Calculation of ODH classification for Nevis LHe e-bubble Chamber Cryostat

Σχετικά έγγραφα
Heat Load Analysis on LHe e-bubble Chamber Cryostat

APPENDIX A. Summary of the English Engineering (EE) System of Units

STEAM TABLES. Mollier Diagram

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

DuPont Suva 95 Refrigerant

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES

Type. Capacities. 441, 442 Full nozzle DIN. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Fin coil calculation with NTU

DuPont Suva 95 Refrigerant

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16

PETROSKILLS COPYRIGHT

#%" )*& ##+," $ -,!./" %#/%0! %,!

Homework 8 Model Solution Section

Ανάπτυξη ενός «μηχανικού» εργαλείου διαχείρισης της ποιότητας του ελαιόλαδου


ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Type 441 DIN 442 DIN. Capacities. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

LEVITEC INDUSTRIAL BOILERS Steam Way S /5

Phasor Diagram of an RC Circuit V R

Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

( ) Sine wave travelling to the right side


1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

PROPERTY VALUES OF METALS AT 20 C OR AS INDICATED

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

LEVITEC INDUSTRIAL BOILERS Steam Way S /5

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Journal of the Institute of Science and Engineering. Chuo University


ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Injection Molded Plastic Self-lubricating Bearings

TEST REPORT Nο. R Έκθεση Ελέγχου α/α

Class 03 Systems modelling

Consolidated Drained

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Bayes Rule and its Applications

Conductivity Logging for Thermal Spring Well

PETROSKILLS COPYRIGHT

2 nd Law: m.s in + Q in /T in + S gen = ds/dt + m.s out + Q out /T out. S gen /ṁ = -(Q in /m)/t + Δs,

ΙΑΤΡΙΚΟΣ ΕΞΟΠΛΙΣΜΟΣ ΑΝΑΛΩΣΙΜΑ ΕΞΕΤΑΣΤΙΚΟΙ ΦΑΚΟΙ & ΦΩΤΙΣΜΟΣ

Δύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at

Lifting Entry (continued)

A31. Aluminium heat exchanger A31

DLG Series. Lowara SPECIFICATIONS APPLICATIONS ACCESSORIES MATERIALS. General Catalogue

ΛΟΓΙΣΜΙΚΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ ΗΛΙΑΚΟΥ ΘΕΡΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ

Μικροβιολογία Τροφίμων Ι

MECHANICAL PROPERTIES OF MATERIALS

.. 1,.. 1,.. 2 [1, 2]. - , ( ) [3].,, - . /., - , - «+». ( ) ( ), p T e T e > T 0. G; ;,, ...,.,

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

ΣΥΝΟΨΗ 2 ου Μαθήματος

PETROSKILLS COPYRIGHT

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. 9 Απριλίου 2012 Δήμος Πεταλούδων, Ρόδος

Properties of Nikon i-line Glass Series

Stochastic Finite Element Analysis for Composite Pressure Vessel

6.4 Superposition of Linear Plane Progressive Waves

Το άτομο του Υδρογόνου

Θερμοδυναμικές ιδιότητες και ισορροπία φάσεων για προσομοίωση διεργασιών. Επαμεινώνδας Βουτσάς Νοέμβριος 2011

ΜΟΝΑΔΑ ΓΕΩΘΕΡΜΙΚΗ ΑΝΣΛΙΑ ΘΕΡΜΟΣΗΣΑ ΣΗ ΕΔΡΑΗ Β. ΡΑΜΟΤΣΑΚΗ

Υδραυλική Εργαστήριο 4. Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α.

Περιεχόµενα Παρουσίασης 2.9


Θερμοδυναμικές Ιδιότητες και ισορροπία φάσεων για προσομοίωση διεργασιών. Βουτσά Επαμεινώνδα Αναπλ. Καθηγητή ΕΜΠ

ΛΟΓΙΣΜΙΚΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ ΗΛΙΑΚΟΥ ΘΕΡΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ

Type. Capacities. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

n b n Mn3C = n Mn /3 = 0,043 mol free Fe n Fe = n Fe 3n Fe3C = 16,13 mol, no free C b Mn3C = -Δ f G for Mn 3 C +3 b Mn + b C = 1907,9 kj/mol

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Answers to practice exercises

