Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

Σχετικά έγγραφα
Electronic Supplementary Information:

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

SUPPORTING INFORMATION TO. On Two Alizarin Polymorphs

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

of the methanol-dimethylamine complex

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting Information

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supplementary Information. Unveiling the complex vibronic structure of canonical adenine cation

Electronic Supplementary Information

Electronic Supplementary Information

SUPPLEMENTARY INFORMATION

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Butadiene as a Ligand in Open Sandwich Compounds

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Fused Bis-Benzothiadiazoles as Electron Acceptors

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supplementary Information for

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Supporting Information

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

ELECTRONIC SUPPORTING INFORMATION

Supporting Information

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Supplementary Information

Table of Contents 1 Supplementary Data MCD

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Electronic structure and spectroscopy of HBr and HBr +

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Supporting Information

Electronic Supplementary Information

IV. ANHANG 179. Anhang 178

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

vibrational Supplementary density of the Beyer-

Synthetic Control of Excited States in Cyclometalated Ir(III) Complexes using Ancillary Ligands

Supporting Information

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Electronic Supplementary Information (ESI)

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Solvent effects on structures and vibrations of zwitterionic dipeptides: L-diglycine and L-dialanine

Supporting Information

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Derivation of Optical-Bloch Equations

% inhibition vs. β lactamase. % inhibition. % inhibition vs. β lactamase (5µM) agg?

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Supporting Information

Supporting Information

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Electronic Supplementary Information (ESI)

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Far infrared spectra of solid state aliphatic amino acids in different protonation states

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supporting Information

Molecular structure, spectral analysis and hydrogen bonding analysis of ampicillin trihydrate: A combined DFT and AIM approach

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Electronic supplementary information for

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

Supporting Information

Supporting Information

Supporting Information

Supplementary Materials: Exploration of vanadate selenites Solid Phase Space, crystal structures and polymorphism

ΜΕΛΕΤΗ ΣΥΜΠΛΟΚΩΝ ΚΥΚΛΟΔΕΞΤΡΙΝΩΝ

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Supplementary Information

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Supporting Information. Experimental section

January 22, University of Minnesota, Minneapolis, Minnesota , USA

Τεχνικές παρασκευής ζεόλιθου ZSM-5 από τέφρα φλοιού ρυζιού με χρήση φούρνου μικροκυμάτων και τεχνικής sol-gel

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Supporting Information

J. Serb. Chem. Soc. 80 (3) S67 S73 (2015) Supplementary material

Oxazines: A New Class Of Second-Order Nonlinear Optical Switches Supporting Information

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Transcript:

Supplementary materials Ultrafast Infrared Spectroscopy of Riboflavin: Dynamics, Electronic Structure, and Vibrational Mode Analysis Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf Diller Fachbereich Physik, TU Kaiserslautern, D-67663 Kaiserslautern, Germany 1 Max-Planck-Institut für medizinische Forschung, D-69120 Heidelberg, Germany

Figure S1 Transient absorption spectra of Riboflavin in DMSO solution (c = 0.5 mm, 1 mm pathlength). For the time resolved experiments a concentration of 13 mm and a pathlength of 200 µm was used.

Conformer no-hb, B3LYP/6-31G(d) S 0 Conformer HB, B3LYP/6-31G(d) S 0 Conformer no-hb, HF/6-31G(d) S 0 Conformer HB, HF/6-31G(d) S 0 Conformer no-hb, CIS/6-31G(d) S 1 Conformer HB, CIS/6-31G(d) S 1 Figure S2 Calculated IR spectra of riboflavin.

