Gravitational Waves in any dimension

Σχετικά έγγραφα
Higher Derivative Gravity Theories

Dark matter from Dark Energy-Baryonic Matter Couplings

derivation of the Laplacian from rectangular to spherical coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

D Alembert s Solution to the Wave Equation

Note: Please use the actual date you accessed this material in your citation.

Matrices and Determinants

Reminders: linear functions

2 Composition. Invertible Mappings

SPECIAL FUNCTIONS and POLYNOMIALS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Space-Time Symmetries

Homework 8 Model Solution Section

Forced Pendulum Numerical approach

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

1 String with massive end-points

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Derivation of Optical-Bloch Equations

Eulerian Simulation of Large Deformations

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Srednicki Chapter 55

Lifting Entry (continued)

Parametrized Surfaces

The Simply Typed Lambda Calculus

What happens when two or more waves overlap in a certain region of space at the same time?

( ) 2 and compare to M.

Dr. D. Dinev, Department of Structural Mechanics, UACEG

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

3+1 Splitting of the Generalized Harmonic Equations

A Hierarchy of Theta Bodies for Polynomial Systems

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Geodesic Equations for the Wormhole Metric

Spherical Coordinates

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Second Order Partial Differential Equations

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Example Sheet 3 Solutions

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =

the total number of electrons passing through the lamp.

Trigonometric Formula Sheet

On the Galois Group of Linear Difference-Differential Equations

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Local Approximation with Kernels

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Monetary Policy Design in the Basic New Keynesian Model

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

CRASH COURSE IN PRECALCULUS

Dual null formulation (and its Quasi-Spherical version)

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Areas and Lengths in Polar Coordinates

EE512: Error Control Coding

Numerical Analysis FMN011

Hartree-Fock Theory. Solving electronic structure problem on computers

Higher spin gauge theories and their CFT duals

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Differential equations

Finite difference method for 2-D heat equation

Congruence Classes of Invertible Matrices of Order 3 over F 2

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

6.4 Superposition of Linear Plane Progressive Waves

Graded Refractive-Index

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

From the finite to the transfinite: Λµ-terms and streams

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Variational Wavefunction for the Helium Atom

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Fractional Colorings and Zykov Products of graphs

Areas and Lengths in Polar Coordinates

F-TF Sum and Difference angle

Constitutive Relations in Chiral Media

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Physics 582, Problem Set 2 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

( y) Partial Differential Equations

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Wavelet based matrix compression for boundary integral equations on complex geometries

Transcript:

How is an EFT for Gravitational Waves in any dimension like a bead on a string? with S. Hadar and B. Kol O.B., S.H. & B.K., Phys. Rev. D 88, 104037 (2013) O.B. & S.H., Phys. Rev. D 89, 045003 (2014) O.B., S.H. & B.K., IJMPA 29, 24, 30 (2014) University, Berlin 20 October 2014

Outline 1 Motivation 2 A bead on a string 3 Electromagnetism: the AD self-force in any dimension 4 Gravitational Waves in d dimensions 5 Conclusions

Everything should be made as simple as possible, but not simpler - Albert Einstein

Everything should be made as simple as possible, but not simpler - Albert Einstein Bead + string (elastic eld) Electric charge + EM eld 2-Body system + GR eld

Everything should be made as simple as possible, but not simpler - Albert Einstein Ŝ = = ( ) ˆQ G Q Bead + string (elastic eld) Electric charge + EM eld 2-Body system + GR eld