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2C.4 Page 1 of 9

Προσομοίωση ηλιακού θερμικού συστήματος με τα εξής δεδομένα: Ηλιακή ακτινοβολία και θερμοκρασία περιβάλλοντος:

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

motori elettrici electric motors

Model: MTZ22. Data. Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1

Κινητική θεωρία ιδανικών αερίων

Spherical Coordinates

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

ECOL Motors In Aluminum Housing

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

ΑΕΡΙΟΧΡΩΜΑΤΟΓΡΑΦΙΑ (GAS CHROMATOGRAPHY) ΑΘΗΝΑ, ΔΕΚΕΜΒΡΙΟΣ 2015


RECIPROCATING COMPRESSOR CALCULATION SHEET

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Oscillatory Gap Damping

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Forced Pendulum Numerical approach

5.4 The Poisson Distribution.

Chapter 7 Transformations of Stress and Strain

Surface Mount Aluminum Electrolytic Capacitors

Transcript:

Calculaton of ODH classfcaton for Nevs LHe e-bubble Chamber Cryostat. Physcal parameters Thermal propertes of Helum and Ntrogen Yongln Ju Nevs Laboratores, Columba Unversty, NY 533 T 3 [K] Pa 76 [mmhg] ρhe.625 [kg/m 3 ] ρn2.56 [kg/m 3 ] T_he.2 [K] Pv.3. 5 [Pa] ρfv 2.8 [kg/m 3 ] ρgv 6.9 [kg/m 3 ] hfv 5.77. 3 [J/kg] hgv.98. 3 [J/kg] hfgv hgv hfv hfgv = 2.72. [J/kg] T_n2 77.3 ρfn 86.8 [kg/m 3 ] ρgn.623 [kg/m 3 ] hfn 2.877. 3 [J/kg] hgn 76.99. 3 [J/kg] hfgn hgn hfn hfgn =.989. 5 [J/kg] R 296.929 [J/kg.K] -------------------------------------------------------------------------------------------------------------------------------------------------------- A. LHe Dewar he 25 [L] tt.. he tt. [L/h] [LHe dewar normal bol-off rate, %] 2 --------------------------------------------------------------------------------------------------------------------------------------------------------- B. LN2 Dewar n2 25 [L] tt2.5. n2 tt2.56 [L/h] [LN2 dewar normal bol-off rate,.5%] 2 ------------------------------------------------------------------------------------------------------------------------------------------------------------ C. LHe essel Dr 2. 25.. 3 Dr.35 [m] Hr 2.5. 25.. 3 Hr.56 [m] Dz.2 [m] Dn 5. 25.. 3 Dn.27 [m] Hn 2. 25.. 3 Hn.58 [m] A A2 Dr2 Dn 2 A.6 [m 2 ] A3 Dn. Hn A3 3 [m 2 ] Dr2 Dz 2 A2.73 [m 2 ] A Dr. Hr A.523 [m 2 ] Ar_he A A3 A Ar_he.786 [m 2 ] [Cold surface of the LHe reservor] r r2 Dr2 Dz 2. Hr r. [m 3 ] r. = 39.675 [L] [olume of LHe n LHe reservor] Dn2 Dz 2. Hn r2 = 6.276. 3 [m 3 ] r2. = 6.276 [L] [olume of LHe n neck space] r_he ( r r2). r_he = 5.95 [L] [Total volume of LHe n LHe reservor] --------------------------------------------------------------------------------------------------------------------------------------------------------------- D. LN2 essel Dno. 25.. 3 Dno.356 [m] Dn 6. 25.. 3 Dn.52 [m] Hnz 2. 25.. 3 Hnz.58 [m] Hfn. 25.. 3 Hfn = 5 [m] Dn 3. 25.. 3 Dn.33 [m] Dn2. 25.. 3 Dn2 = 79 [m] Ar_n2 2. Dno 2 Dn 2 Dno. Hnz Dn. Hfn Ar_n2 = 5 [m 2 ] [Cold surface of LN2 reservor] π r_n2. Dno2 Dn 2. Hnz. r_n2 =.85 [L] [olume of lqud n the LN2 reservor] ----------------------------------------------------------------------------------------------------------------------------------------------------------

