Topics on QCD and Spin Physics

Σχετικά έγγραφα
Iterative Monte Carlo analysis of spin-dependent parton distributions

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

Solar Neutrinos: Fluxes

Three coupled amplitudes for the πη, K K and πη channels without data

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University

Probing Anomalous Top-Gluon Couplings at Colliders

Large β 0 corrections to the energy levels and wave function at N 3 LO

CE 530 Molecular Simulation

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

Neutrino emissivities in quark matter

Ó³ Ÿ , º 6(190) Ä1133. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Hadronic Tau Decays at BaBar

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data September Results from the ALICE experiment

Andreas Peters Regensburg Universtity

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων

Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1

On the Galois Group of Linear Difference-Differential Equations

Καλωσορίσατε στο CERN! Χρήστος Λαζαρίδης, CERN

Unified dispersive approach to real and virtual photon-photon scattering into two pions

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä É ³μ μ μé ³ ±μ²² μ Í LHCb ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô Í μ ²Ó μ μ ² μ É ²Ó ±μ μ Í É ŠÊ Î Éμ ± É ÉÊÉ, μé μ, μ Ö

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Theory predictions for the muon (g 2): Status and Perspectives

ΤΟ ΜΟΝΤΕΛΟ ΤΩΝ ΠΑΡΤΟΝΙΩΝ

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Fractional Colorings and Zykov Products of graphs

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

A Precision Measurement of the Neutral Pion ? :=+2/#"*1F,+/'2%21='>#1/'",%#+12/'",(?!+(4=/(%0"#%/3+%! G ='0+/'*+? 8!9&:;%1/%HI%J+K

TMA4115 Matematikk 3

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»


SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Questions on Particle Physics

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Ανελαστική Σκέδαση. Σπύρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική

ST5224: Advanced Statistical Theory II

ICTR 2017 Congress evaluation A. General assessment

Finite difference method for 2-D heat equation

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Computing Gradient. Hung-yi Lee 李宏毅

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Bayesian modeling of inseparable space-time variation in disease risk

Solutions to Exercise Sheet 5

Block Ciphers Modes. Ramki Thurimella

The Simply Typed Lambda Calculus

Μηχανική Μάθηση Hypothesis Testing

Statistical Inference I Locally most powerful tests

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

Durbin-Levinson recursive method

Other Test Constructions: Likelihood Ratio & Bayes Tests

International Workshop on Discovery Physics at the LHC

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 8: Παραγωγή σωματιδίων σε υψηλές ενέργειες + Πρότυπο αδρονίων με στατικά quarks

Example Sheet 3 Solutions

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Local Approximation with Kernels

Non-Gaussianity from Lifshitz Scalar

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

«Έντυπο και ψηφιακό βιβλίο στη σύγχρονη εποχή: τάσεις στην παγκόσμια βιομηχανία».

AdS black disk model for small-x DIS

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 24/4/2007

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΣΤΡΑΤΗΓΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Efectos de la cromodinámica cuántica en la física del bosón de Higgs Mazzitelli, Javier

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Reminders: linear functions

Homework 8 Model Solution Section

Higher Derivative Gravity Theories

Abstract Storage Devices

Αναζητώντας παράξενα σωµατίδια στο ALICE

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Lecture 21: Scattering and FGR

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Μελέτητωνιδιοτήτωντουκουάρκ bμεταπρώταδεδομένατου ATLAS

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

Transcript:

Topics on QCD and Spin Physics (fourth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS, JLAB June

QCD in a nuclear medium no much interest before 98: low energy scales freeze QCD dof European Muon Collaboration (EMC) incoherence hypothesis F A ZF p +(A Z)F n A F A F D incoherence? only nucleons? free nucleons?

why npdfs? precise knowledge required for PDFs: F n (x, Q ) F νfe (x, Q ) baseline for RHIC and LHC nuclear collisions what about FFs? hadronization in a different environment hadrons and jets as nuclear matter probes

ndis phenomenology Q q x A Q p A q <x A < x N Ax A x N = Q p N q <x N <A p N = p A /A JLAB E3-3 94.4448 A F A (x N,Q ) F D(x N,Q ) =? C / D.. Q =4.6 Q =4.5 Q =4.83 Q =5.33 Q =6.5 Fermi motion.9 EMC effect..3.7.9

anti- He/D Be/D EMC effect shadowing NMC E-39 C/D Al/D F A / F D Ca/D Fe/D Ag/D Au/D shadowing - - - - x N

.75 x=.5 x=.75 x=.5.75 x=.35 x=.45 x=.55 F Sn /F C.75 x=.7 x=.9 x=.5.75 x=.75 x=.5 x=.35.75 x=5 x=5 x=.7 Q

Explaining nuclear effects convolution models: rescaling models: recombination models: photon fluctuations: smeared nucleons, pions, etc. x-effective mass Q -effective scale partonic-like interactions vector mesons, q-qbar,... a non trivial superposition?