Everything should be made as simple as possible, but not simpler - Albert Einstein Ŝ = = ( ) ˆQ G Q, F = δŝ δ^x Bead + string (elastic eld) Electric charge + EM eld 2-Body system + GR eld

y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] x

y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), x

y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), φ = [ c 2 2 t 2 x] φ = δ(x) Q(t)/ T, c 2 = T/λ x

y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), φ = [ c 2 t 2 x] 2 φ = δ(x) Q(t)/ T, c 2 = T/λ { y(t x/c) x > 0 = φ(x, t) = y(t + x/c) x < 0 x

y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), φ = [ c 2 t 2 x] 2 φ = δ(x) Q(t)/ T, c 2 = T/λ { y(t x/c) x > 0 = φ(x, t) = y(t + x/c) x < 0 = Q = T [( x φ) 0 + ( x φ) 0 ] = 2 Z ẏ, Z = λt = mÿ = U ext + Q = F ext 2 Z ẏ x

y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), φ = [ c 2 t 2 x] 2 φ = δ(x) Q(t)/ T, c 2 = T/λ { y(t x/c) x > 0 = φ(x, t) = y(t + x/c) x < 0 = Q = T [( x φ) 0 + ( x φ) 0 ] = 2 Z ẏ, Z = λt = mÿ = U ext + Q = F ext 2 Z ẏ x

y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), φ = [ c 2 t 2 x] 2 φ = δ(x) Q(t)/ T, c 2 = T/λ { y(t x/c) x > 0 = φ(x, t) = y(t + x/c) x < 0 = Q = T [( x φ) 0 + ( x φ) 0 ] = 2 Z ẏ, Z = λt = mÿ = U ext + Q = F ext 2 Z ẏ x

Field doubling at the level of the Action An eective action for φ (kinetic term & source term): S = T [ ] 1 dtdx 2 c φ 2 2 φ 2 + 2 Z dt ẏ φ(x = 0)

Field doubling at the level of the Action An eective action for φ (kinetic term & source term): S = T [ ] 1 dtdx 2 c φ 2 2 φ 2 + 2 Z dt ẏ φ(x = 0) Double the eld and the source (Schwinger-Keldysh, Galley) : These reect directed propagation Interpretation: "pulling" mirror / radiation "sink" φ ˆφ, Q ˆQ = δq δy ŷ

Field doubling at the level of the Action An eective action for φ (kinetic term & source term): S = T [ ] 1 dtdx 2 c φ 2 2 φ 2 + 2 Z dt ẏ φ(x = 0) Double the eld and the source (Schwinger-Keldysh, Galley) : These reect directed propagation Interpretation: "pulling" mirror / radiation "sink" φ ˆφ, Q ˆQ = δq δy ŷ Doubled action: Ŝ [ φ, ˆφ; Q, ˆQ ] = = [ d d δs x δφ ˆφ + δs ] δq ˆQ [ Z dx c ˆφ ( ω 2 + x 2 dω 2π EOM found by varying w.r.t. ˆφ ) ( φ 2iωZ y ˆφ(0)+ŷ ) ] φ(0)

Feynman rules Directed propagator (non-hatted hatted) Source vertex x = G ω (x, x) = c ei ω c x x i ω Z x Q ω = iω Z y ω Hatted source vertex ˆQ ω = + iω Z ŷ ω

Radiation (x > 0) A bead on a string - results φ ω (x) = x = c y ω e iω x/c = φ(t, x) = y(t x c )

Radiation (x > 0) A bead on a string - results φ ω (x) = x = c y ω e iω x/c = φ(t, x) = y(t x c ) Radiation-Reaction eective action dω Ŝ RR = + c.c. = 2π ˆQ ω G ω (0, 0) Q ω + c.c. dω = 2π iω Z ŷ ω y ω + c.c. = 2 Z ŷ ẏ dt

Radiation (x > 0) A bead on a string - results φ ω (x) = x = c y ω e iω x/c = φ(t, x) = y(t x c ) Radiation-Reaction eective action dω Ŝ RR = + c.c. = 2π ˆQ ω G ω (0, 0) Q ω + c.c. dω = 2π iω Z ŷ ω y ω + c.c. = 2 Z ŷ ẏ dt Radiation-Reaction (Self-) Force F RR = δŝ RR δŷ = 2 Z ẏ