E. LHe e-bubble Chamber Dv.8 [m] Hv.7 [m] Hfv.5 [m] [Hght of LHe n e-bubble chamber] π Av. Dv2 Av = 9.6. 3 [m 2 ] Av2 Dv. Hv Av2.58 [m 2 ] Ae_he 2. Av Av2 Ae_he.76 [m 2 ] [Cold surface area of e-bubble chamber] π fv. Dv2. Hfv fv = 9.69. [m 3 ] e_he fv. e_he.962 [L] [olume of LHe n e-bubble chamber] 2. Mass 2. Thermal Load f vacuum s lost: We assume qt [W/m 2 ] Et_he Et_n2 Ee_he qt. Ar_he Et_he = 7.859. 3 [W] qt. Ar_n2 Et_n2 = 8.53. 3 [W] qt. Ae_he Ee_he = 76. [W] 2.2 Mass n LHe vessel: LHe vessel: p.3. 5 [Pa] T.2 K ρfv = 2.8 [kg/m 3 ] hfgv = 2.72. [J/kg] ρgv = 6.9 [kg/m 3 ] LHe mass at.2k n LHe vessel: Mhe ρfv. r_he Mhe = 5.735 [kg] Saturated gas helum mass at.2k n LHe vessel: Mghe ρgv. r_he Mghe.758 [kg] The total enthalpy ncrease of load LHe of 5 lters n phase change: Elg Mhe. hfgv Elg =.88. 5 [J] 2.3 Mass n e-bubble Chamber: LHe vessel: p.3. 6 [Pa] T.2 K ρfve 5.55 [kg/m 3 ] hfgv = 2.72. [J/kg] ρgve 5 [kg/m 3 ] LHe mass at.2k n LHe vessel: Mhee ρfve. e_he Mhee.6 [kg] Saturated gas helum mass at.2k n LHe vessel: Mghee ρgve. e_he Mghee.39 [kg] The total enthalpy ncrease of load LHe of 5 lters n phase change: Elge Mhee. hfgv Elge = 3.2. 3 [J] 2

2. Mass n LN2 vessel: LN2 vessel: p.3. 5 [Pa] T 77.3 K ρfn = 86.8 [kg/m 3 ] hfgn =.989. 5 [J/kg] ρgn =.623 [kg/m 3 ] LHe mass at.2k n LHe vessel: Mn2 ρfn. r_n2 Mn2 = 33.228 [kg] Saturated gas ntrogen mass at 77.3K n LN2 vessel: Mgn2 ρgn. r_n2 Mgn2.9 [kg] The total enthalpy ncrease of load LHe of lters n phase change: Elg Mn2. hfgn Elg = 6.68. 6 [J] 3. Mass flow rate and release tme 3. Tme and mass flow rate estmaton for LHe: Et_he = 7.859. 3 [W] m_he Et_he hfgv m_he.379 [kg/s] t_he Mhe m_he t_he = 5.2 [s] If: Pb.3. 5 [Pa] T [K] Γ.9 τ.659 Po 3. 5 [Pa] Mass flow rate estmaton for relef valve: d. [m] n 2 Ar moutr Γ. Ar. Po τ. R. T 3.2 Tme and mass flow rate estmaton for LHe: Ee_he = 76. [W] d2. n Ar =.57. [m 2 ] moutr [kg/s] > m_he.379 [kg/s] me_he Ee_he hfgv me_he.37 [kg/s] te_he Mhee me_he te_he = 3.975 [s] If: Pb.3. 5 [Pa] T [K] Γ.9 τ.659 Po. 5 [Pa] Mass flow rate estmaton for relef valve: d. [m] n Ar moutr Γ. Ar. Po τ. R. T 3.3 Tme and mass flow rate estmaton for LN2: Et_n2 = 8.53. 3 [W] m_n2 Et_n2 hfgn m_n2.3 [kg/s] t_n2 d2. n Ar = 7.85. 5 [m 2 ] moutr =.7 [kg/s] > me_he.37 [kg/s] Mn2 m_n2 t_n2 = 776.256 [s] If: Pb.3. 5 [Pa] T [K] Γ.9 τ.659 R 287.6 [J/kg.K] P 3. 5 [Pa] 3