A factorized pqcd approach: dσ A = ˆσ i f A i df A i (x N,Q ) dlogq = α s π x N dy y f A j (y, Q )P ij ( xn y ) partonic standard nonperturbative universal dσ N = ˆσ i f N i can we split fi A? not probability densities can we fit fi A?

Global QCD fits for npdfs: fixed-q, models EKS98 LO HKN LO nds NLO convolutions f A i (x N,Q )=R i (x N,Q, A, Z) f i (x N,Q ) f A i (x, Q )= A x dy W A i (y, Q ) f i ( x y,q ) W A i (y, Q )=δ( y) W A i (y, Q )=δ( ɛ y) W A i (y, Q )=n i y α i ( y) β i no effects shift/rescaling enhancement/supression n i = λ n i + γ n i A δn i λ n i, γ n i, δ n i

Global QCD fits for npdfs: He/D Be/D NMC E-39. C/D Ca/D C/D Al/D F A / F D Ca/D Fe/D DY DY A / D.9. Fe/D W/D Ag/D Au/D.9 - - - - - x T - x N DIS rates to D Drell Yan rates to D

Global QCD fits for npdfs: Be/C Al/C.75 x=.5 x=.75 x=.5 NMC Ca/C Fe/C.75 x=.35 x=.45 x=.55 F A / F C F Sn /F C.75 x=.7 x=.9 x=.5 Pb/C Sn/C.75 x=.75 x=.5 x=.35 - - x N - -.75 x=5 x=5 x=.7 Q DIS rates to C scale dependence

Global QCD fits for npdfs:...5 3, 4.5 " v " s a v a g F Sn /F C.75.75.75 x=.5 x=.75 x=.5 x=.35 x=.45 x=.55 x=.7 x=.9 x=.5 # s -.5 a s.75 x=.75 x=.5 x=.35 # v A -. A.75 x=5 x=5 x=.7 Q scale dependence W v (y, A, Z) =A [ a v δ( ɛ v y)] + n v (ya) α v ( ya) β v

R A i (x, Q ) f A i (x, Q ) f i (x, Q ) Pb Pb Pb =.69 GeV ) (, Pb.4... Q =.69 GeV.4... = GeV ) (, Pb.4.... This work, EPS9NLO HKN7 (NLO) nds (NLO) -4-3 - - Q = GeV -4-3 - -.4... -4-3 - -.

nff Phenomenology: Early evidence: SLAC Phys.Rev.Lett. 4, 64 (978) EMC Z.Phys. C5, (99) E665 Phys.Rev. D5, 836 (994) Precise SIDIS: HERMES Nucl. Phys.B 78 (7); Precise : PHENIX Phys.Rev.Lett.98 73 (7). STAR Phys.Lett.B66, 8 (5) B637, 6 (6)

.4..4..4..9 3 4 5 6 7 8 9.9 3 4 5 6 7 8 9.9 3 4 5 6 7 8 9 nff Phenomenology: h R A. He Ne Kr Xe + Precise SIDIS: HERMES Nucl. Phys.B 78 (7); R(z, Q, ν) = ( ( N sidis N inc )A N sidis N inc )D... " (GeV) z K + p Q (GeV )

nff Phenomenology: PHENIX Phys.Rev.Lett.98 73 (7). 3 d 3 " E dp 3 [mb / GeV ] - - -3-4 -5-6.4. R " FF (nds) FF (EPS) PHENIX R " FF (nds) FF (EPS) E d 3 " dp 3 [mb / GeV ] STAR prel. (thesis) STAR Phys.Lett.B66, 8 (5) B637, 6 (6) O.Grebenyuk, Ph.D.Thesis, arxiv:99.36. 3 - - -3-4 5 5 d 3 " dp 3 + E [mb / GeV ] STAR 5 5 FF (nds) FF (EPS) d 3 " dp 3 - E [mb / GeV ] STAR.6.4 R " + R " - R H σ (A, ) A Ed 3 σ H /dp 3 da Ed 3 σ h /dp 3 pp. 4 6 8 4 6 8