Radiation (x > 0) A bead on a string - results φ ω (x) = x = c y ω e iω x/c = φ(t, x) = y(t x c ) Radiation-Reaction eective action dω Ŝ RR = + c.c. = 2π ˆQ ω G ω (0, 0) Q ω + c.c. dω = 2π iω Z ŷ ω y ω + c.c. = 2 Z ŷ ẏ dt Radiation-Reaction (Self-) Force F RR = δŝ RR δŷ = 2 Z ẏ

Radiation (x > 0) A bead on a string - results φ ω (x) = x = c y ω e iω x/c = φ(t, x) = y(t x c ) Radiation-Reaction eective action dω Ŝ RR = + c.c. = 2π ˆQ ω G ω (0, 0) Q ω + c.c. dω = 2π iω Z ŷ ω y ω + c.c. = 2 Z ŷ ẏ dt Radiation-Reaction (Self-) Force F RR = δŝ RR δŷ = 2 Z ẏ damping

Electromagnetism in d dimensions S = 1 4Ωˆd+1 F µν F µν d d x A µ J µ d d x (D := d 1, ˆd := d 3, c = 1)

Electromagnetism in d dimensions S = 1 4Ωˆd+1 F µν F µν d d x A µ J µ d d x (D := d 1, ˆd := d 3, c = 1) Dierent, more, or both?

Electromagnetism in d dimensions S = 1 4Ωˆd+1 F µν F µν d d x A µ J µ d d x (D := d 1, ˆd := d 3, c = 1) Dierent, more, or both? In the right basis, only a little more, and a little dierent!

Electromagnetism - intermediate basis (have no fear!) Multipoles = (solid) spherical harmonics, scalar & vector dω A t/r = 2π J t/r dω = 2π A ω t/r x e iωt, A Ω = J t/r ω x e iωt, J Ω = = (k 1 k 2 k l ) STF, x = dω ( 2π dω ( A ω S Ωx +A ω Vℵ x ℵ Ω ) e iωt ) 2π J S ω Ω x +J Vℵ ω xℵ Ω e iωt ( x k 1x k2 x k ) STF l r l Y l m (Ω)

Electromagnetism - intermediate basis (have no fear!) Multipoles = (solid) spherical harmonics, scalar & vector dω A t/r = A ω 2π t/r x e iωt dω ( ), A Ω = A ω S 2π Ωx +A ω Vℵ x ℵ Ω e iωt J t/r dω = J t/r ω 2π x e iωt dω (, J Ω = J S ω 2π Ω x ) +J Vℵ ω xℵ Ω e iωt = (k 1 k 2 k l ) STF, x ( = x k 1x k2 x k ) STF l S = 1 dω N r l Y l m (Ω) 2 2π l,ˆd S ω 2l+ˆd+1{[ S ω = drr iωaω r 1 2 r l (rl A ω t ) + cs iωa r 2 ω S A ω t 2 cs r 2 1 r l (rl A ω S ) A ω 2 r ( ω 2 + c s r 2 cv ) A r 4 ω 2 c s Vℵ r 2 1 2 ] r l (rl A ω Vℵ ) ]} Ωˆd+1 [A ω r J r ω + Aω t J t ω + csaω S JS ω + csaω Vℵ JVℵ ω + c.c. N l,ˆd = Γ(1 + ˆd/2) 2 l Γ(l + 1 + ˆd/2) = ˆd!! (2l + ˆd)!!, c s := l(l + ˆd), c v = cs + ˆd 1