Table S1 Equilibrium inter-nuclear distances/å, in the isoalloxazine ring of a riboflavin molecule in two conformers HB and no-hb calculated by the B3LYP, HF and CIS methods with the 6-31G(d) basis set in the S o and S 1 electronic states. Distances S 0, B3LYP S 0, HF S 1, CIS HB no-hb HB no-hb HB no-hb N1-C2 1.371 1.386 1.366 1.376 1.378 1.390 C2-O2 1.229 1.217 1.198 1.190 1.201 1.192 C2-N3 1.404 1.417 1.390 1.398 1.370 1.378 N3-H 1.015 1.015 0.999 0.999 0.998 1.998 N3-C4 1.392 1.383 1.371 1.365 1.388 1.381 C4-O4 1.216 1.217 1.188 1.190 1.194 1.196 C4-C4a 1.499 1.499 1.496 1.496 1.466 1.465 C4a-N5 1.303 1.301 1.269 1.266 1.330 1.331 N5-C5a 1.367 1.369 1.367 1.371 1.327 1.323 C5a-C6 1.413 1.411 1.403 1.401 1.407 1.411 C6-C7 1.381 1.383 1.367 1.369 1.372 1.378 C7-CI 1.509 1.509 1.510 1.510 1.506 1.506 C7-C8 1.428 1.426 1.418 1.415 1.435 1.436 C8-CII 1.509 1.509 1.510 1.510 1.507 1.507 C8-C9 1.390 1.391 1.376 1.378 1.373 1.373 C9-C9a 1.406 1.407 1.400 1.400 1.405 1.405 C9a-C5a 1.425 1.422 1.396 1.394 1.463 1.461 C9a-N10 1.387 1.391 1.388 1.391 1.357 1.360 N10-C10a 1.376 1.383 1.349 1.357 1.396 1.399 C10a-C4a 1.452 1.460 1.459 1.467 1.420 1.423 C10a-N1 1.313 1.309 1.292 1.285 1.288 1.285 N10-C1 1.480 1.473 1.476 1.471 1.473 1.469 O2-H(O)rib 2.056-2.345-2.220 -

Table S2 Löwdin atomic charges/au, and dipole moments/d, in the isoalloxazine ring of a riboflavin molecule in two conformers HB and no-hb calculated by the B3LYP, HF and CIS methods with the 6-31G(d) basis set in the S o and S 1 electronic states. S 0, B3LYP S 0, HF S 1, CIS Atoms HB no-hb HB no-hb HB no-hb N1-0.256-0.245-0.339-0.312-0.258-0.237 C2 +0.182 +0.175 +0.275 +0.271 +0.270 +0.266 O2-0.306-0.270-0.360-0.329-0.359-0.324 N3-0.246-0.253-0.310-0.316-0.304-0.309 (N3)H +0.307 +0.305 +0.327 +0.326 +0.326 +0.322 C4 +0.156 +0.156 +0.240 +0.243 +0.233 +0.237 O4-0.246-0.257-0.299-0.308-0.315-0.326 C4a -0.019-0.021-0.037-0.037-0.058-0.064 N5-0.059-0.060-0.036-0.039-0.154-0.151 C5a +0.010 +0.005-0.016-0.020 +0.073 +0.071 C6-0.142-0.144-0.132-0.133-0.185-0.186 C7-0.009-0.012-0.032-0.035 +0.034 +0.025 C8 +0.028 +0.024 +0.033 +0.031 +0.004 +0.004 C9-0.190-0.200-0.209-0.216-0.207-0.211 C9a +0.059 +0.057 +0.093 +0.091 +0.103 +0.092 N10 +0.013 +0.002-0.058-0.071-0.065-0.067 C10a +0.095 +0.086 +0.176 +0.167 +0.153 +0.143 C1` -0.194-0.218-0.172-0.192-0.171-0.195 Dipole moment 5.59 8.91 5.71 8.89 6.59 10.19

Figure S3 Calculated dipole moments for the HB (top) and no-hb (bottom) conformer (see also Table S2).

