC, HCO) 1492 (0.6) 1478 (0.6) δ(hcc, HCO, HOC) 1463 (0.4) 1462 (0.7) ν(c8c9, N10C10a) δ(hcc, HCO) 1456 (1.2) νn10c10a δ(hcc, HCO) 1434 (0.9) 1434 (0.8) ν(c9c9a, N5C5a, N10C1 ) δ(hcc, HOC, HCO) 1433 (0.0) δ(hcc, HOC, HCO) 1418 (0.4) 1411 (1.3) δ(hc6c, HC9C), ν(c8c9,c9c9a) δ(hcc, HOC, HCO) 1407 (1.7) ν(n10c10a, C10aC4a, C5aC6) νcc, δ(hcc, HOC, HCO) 1396 (2.1) 1391 (0.4) δ(hcc, HOC, HCO) 1386 (0.5) ν(c6c5a, C6C7, C9C9a, C9aC5a, C4N3, N3C2), δhn3c δ(hcc, HCO, HOC) 1380 (0.4) νcc, δ(hcc, HOC, HCO) 1370 (4.0) ν(c6c5a, C6C7, C9C9a, C9aC5a, C4N3, N3C2), δhn3c δ(hcc, HCO, HOC) 1362 (1.2) ν(n5c5a, N5C4a, N10C10a, C9aN10) δ(hcc, HOC) 1350 (2.8) ν(c6c7, C6C5a, C5aC9a, N10C10a), δ(hc6c, HC9C) δ(hcc, HCO, HOC) 1342 (3.0) ν(c4c4a, C4N3, C6C5a, C6C7, C8C II ) δ(hcc, HCO, HOC) 1343 (2.7) 1338 (1.4) ν( N1C2, C2N3, N3C4, C4C4a), δ(hc6c, HC9C) δ(hcc, HCO, HOC) 1336 (0.7) ν(c7c I, C8C II, C6C7) δ(hcc, HCO, HOC) 1320 (1.9) δ(hcc, HCO, HOC) 1304 (0.2) 1308 (0.2) ν(c7c I, C8C II, N3C4, C9aN10, N10C10a), δ(hc6c, HC9C) δhcc 1289 (0.2) ν(cc, CO), δ(hcc, HCN10) 1258 (1.1) 1260 (1.0) ν( C7C I, N10C1, N10C10a) νco, δ(hcc, HCN10) 1253 (0.3) 1255 (0.9) ν(cc, CO), δ(hcc, HCO, HOC) 1245 (0.8) ν(cc,co) 1235 (0.8) ν(c7c I, C8C II ) ν(cc,co), δ(hcc, HCO, HOC) 1229 (1.5) 1229 (0.8) ν(c7c I, C8C II ) ν(co, CC) δ(hcc, CCC, HCO, HOC) 1220 (4.3) ν( C7C I, C8C II ) νco 1210 (0.7) ν(co, CC) 1199 (0.3) ν(co, CC), δ(hcn, OCC, HOC) 1191 (1.8) ν( C7C I, C8C II, N10C10a, C4N3) νco 1178 (0.1) ν( C7C I, C8C II, N10C9a) ν(co, CC) 1176 (1.3) ν(co, CC) 1166 (0.0) 1167 (0.0) δ(hc I C7, HC II C8) 1154 (0.3) 1156 (0.3) νcc 1147 (0.2) 1149 (0.2) δ(hc I C7, HC II C8)