Electromagnetism - intermediate basis (have no fear!) Multipoles = (solid) spherical harmonics, scalar & vector dω A t/r = A ω 2π t/r x e iωt dω ( ), A Ω = A ω S 2π Ωx +A ω Vℵ x ℵ Ω e iωt J t/r dω = J t/r ω 2π x e iωt dω (, J Ω = J S ω 2π Ω x ) +J Vℵ ω xℵ Ω e iωt = (k 1 k 2 k l ) STF, x ( = x k 1x k2 x k ) STF l S = 1 dω N r l Y l m (Ω) 2 2π l,ˆd S ω 2l+ˆd+1{[ S ω = drr iωaω r 1 2 r l (rl A ω t ) + cs iωa r 2 ω S A ω t 2 cs r 2 1 r l (rl A ω S ) A ω 2 r ( ω 2 + c s r 2 cv ) A r 4 ω 2 c s Vℵ r 2 1 2 ] r l (rl A ω Vℵ ) ]} Ωˆd+1 [A ω r J r ω + Aω t J t ω + csaω S JS ω + csaω Vℵ JVℵ ω + c.c. N l,ˆd = Γ(1 + ˆd/2) 2 l Γ(l + 1 + ˆd/2) = ˆd!! (2l + ˆd)!!, c s := l(l + ˆd), c v = cs + ˆd 1

Electromagnetism - intermediate basis (have no fear!) Multipoles = (solid) spherical harmonics, scalar & vector dω A t/r = A ω 2π t/r x e iωt dω ( ), A Ω = A ω S 2π Ωx +A ω Vℵ x ℵ Ω e iωt J t/r dω = J t/r ω 2π x e iωt dω (, J Ω = J S ω 2π Ω x ) +J Vℵ ω xℵ Ω e iωt = (k 1 k 2 k l ) STF, x ( = x k 1x k2 x k ) STF l S = 1 dω N r l Y l m (Ω) 2 2π l,ˆd S ω 2l+ˆd+1{[ S ω = drr iωaω r 1 2 r l (rl A ω t ) + cs iωa r 2 ω S A ω t 2 cs r 2 1 r l (rl A ω S ) A ω 2 r ( ω 2 + c s r 2 cv ) A r 4 ω 2 c s Vℵ r 2 1 2 ] r l (rl A ω Vℵ ) ]} Ωˆd+1 [A ω r J r ω + Aω t J t ω + csaω S JS ω + csaω Vℵ JVℵ ω + c.c. N l,ˆd = Γ(1 + ˆd/2) 2 l Γ(l + 1 + ˆd/2) = ˆd!! (2l + ˆd)!!, c s := l(l + ˆd), c v = cs + ˆd 1

Electromagnetism - reduction to gauge invariant elds 1 Scalar eld & source: A r ω = 1 ω 2 cs r 2 Ã ω S : = A ω t iωa ω S ρ S ω : = Jt ω + i ωr l+ˆd+1 Vector eld & source: [ iω r l (rl A t ω ) + c ] s r l+2 (rl A S ω ) Ωˆd+1 Jr ω ( r l+ˆd+1 A ω Vℵ, ρ Vℵ ω := JVℵ ω ) Λ Λ 1 Jr ω, Λ := ω2 r 2 c s

Electromagnetism - reduction to gauge invariant elds 2 Scalar (Electric) eld A ω E = ( ) 1 ( l r l 1 (1 Λ) r l (A ω t iωa ω S ) ) ρ A rˆd [ ( ) E ω = x i Λ ] dωˆd+1 rˆd+1 l + ˆd ω rˆd 1 Λ 1 J w( r) n r 2 ρ ω( r) ( ) 0 = N r2l+ˆd+1 l l,ˆd ω l + ˆd 2 + r 2 + 2l + ˆd + 1 r A E ρ A E ω r

Electromagnetism - reduction to gauge invariant elds 2 Scalar (Electric) eld A ω E = ( ) 1 ( l r l 1 (1 Λ) r l (A ω t iωa ω S ) ) ρ A rˆd [ ( ) E ω = x i Λ ] dωˆd+1 rˆd+1 l + ˆd ω rˆd 1 Λ 1 J w( r) n r 2 ρ ω( r) ( ) 0 = N r2l+ˆd+1 l l,ˆd ω l + ˆd 2 + r 2 + 2l + ˆd + 1 r A E ρ A E ω r Vector (Magnetic) eld A ω Mℵ = l A ω Vℵ /r ρ A Mℵ ω = 1 l rˆd+2 0 = N l,ˆd r2l+ˆd+1 l + ˆd l J w( r) ( ( r ) ) x ℵ dωˆd+1 ( ω 2 + r 2 + 2l + ˆd + 1 r r ) A Mℵ ρ A Mℵ ω