Table S3. Intrinsic harmonic force constants/mdyn/å and intrinsic frequencies/cm -1 (indicated in brackets) in the isoalloxazine ring of a riboflavin molecule in two conformations HB and no-hb calculated by the B3LYP, HF and CIS methods with the 6-31G(d) basis set in the S o and S 1 electronic states. Distance* S 0, B3LYP S 0, HF S 1, CIS HB no-hb HB no-hb HB no-hb N1-C2 5.07 (1154) 4.67 (1108) 5.79 (1234) 5.60 (1213) 5.41 (1192) 5.11 (1159) C2-O2 10.88 (1641) 11.73 (1704) 13.78 (1847) 14.48 (1893) 13.40 (1822) 14.15 (1872) C2-N3 4.26 (1057) 3.88 (1010) 5.25 (1174) 4.99 (1145) 5.84 (1238) 5.58 (1210) N3-H 7.11 (3582) 7.12 (3584) 8.19 (3844) 8.19 (3845) 8.20 (3847) 8.09 (3821) N3-C4 4.67 (1108) 5.00 (1147) 5.88 (1242) 6.11 (1266) 5.26 (1176) 5.52 (1204) C4-O4 11.98 (1722) 11.87 (1714) 14.82 (1915) 14.71 (1908) 14.11 (1869) 14.03 (1864) C4-C4a 3.43 (985) 3.45 (988) 4.23 (1094) 4.24 (1095) 4.54 (1133) 4.58 (1139) C4a-N5 7.73 (1424) 7.90 (1441) 10.08 (1627) 10.37 (1650) 7.37 (1392) 7.30 (1384) N5-C5a 5.34 (1184) 5.30 (1180) 5.75 (1229) 5.74 (1228) 7.39 (1393) 7.54 (1407) C5a-C6 5.41 (1236) 5.45 (1242) 6.04 (1307) 6.10 (1313) 5.68 (1268) 5.59 (1247) C6-C7 6.40 (1345) 6.36 (1341) 7.25 (1432) 7.16 (1423) 6.51 (1357) 6.83 (1390) C7-CI 3.91 (1052) 3.91 (1052) 4.43 (1120) 4.43 (1120) 4.43 (1120) 4.45 (1122) C7-C8 4.81 (1167) 4.87 (1174) 5.33 (1228) 5.41 (1237) 5.02 (1192) 5.00 (1189) C8-CII 3.90 (1050) 3.89 (1050) 4.40 (1116) 4.40 (1116) 4.42 (1118) 4.45 (1123) C8-C9 6.06 (1310) 6.02 (1305) 6.85 (1392) 6.78 (1385) 7.00 (1407) 6.98 (1405) C9-C9a 5.43 (1239) 5.41 (1237) 5.85 (1286) 5.88 (1288) 5.60 (1259) 5.66 (1265) C9a-C5a 4.55 (1135) 4.64 (1146) 5.68 (1268) 5.73 (1273) 4.26 (1098) 4.28 (1100) C9a-N10 5.07 (1154) 4.98 (1144) 5.85 (1206) 5.47 (1198) 6.51 (1307) 6.40 (1296) N10-C10a 5.22 (1171) 5.01 (1148) 6.46 (1302) 6.22 (1278) 4.62 (1101) 4.57 (1095) C10a-C4a 3.93 (1054) 3.79 (1035) 4.39 (1115) 4.33 (1116) 4.90 (1178) 4.79 (1165) C10a-N1 7.45 (1399) 7.58 (1411) 8.70 (1511) 9.15 (1550) 8.91 (1529) 8.91 (1530) N10-C1 3.43 (950) 3.60 (972) 4.06 (1033) 4.18 (1047) 5.41 (1029) 4.14 (1043) * The set of internal coordinates was created by an automated procedure implemented in the PC GAMESS program.