.4..4..4..9 3 4 5 6 7 8 9.9 3 4 5 6 7 8 9.9 3 4 5 6 7 8 9 R A h. nff Phenomenology: PHENIX Phys.Rev.Lett.98 73 He (7). Kr. STAR Phys.Lett.B66, 8 (5) B637, 6 (6) O.Grebenyuk, Ph.D.Thesis, arxiv:99.36... Hermes Ne " (GeV) Xe + z K + p Q (GeV ) 3 d 3 " E dp 3 [mb / GeV ] - - -3-4 -5-6.4. 3 - - -3-4.6.4 R " FF (nds) FF (EPS) PHENIX 5 5 d 3 " dp 3 + E [mb / GeV ] STAR R " + R " FF (nds) FF (EPS) E d 3 " dp 3 [mb / GeV ] STAR prel. (thesis) 5 5 FF (nds) FF (EPS) d 3 " dp 3 - E [mb / GeV ] STAR R " - R H σ (A, ) A Ed 3 σ H /dp 3 da Ed 3 σ h /dp 3 pp. 4 6 8 4 6 8

Do nuclear effects factorize into FFs? nffs factorize all non-perturbative details? universal (interchangeable)? well defined framework beyond LO? constrained by data through global NLO fit? Why it could not work: factorization breaking non universality of hadronization modified energy scale dependence nuclear/high density higher twists

npdfs digression: EPS npdfs K.Eskola, H.Paukkunen, C.A.Salgado, JHEP94, 65 (9) designed to reproduce data 3 d 3 " E dp 3 [mb / GeV ] - - -3-4 -5-6.4. R " FF (nds) FF (EPS) PHENIX nds npdfs 5 5 D.de Florian R.S. Phys.Rev.D69 748 (4)

npdfs digression: EPS npdfs K.Eskola, H.Paukkunen, C.A.Salgado, JHEP94, 65 (9) designed to reproduce data (assuming no FF effects) unusual gluons extra normalizations: (?) STAR.9 PHENIX.3 R =.69 GeV ) (, Pb = GeV ) (, Pb.4.3....9.7.4....4.... y= PHENIX 7 STAR 6 + + - EPS9NLO 4 6 8 4 6 This work, EPS9NLO HKN7 (NLO) nds (NLO) -4-3 - - Q =.69 GeV Q = GeV -4-3 - - Pb Pb Pb.4....4... -4-3 - -.

Baseline: consistency nds npdfs D.de Florian, R.S. Phys.Rev.D69 748 (4) reference DSS FFs D.de Florian, R.S., M.Stratmann Phys.Rev.D75 4 (7) Phys.Rev.D76 7433 (7) - - -3 d 3 " E dp 3 [mb / GeV ] Hermes /N DIS dn " + /dzdq z - bin.5 -.35.35-5.5 z.35 " + " -.. -. -. pp reference -4-5 -6-7 -8-9 - THIS FIT KRE AKK scale uncertainty PHENIX data (preliminary) (data - theory)/theory - - THIS FIT KRE /N DIS dn " - /dzdq not fitted 5 - -.75 z - bin.5 -.35.35-5 5 - -.75.35 z 5 5 z z.75.. -. -... -. -... -. -. (data - theory)/theory sidis reference 5 5 Q Q

Baseline: consistency nds npdfs D.de Florian, R.S. Phys.Rev.D69 748 (4) reference DSS FFs D.de Florian, R.S., M.Stratmann Phys.Rev.D75 4 (7) Phys.Rev.D76 7433 (7) LHC-CMS - s=9 GeV s=.36 TeV CMS s=9 GeV CMS s=.36 TeV DSS NLO - 4 " =.3 " =. " =.9 " =.7 4 " =.3 " =. " =.9 " =.7 low pt CMS data " =.5 " =.5 " =.3 " =.3-3 " =. " =.9 " =. " =.9 " =.7 " =.7-4 scale uncertainties s=.36 TeV s=9 GeV " = " =.3 " =. " = " =.3 " =. CMS arxiv:.6.5.5 3 3.5 4 (GeV).5.5