Electromagnetism - reduction to gauge invariant elds 2 More (2 x x ω) elds, but 1d ; Dierent wave equations Scalar (Electric) eld A ω E = ( ) 1 ( l r l 1 (1 Λ) r l (A ω t iωa ω S ) ) ρ A rˆd [ ( ) E ω = x i Λ ] dωˆd+1 rˆd+1 l + ˆd ω rˆd 1 Λ 1 J w( r) n r 2 ρ ω( r) ( ) 0 = N r2l+ˆd+1 l l,ˆd ω l + ˆd 2 + r 2 + 2l + ˆd + 1 r A E ρ A E ω r Vector (Magnetic) eld A ω Mℵ = l A ω Vℵ /r ρ A Mℵ ω = 1 l rˆd+2 0 = N l,ˆd r2l+ˆd+1 l + ˆd l J w( r) ( ( r ) ) x ℵ dωˆd+1 ( ω 2 + r 2 + 2l + ˆd + 1 r r ) A Mℵ ρ A Mℵ ω

EM Feynman rules in general d Directed propagator, from solution of wave equation r r = G A E /A Mℵ ret (r, r) = i ω 2l+ˆd M l,ˆd RE/M 1 jα (ωr < ) h+ α (ωr > )δ, R E 1 = l+ˆd, R M ˆd 1 l = 1/RM 1, α = l+ 2, M l,ˆd = π 2 2α+1 N l,ˆd Γ2 (α+1)

EM Feynman rules in general d Directed propagator, from solution of wave equation r r = G A E /A Mℵ ret (r, r) = i ω 2l+ˆd M l,ˆd RE/M 1 jα (ωr < ) h+ α (ωr > )δ, R E 1 = l+ˆd, R M ˆd 1 l = 1/RM 1, α = l+ 2, M l,ˆd = π 2 2α+1 N l,ˆd Γ2 (α+1) Electric & Magentic source vertices Q (E) ω = dr j α(ωr )ρ A E ω (r ) = 1 [ d l + ˆd D x x iω j α(ωr ) J ω( x ) x 1 ( ] ρω( x r l+ˆd 1 r l+ˆd j α(ωr )) ) Q (M,ℵ) ω = d D ( x j α(ωr) ( r ) ℵ J w( r)) (k l x 1)

EM in general d - results Radiation-Reaction eective action: Ŝ RR = A E + A M = ˆQ G Q

EM in general d - results Radiation-Reaction eective action: Ŝ RR = A E + A M = ˆQ G Q = 1 2 dω 2π In even d: = dt, [ ˆQ(E) ω GA E ret (0, 0) Q (E) ω l+ ˆd+1 ( ) 2 l+ˆd ˆd!!(2l+ˆd)!! l ˆQ (E) + ˆQ(M,ℵ) ω 2l+ˆd t Q (E) G A Mℵ ret l2ˆd ˆQ(M) + ] (0, 0) Q (M,ℵ) ω +c.c. 2l+ˆd t Q (M) (l+1)(l+ˆd 1)

EM in general d - results Radiation-Reaction eective action: Ŝ RR = A E + A M = ˆQ G Q = 1 2 dω 2π In even d: = dt, [ ˆQ(E) ω GA E ret (0, 0) Q (E) ω l+ ˆd+1 ( ) 2 l+ˆd ˆd!!(2l+ˆd)!! l ˆQ (E) + ˆQ(M,ℵ) ω 2l+ˆd t Q (E) G A Mℵ ret l2ˆd ˆQ(M) + ] (0, 0) Q (M,ℵ) ω +c.c. 2l+ˆd t Q (M) (l+1)(l+ˆd 1) Radiation-Reaction (Self-) Force (on a point-charge in d dimensions) FAD = δŝ d RR = ( ) 2 (d 2) δˆ x q2 (d 1)!!(d 3)!! d 1 t x + (6 1PN terms) +