Table S4. Ground state harmonic vibrational frequencies/cm -1 and IR intensities/d 2 amu -1 Å -2 of a riboflavin molecule in the HB and no-hb conformers computed by the B3LYP/6-31G(d) method. Frequency (IR intensity) Major components of the normal mode in internal coordinates (ν - bond stretching, δ angle bending, ρ torsion deformation) HB no-hb Isoalloxazine Ribityl 1815 (7.8) νc4o4 1812 (6.1) ν(c4o4, C2O2)in-phase 1804 (15.0) ν(c2o2, C4O4)out-of-phase 1760 (16.5) νc2o2, δhn3c 1681 (0.4) 1682 (0.4) ν(c6c7, C8C9, C5aC6, C9C9a, N5C4a) 1632 (21.3) 1635 (17.9) ν(n5c4a,c10an1, C8C9) 1591 (10.7) 1594 (10.3) ν(c7c8, C8C9, C5aC9a, N10C10a, C10aN1) 1573 (0.1) 1576 (0.1) ν(n5c4a, C10aN1) 1542 (0.1) δhch 1538 (0.3) 1540 (0.5) ν(c7c8, C5aN5), δ(hc I H, HC II H) δhch 1529 (0.1) 1527 (0.4) δ(hch, HCN) 1522 (1.3) 1523 (0.4) δ(hc I H, HC II H), ν(n5c4a, C9C9a) δ(hch, HCN) 1521 (0.4) 1521 (1.3) δ(hc I H, HC II H) ν(c6c5a, C9aN10) 1518 (0.2) 1517 (0.9) δ(hc I H, HC II H, HC9C), ν(c7c8, C6C5a, C9C9a) δ(hch, HCN) 1504 (0.0) 1506 (0.0) δ(hc I H, HC II H) 1501 (0.1) νcc, δ(hcc, HOC, HCO) 1501 (0.8) δ(hcc, HOC, HCO) 1489 (1.2) νcc, δ(hcc, HOC, HCO) 1479 (0.8) 1476 (0.7) ν(c7c6, C8C9, C4C4a, C9aN10, N5C4a) δ(hcc, HCN) 1462 (0.1) νcc, δ(hcc, HCH, HOC, HCO) 1457 (0.5) 1458 (0.0) νcc, δ(hcc, HCH, HOC, HCO) 1452 (0.1) 1451 (0.1) δ(hc I C7, HC II C8) 1440 (0.3) 1440 (0.0) δ(hc I C7, HC II C8) 1434 (0.0) δ(hcc, HOC, HCO) 1435 (1.9) 1428 (1.1) ν(c6c7, C4aC10a, C5aN5, N1C2) δ(hcn,hcc, HCH, HCO) 1418 (2.2) ν(c6c7, C8C9, C5aN5, C4aC10a, N1C2) δ(hcn, HCC, HOC, HCO) 1416 (0.5) δ(hcn, HCC, HOC, HCO) 1410 (1.5) δ(hcn, HCC, HOC, HCO) 1405 (0.0) 1411 (0.1) δhn3c, ν(n3c4, C2O2, C4C4a C2N3) 1409 (0.0) δ(hcn, HCC, HOC, HCO) 1400 (0.1) δ(hcc, HCO) 1393 (0.6) νc4c4a νcc, δ(hcc, HOC, HCO)

1389 (1.5) 1384 (0.6) ν(c6c7, C8C9, C4aC4, C2N3, N3C4, C4aC10a) 1385 (0.0) δ(hcc, HCO, HOC) 1380 (1.9) ν(n10c10a, C10aC4a, C9aC5a, C9C9a) δhcc 1375 (0.4) ν(n10c10a, C5aC6, C7C8, C8C9) δhcc 1374 (4.3) νn10c10a δ(hcc, HCN, HOC, HCO) 1371 (0.5) δ(hcc, HCN, HOC, HCO) 1355 (0.2) ν(c5ac9a, C9C9a, N10C10a, C4N3) δ(hc6c, HN3C) δ(hcc, HCO) 1346 (0.2) 1345 (0.2) ν(c6c5a, C7C8, C9C9a, C9aN10, C4N3) νcc, δ(hcc, HCN, HOC) 1334 (0.3) 1325 (0.0) δ(hcc, HCO, HOC) 1320 (0.0) 1322 (0.4) δ(hc6c, HC9C), ν(c9c9a, C5aN5) 1305 (0.6) 1303 (1.0) δ(hc6c, HC9C), ν(c7c I, C9aN10, N5C5a, N10C1 ) δhcn10 1299 (4.8) νn5c5a δ(hcc, HCN, HOC) 1296 (0.4) δ(hcc, HCN, HOC) 1280 (0.5) 1278 (0.2) δ(hcc, HCO, HOC) 1257 (2.2) 1268 (3.9) ν(c8c II, C9C9a, C4C4a, C4aC10a, N1C2, C2N3, N3C4) δhcc 1257 (0.5) νco, δ(hcc, HCO, HOC) 1247 (0.8) 1244 (2.1) ν(c7c I, C8C II, N1C2, N3C4), δ(hc6c, HC9C) 1233 (1.6) δ(hcc, HCO, HOC) 1220 (1.0) δ(hcc, HCO, HOC) 1200 (0.6) 1202 (0.7) ν(c9an10, C5aN5, N1C2, C2N3, N3C4), δ(hc6c, HN3C) 1182 (0.3) ν(cc, CO), δ(hcc, HCO, HOC) 1173 (1.0) 1172 (1.4) ν(c7c I, N10C1, N10C10a, C4C4a), δ(hc6c, HC I C7, HC II C8) 1156 (0.4) 1155 (0.9) ν(c7c I, C8C II ) νco, δ(hcc, HCN10) 1143 (0.65) 1142 (0.5) ν(cc, CO), δ(hcc, HCO, HOC) 1120 (0.5) 1121 (0.7) ν(co, CC) δ(hcc, CCC, HCO, HOC) 1102 (1.4) 1100 (3.2) ν(co, CC) 1094 (0.8) νco 1085 (0.8) νco 1084 (0.0) 1084 (0.2) δ(hc I C7, HC II C8), ρhccc in ring I νco 1065 (0.5) 1079 (0.3) ν(cc, CO)