Baseline: consistency nds npdfs D.de Florian, R.S. Phys.Rev.D69 748 (4) reference DSS FFs D.de Florian, R.S., M.Stratmann Phys.Rev.D75 4 (7) Phys.Rev.D76 7433 (7) LHC - ATLAS CMS s=9 GeV CMS s=.36 TeV - s=9 GeV DSS NLO - -3 4 " =.3 " =. " =.9 " =.7 4 " =.3 " =. " =.9 " =.7 low pt CMS data -4 " =.5 " =.5 " =.3 " =.3-5 " =. " =. -6 " =.9 " =.7 " =.9 " =.7 ATLAS arxiv:3.34-7 -8 " = " =.3 " =. " = " =.3 " =. CMS arxiv:.6.7.9 3 4 5 6 7 8 9 (GeV.5.5

Fitting nffs: convolution approach revisited D h i/a (z, Q )= z dy W i (y, A, Q ) D h i ( z y,q ) works for npdfs re-scalings/shifts modifies FFs natural language NLO W i (y, A, Q )=δ( y) W i (y, A, Q )=δ( ɛ y) W i (y, A, Q )=n i y α i ( y) β i no effects z-shift (energy loss) enhancement/suppression, re-shape weighting coefficients ɛ i,n i, α i, β i with a smooth A dependence n i = λ n i + γ n i A δn i with λ n i, γ n i, δ n i parameters to be fitted A very simple example for pion production:

Toy parameterization normalization & trend HERMES Nucl. Phys.B 78 (7); R A R He Ne Kr Xe.5.75.5.75.5.75.5.75 z z z z + - not flexible enough for x-dependence: gluons? R A R +.5...5...5...5.. x x x x - no conflict with standard evolution R A R +.5 5 7.5.5 5 7.5.5 5 7.5.5 5 7.5 Q [GeV ] Q [GeV ] Q [GeV ] Q [GeV ] - NLO with DS npdfs idem + toy nffs

Toy parameterization 3 d 3 " E dp 3 [mb / GeV ] - - -3-4 -5-6 nff * (nds) FF (nds) FF (EPS) PHENIX nff * (nds) FF (nds) FF (EPS) E d 3 " dp 3 [mb / GeV ] STAR prel. (thesis).4 R " R " pt dependence. quark/gluon interplay χ /d.o.f. - - -3-4 5 5 3 + d 3 " E dp 3 [mb / GeV ] nff * (nds) STAR 5 5 FF (nds) FF (EPS) - d 3 " E dp 3 [mb / GeV ] STAR.6.4 R " + R " -. 4 6 8 4 6 8

Refined parameterization quark fragmentation Wq H (y, A, Q ) = n q y α q ( y) β q + n qδ( ɛ q y) Wg H (y, A, Q ) = n g y α g ( y) β g + n gδ( ɛ g y) gluon fragmentation n i = λ n i + γ n i A δn i smooth A-dependence λ n λ n vanishing effects as A 4 parameters

χ = 396. 38 data points 4 parameters χ /d.o.f =.8 R A.5.75.5.75.5.75.5.75 z z z z R He Ne Kr Xe + - z and x dependence R A R + -.5...5...5...5.. x x x x no conflict with standard evolution R A R + -.5 5 7.5.5 5 7.5.5 5 7.5.5 5 7.5 Q [GeV ] Q [GeV ] Q [GeV ] Q [GeV ]

χ = 396. 38 data points 4 parameters χ /d.o.f =.8 3 d 3 " E dp 3 [mb / GeV ] - - -3-4 -5-6.4. R " nff (nds) nff * (nds) FF (nds) FF (EPS) PHENIX R " nff (nds) nff * (nds) FF (nds) FF (EPS) E d 3 " dp 3 [mb / GeV ] STAR prel. (thesis) good description: normalization pt dependence 3 - - -3-4 5 5 d 3 " dp 3 E [mb / GeV ] nff (nds) nff * (nds) + STAR 5 5 FF (nds) FF (EPS) d 3 " dp 3 - E [mb / GeV ] STAR.6.4 R " + R " -. 4 6 8 4 6 8

z-dependence R q = D q/a(z, Q ) D q/p (z, Q ) quarks mimic SIDIS.5 R q hic sunt dracones hic sunt dracones z D q/a He Ne Kr Xe Au. gluons do the opposite R g hic sunt dracones Q = GeV hic sunt dracones z D g/a.. z. z low z behavior not supported by data: artifact?

Next steps: pqcd factorizable scheme with effective npdf & nff (NLO) A, x, z, Q, ν and pt-dependence of DIS, SIDIS and dau data effective npdf & nff as tools for distilling data predictions based on npdf and nff can be tested/refined JLAB, RHIC, LHC and in the future at EIC constraints gluon and sea npdf nff final state hadrons jet physics in a nuclear environment factorization breaking in hot/dense nuclear medium