Gravitation - GW from a 2-body system S = 1 16πG d g R d d x 1 h µν T µν d d x, 2 µ T µν = 0, g µν = η µν + h µν ( c = 1, linearized source )

Gravitation - GW from a 2-body system S = 1 16πG d g R d d x 1 h µν T µν d d x, 2 µ T µν = 0, g µν = η µν + h µν ( c = 1, linearized source ) The same as EM elds and sources, but dierent Radiation zone: A (E/M) ω (r) h (E/M/T) System zone: h µν (φ, A i, σ ij ) ω (r) (gauge-invariant elds) (NRG elds, Kol & Smolkin '07) these highlight spatial tensor structure, hierarchy in terms of PN ds 2 = e 2φ ( dt A i dx i) 2 e 2φ γ ij dx i dx j

Gravitation - 1D reduced action & Feynman rules Goal - like EM: S (E/M/T) = 1 dω 2 2π dr [ r 2l+ˆd+1 N l,ˆd R ɛ l,ˆd h ω ɛ ( ( h ω ɛ Tω ɛ + c.c. )] ω 2 + r 2 + 2l+ˆd+1 r )h ɛ ω r

Gravitation - 1D reduced action & Feynman rules Goal - like EM: S (E/M/T) = 1 dω 2 2π dr [ r 2l+ˆd+1 N l,ˆd R ɛ l,ˆd h ω ɛ ( ( h ω ɛ Tω ɛ + c.c. )] ω 2 + r 2 + 2l+ˆd+1 r )h ɛ ω r r ɛ = Gret(r, r) = i G ω 2l+ˆd M l,ˆd Rɛ l,ˆd j α (ωr < ) h + α (ωr > )δ r = Q ɛ ω, = ˆQ ɛ ω

Gravitation - special case d = 4 No tensor modes! S (E/M) = 1 dω [ r 2l+2 ( dr 2 2π R ɛ (2l+1)!! hω (E/M) ω 2 + r 2 + 2(l+1) ) r h (E/M) ω r ( )] h ω (E/M) T (E/M) ω + c.c., R ɛ : = l + 2 ( ) ɛ l + 1, ɛ = 1 (E), ɛ = 1 (M) l 1 l

Gravitation - special case d = 4 No tensor modes! S (E/M) = 1 dω [ r 2l+2 ( dr 2 2π R ɛ (2l+1)!! hω (E/M) ω 2 + r 2 + 2(l+1) ) r h (E/M) ω r ( )] h ω (E/M) T (E/M) ω + c.c., R ɛ : = l + 2 ( ) ɛ l + 1, ɛ = 1 (E), ɛ = 1 (M) l 1 l r r ɛ = Gret(r, r) = igω2l+1 (2l + 1)!! j l+ 1 (ωr < ) h + 2 l+ 1 (ωr > ) R ɛ 2 = Q ɛ ω, = ˆQ ɛ ω

Gravitation - Vertices via zone seperation Work in radiation zone eliminate system zone System zone itself includes non-linear vertices; grouped together (by PN order) Radiation-zone vertices dened as Q := :=

Gravitation (4d) - results Ŝ linear = h E + h M = dt l G ( ) l+1 [ (l + 2) (l + 1) (2l + 1)!! (l 1) l ˆQ (E) 2l+1 t Q (E) l + (l + 1) ˆQ (M) 2l+1 t Q (M) ]

Gravitation (4d) - results Ŝ linear = h E + h M = dt l G ( ) l+1 [ (l + 2) (l + 1) (2l + 1)!! (l 1) l ˆQ (E) 2l+1 t Q (E) l + (l + 1) ˆQ (M) 2l+1 t Q (M) ] As promised.