Table S5. The S 1 excited state harmonic vibrational frequencies/cm -1 and IR intensities/d 2 amu -1 Å -2 computed by the CIS/6-31G(d) method for the riboflavin molecule in the two conformers HB and no-hb. Frequency (IR intensity) Major components of the normal mode in internal coordinates (ν - bond stretching, δ angle bending, ρ torsion deformation) HB no-hb Isoalloxazine Ribityl 1988 (22.1) νc2o2 1972 (13.8) νc4o4 1966 (15.6) νc4o4 1947 (27.9) νc2o2 1768 (12.0) 1770 (9.0) ν( C10aN1, C8C9, C6C7) 1749 (2.5) 1740 (3.8) ν(c10an1, C8C9) 1689 (4.5) 1688 (2.8) ν( C9aN10, C6C7, C5aC9a) 1672 (0.1) δhch 1659 (7.0) 1667 (3.0) ν(n5c5a, N5C4a, C5aC6) δhch 1659 (2.1) δhch 1657 (3.4) ν(c5an5, C5aC6, N5C4a) δhch 1652 (1.0) 1654 (1.5) δ(hc I H, HC II H), ν(c9c9a, C7C8) δ(hch, HCN) 1640 (0.8) 1642 (0.2) νcc, δ(hcc, HOC, HCO) 1634 (0.4) 1634 (0.4) δ(hc I H, HC II H) δhcc 1623 (0.5) δ(hc I H, HC II H) ν(n5c4a) 1623 (0.1) 1620 (1.4) δ(hc I H, HC II H), ν(c7c8, C9aC5a) 1619 (0.0) 1619 (0.0) δ(hc I H, HC II H) 1618 (0.6) νcc, δ(hcc, HOC, HCO) 1617 (1.2) δ(hc I H, HC II H) ν(c6c7, C7C8, C9aC5a, C9aN10) 1603 (1.3) ν(n5c4a, C4aC4) νcc, δ(hcc, HOC, HCO) 1600 (0.1) ν(cc,co), δ(hcc, HOC, HCO) 1592 (1.3) 1595 (1.1) ν(n5c4a, C9aN10) νcc, δ(hch, HCN, HOC, HCO) 1584 (0.4) ν(cc, CO), δhcc 1571 (0.4) 1572 (0.1) δ(hc I H, HC II H, HC I C7, HC II C8 ) 1571 (0.4) δ(hcc, HOC, HCO) 1566 (3.5) 1567 (0.9) δhn3c, ν(n10c10a, C4aC10a, N1C2) 1563 (0.2) δ(hc I H, HC II H, HC I C7, HC II C8, HN3C) δhcc 1560 (0.4) 1561 (0.0) δ(hc I H, HC II H, HC I C7, HC II C8, HN3C) δ(hcn, HCC) 1541 (0.4) δ(hcc, HOC, HCO) 1537 (2.7) ν(c5ac6, C6C7, C4aN5, C4aC10a, N1C2) 1535 (3.0) 1534 (0.2) δhn3c, ν(c4ac10a, N1C2, C6C5a, C5aN5, N5C4a, C9aN10) δ(hcc, HOC, HCO) 1533 (1.2) ν(c5ac6, C6C7, C5aN5, C4aN5, C4aC10a, N1C2)