Gravitation (4d) - results O Ŝ O = G dt 1 5 ˆQ ij E 5 t Q ij E Q ij E : Mass quadrupole = Burke-Thorne potential & self-force

Gravitation (4d) - results O, NO Ŝ O = G dt 1 5 ˆQ ij E 5 t Q ij E Q ij E : Mass quadrupole = Burke-Thorne potential & self-force [ Ŝ O+NO = G dt 1 5 ˆQ ij E 5 t Q ij E 4 45 ˆQ ij M 5 t Q ij M + 1 ] ijk ˆQ 189 E 7 t Q ijk E Q ij E : Mass quadrupole (+1PN corrected including rst system zone nonlinear eect: gravitating potential energy, Gm Am B r ) Q ij M : Current quadrupole Q ijk E : Mass octupole

Everything should be made as simple as possible, but not simpler - Albert Einstein Ŝ = = ( ) ˆQ G Q, F = δŝ δ^x Bead + string (elastic eld) Electric charge + EM eld 2-Body system + GR eld

Everything should be made as simple as possible, but not simpler - Albert Einstein Ŝ = = ( ) ˆQ G Q, F = δŝ δ^x Ŝ = 2 Z ŷẏdt Ŝ= dt l+ ˆd+1 ( ) 2 ˆd!!(2l+ˆd)!! l+ˆd l ˆQ (E) 2l+ˆd t Q l2ˆd ˆQ (M) (E) + 2l+ˆd t Q (M) (l+1)(l+ˆd 1) Ŝ= dt G ( ) l+1 (l+2) (2l+1)!!(l 1) [ l+1 ˆQ (E) l 2l+1 t Q (E) + l ] l+1 ˆQ (M) 2l+1 t Q (M)

Conclusions Unied description of dierent physical systems Joint analytical Action formulation of radiation & reaction EM (AD): New results in general dimension GR: Economization of traditional computations Nonlinear eects Coming soon: leading, +1PN, some +2PN in any dimension

Questions? Thank you for your attention

Image credits K. Thorne (Caltech) & T. Carnahan (NASA GSFC) MIT OpenCourseWare Electrostatic Visualizations Flickr's Flood G, (creative commons license) C. R. Galley, PR 110 (2013) 17, 174301 W. D. Goldberger & I. D. Rothstein, PRD 73 (2006) 104029

In frequency domain - SAME. EM in non-even d Transforming to time domain = branch-cut = non-locality [( ) ˆQ(t) t 2l+ˆd 1 Q(t) ˆQ(t) 2 H(2l + ˆd ˆd) H(l + 2 ) t 2l+ˆd Q (t) t dt t t 2l+ˆd t Q(t ) Reg Reg.: Detweiler-Whiting decomposition, generalizes Dirac's odd propagator ]

Gravitation - Full source vertices [ Q (E) = 1 d 3 x x ( r l r l+2 j (l + 1)(l + 2) l+ 1 (ri t) 2 4 ( r l+1 r l+2 j l+ 1 (ri t)) tt 0a x a +2 j 2 l+ 1 ( (2l + 1)!! = 1 + p=0 (2p)!!(2l + 2p + 1)!! ( (2l + 1)!! + 1 + p=0 (2p)!!(2l + 2p + 1)!! (2l + 1)!! p=0 (2p)!!(2l + 2p + 1)!! (2l + 1)!! + p=0 (2p)!!(2l + 2p + 1)!! d 3 x Q (M) = 1 l + 2 8p(l + p + 1) (l + 1)(l + 2) ) (T 00 + T aa ) (ri t) 2 t T ab x a x b +r 2 j 2 l+ 1 (ri t) 2 ( 2 t T 00 T aa )] ) [ ] STF d 3 x t 2p T 00 r 2p x ) [ 4p (l + 1)(l + 2) ( 4 1 + 2p ) [ l + 1 l + 2 [ 2 (l + 1)(l + 2) ] STF d 3 x t 2p T aa r 2p x ] STF d 3 x t 2p+1 T 0a r 2p x a ] STF d 3 x t 2p+2 T ab r 2p x ab { r l 1 ( r l+2 ) ( ( j l+ 1 (ri t) 2 x T 0a)) k l x 1 2 j l+ 1 2 (ri t) 2ɛ k lba tt ac x bc 1} ( (2l + 1)!! = 1 + 2p ) [ d 3 x t 2p r 2p ( Bi-group ( meeting, 2 x T 0a)) ] k STF l Humboldt x 1

Origin-normalized Bessel functions From Bessel's functiosn B α {J α, Y α, H ± α }, b α := Γ(α + 1)2 α B α(x) x α They satisfy [ x 2 + 2α + 1 ] x + 1 b α (x) = 0 x jα in the vicinity of the origin x = 0 is given by jα (x) = p=0 ( ) p (2α)!! (2p)!!(2p + 2α)!! x2p The outgoing waves at x are h± := j ± iỹ: h ± α (x) ( i) α+1/2 2α+1/2 Γ(α + 1) π e ±ix x α+1/2

Singular origin-normalized Bessel functions Around x = 0 the Bessel function of the 2nd kind for α non-integer is ỹ α (x) = = Γ(α + 1)2α cos(απ)j α (x) J α (x) x α sin(απ) Γ(α + 1)2α ( ) p x 2p [ cos(απ) sin(απ) (2p)!! 2 p 2 α Γ(p + α + 1) 2α x 2α ] Γ(p α + 1) p=0 while for integer α = n, ỹ n (x) = 2(2n)!! n (2m 2)!! π (2n 2m)!! x 2m + 2 ( x ) jn π ln (x) 2 m=1 (2n)!! ( ) k [ψ(k + 1) + ψ(n + k + 1)] π (2k)!!(2n + 2k)!! x2k k=0 where ψ(n + 1) = H(N) γ is the digamma function, dened using the Harmonic numbers H(N) and the Euler-Mascheroni constant γ.

Eective Field Theory description of GR For example, Einstein-Infeld-Homann agrangian Figure from W. D. Goldberger and I. D Rothstein, PRD 73 (2006) 104029

Hatted variables - interpretation Doubling the elds eectively mirrors them. Hatted elds "pull" from the mirror's surface, absorbing radiation from the original elds. 0 = δŝ δφ(x) = dx δeom φ(x ) δφ(x) ˆφ(x ) ˆρ(x) ˆφ satises an equation for linearized deviations from the background φ with a source ˆρ and reversed propagation. In the absence of its source ˆφ vanishes, namely ˆρ = 0 = ˆφ = 0 φ, ρ are physical observables, unlike ˆφ, ˆρ.

Field doubling Problem: Action formalism not compatible with non-conservative eects. Solution: Field Doubling (QFT: in-in/ctp, Schwinger '61; Classical version: Galley 2012, 2013). Ŝ := S[q 1 ] S[q 2 ] Figure from C. R. Galley, PR 110 (2013) 174301

Field doubling Keldysh representation: q 1 := q + 1 2 ˆq q 2 := q 1 2 ˆq ˆq is deviation from physical trajectory. Expand: Ŝ := S[q 1 ] S[q 2 ] = δs δq ˆq + 1 δ 3 S 6 δq 3 ˆq3 +... In classical setting (physical condition q 1 = q 2 ) only terms linear in ˆq survive.

Field doubling In our problem: S[φ, ρ] Ŝ[φ, ˆφ; ρ, ˆρ] := [ δs dx δφ(x) ˆφ(x) + δs ] δρ(x) ˆρ(x) EOM: δŝ δˆx = 0 Propagators are directed (retarded/odd).

GR - NO details Ŝ = G dt [ 1 5 ˆQ ij E 5 t Q ij E 4 45 ˆQ ij M 5 t Q ij M + 1 ] ijk ˆQ 189 E 7 t Q ijk E where Q ij E = 2 A=1 [ m A 1 + 3 2 v2 m B 4 r 3 t ( v x) + 11 ] 42 2 t (x x2 i x j 13 ) δij x 2 A A 2 Q ij M [m = ( x v) i x j] TF Q ijk E = A=1 2 A=1 ( m x i x j x k) TF A A