1530 (2.3) 1531 (0.2) δ(hcc, HCO, HOC) 1523 (7.6) ν( N1C2, N2N3, N3C4, C4aC4, C4aC10a, C9aN10) 1517 (0.4) ν( C9aN10, C5aN5, C6C7, N3C4) δ(hcc, HCN) 1499 (0.6) 1487 (2.0) δ(hcc, HOC, HCO) 1492 (0.6) 1478 (0.6) δ(hcc, HCO, HOC) 1463 (0.4) 1462 (0.7) ν(c8c9, N10C10a) δ(hcc, HCO) 1456 (1.2) νn10c10a δ(hcc, HCO) 1434 (0.9) 1434 (0.8) ν(c9c9a, N5C5a, N10C1 ) δ(hcc, HOC, HCO) 1433 (0.0) δ(hcc, HOC, HCO) 1418 (0.4) 1411 (1.3) δ(hc6c, HC9C), ν(c8c9,c9c9a) δ(hcc, HOC, HCO) 1407 (1.7) ν(n10c10a, C10aC4a, C5aC6) νcc, δ(hcc, HOC, HCO) 1396 (2.1) 1391 (0.4) δ(hcc, HOC, HCO) 1386 (0.5) ν(c6c5a, C6C7, C9C9a, C9aC5a, C4N3, N3C2), δhn3c δ(hcc, HCO, HOC) 1380 (0.4) νcc, δ(hcc, HOC, HCO) 1370 (4.0) ν(c6c5a, C6C7, C9C9a, C9aC5a, C4N3, N3C2), δhn3c δ(hcc, HCO, HOC) 1362 (1.2) ν(n5c5a, N5C4a, N10C10a, C9aN10) δ(hcc, HOC) 1350 (2.8) ν(c6c7, C6C5a, C5aC9a, N10C10a), δ(hc6c, HC9C) δ(hcc, HCO, HOC) 1342 (3.0) ν(c4c4a, C4N3, C6C5a, C6C7, C8C II ) δ(hcc, HCO, HOC) 1343 (2.7) 1338 (1.4) ν( N1C2, C2N3, N3C4, C4C4a), δ(hc6c, HC9C) δ(hcc, HCO, HOC) 1336 (0.7) ν(c7c I, C8C II, C6C7) δ(hcc, HCO, HOC) 1320 (1.9) δ(hcc, HCO, HOC) 1304 (0.2) 1308 (0.2) ν(c7c I, C8C II, N3C4, C9aN10, N10C10a), δ(hc6c, HC9C) δhcc 1289 (0.2) ν(cc, CO), δ(hcc, HCN10) 1258 (1.1) 1260 (1.0) ν( C7C I, N10C1, N10C10a) νco, δ(hcc, HCN10) 1253 (0.3) 1255 (0.9) ν(cc, CO), δ(hcc, HCO, HOC) 1245 (0.8) ν(cc,co) 1235 (0.8) ν(c7c I, C8C II ) ν(cc,co), δ(hcc, HCO, HOC) 1229 (1.5) 1229 (0.8) ν(c7c I, C8C II ) ν(co, CC) δ(hcc, CCC, HCO, HOC) 1220 (4.3) ν( C7C I, C8C II ) νco 1210 (0.7) ν(co, CC) 1199 (0.3) ν(co, CC), δ(hcn, OCC, HOC) 1191 (1.8) ν( C7C I, C8C II, N10C10a, C4N3) νco 1178 (0.1) ν( C7C I, C8C II, N10C9a) ν(co, CC) 1176 (1.3) ν(co, CC) 1166 (0.0) 1167 (0.0) δ(hc I C7, HC II C8) 1154 (0.3) 1156 (0.3) νcc 1147 (0.2) 1149 (0.2) δ(hc I C7, HC II C8)