Mass flow rate estmaton for open tube: d2.75..25 d2.9 [m] n2 3 Ar moutr Γ. Ar. P τ. R. T. ODH calculaton wth fan avalable Data of the confned volumn and fan vent rate: d22. n2 Ar = 8.55. [m 2 ] moutr.338 [kg/s] > m_n2.3 [kg/s] 25.. = 3. 3 [m 3 ] [The confned volumn] C.283 [m 3 /CF] CC.283 6 CC =.77. [m 3 /s] [Fan rate] 3 [SCFM]. CC [m 3 /s]. [m 3 /s] [The ventlaton rate of the fan] Case I. The normal operaton of 25L LHe and 25L LN2 Dewars The normal vaporzaton rate: % LHe /day and.5% LN2/day Rn tt. 36 [m 3 /s] Rn = 2.89. 8 [m 3 /s] Rn2 tt2. 36 [m 3 /s] Rn2 =.3. 8 [m 3 /s] R Rn. ρfv ρhe R = 2.222. 5 R2 Rn2. ρfn ρn2 R2 = 3.29. 5 R R R2 R = 5.25. 5 [m 3 /s] <. [m 3 /s] [The spll rate] t 25 25 tt tt2 t =.92. 3 [hr] t. 36 = 6.92. 6 [s] R CC... 3. R R < C. R. t. 36. e C 92 = After the spll perod (R=) Ce C. 92 e. t 92. 36 C C k.. 8 C k 92 Ce k 92 996 992 Oxygen concentraton C 988 98 98 976 972 968 96 96 2 6 8 2 6 8 2 Tme [hr]

The partal pressure: PO2 C. Pa The fatalty factor: 6.5 G PO2 F f G,, f G <. 7,, G F 92 ODH fatalty rate: φ 3. 6 6. F φ 92 ODH Classfcaton: ODH <. 7,, <. 5,, <. 3, 2, <., 3, tme Fatalty rate va tme ODH class va tme Fatalty rate [/hr] φ ODH class ODH 6 2 8 2 3 6 2 8 2 3 Tme [hr] Tme [hr] Case 2. The normal operaton of 5L LHe and L LN2 vessel The normal vaporzaton rate: 3 days Rn Rn2 5. 72. 36. 72. 36 [m 3 /s] Rn =.736. 7 [m 3 /s] [m 3 /s] Rn2 =.53. 7 [m 3 /s] R Rn. ρfv ρhe R =.333. R2 Rn2. ρfn ρn2 R2 =.77. R2 R R2 R2 = 2.. [m 3 /s] <. [m 3 /s] t 3. 2 t = 72 [hr] t. 36 = 2.592. 5 [s] R2 CC.5... R2 R2 < C2. R2. t. 36. e C2 72 = After the spll perod (R=). t 72. 36 Ce C2. 72 e C C2 k.. 28 C k 72 Ce k 72 5

Oxygen concentraton C 99 98 97 96 95 9 93 92 9 9 2 3 5 6 7 8 9 Tme [hr] The partal pressure: PO2 C. Pa The fatalty factor: 6.5 G PO2 F f G,, f G <. 7,, G F 72 ODH fatalty rate: φ 3. 6 6. F φ 72 ODH Classfcaton: ODH <. 7,, <. 5,, <. 3, 2, <., 3, tme Fatalty rate va tme ODH class va tme Fatalty rate [/hr] φ ODH class ODH 2 6 8 2 6 8 Tme [hr] Tme [hr] Case 3. LHe vessel n EBC Cryostat broken, and the vacuum s lost m_he.379 [kg/s] t Mhe m_he t = 5.2 [s] R3 m_he ρhe [m 3 /s] R3 = 2.33 [m 3 /s] >. [m 3 /s] R3 = CC.98. 3 6

.. 6 R3 > C3 R3.. e C3 5 8 After the spll perod (R=). t 5. 36 Ce C3. 5 e C C3 k.. 5 C k 5 Ce k 5 95 9 Oxygen concentraton C 85 8 75 7 65 6 55 5 6 2 8 2 3 36 2 8 5 6 Tme [sec-hr] The partal pressure: PO2 C. Pa The fatalty factor: G 6.5 PO2 F f G,, f G <. 7,, G F 5 ODH fatalty rate: φ 3. 6 6. F φ 5 ODH Classfcaton: ODH <. 7,, <. 5,, <. 3, 2, <., 3, tme 7

Fatalty rate va tme ODH class va tme Fatalty rate [/hr] φ ODH class ODH 2 2 36 8 6 2 2 36 8 6 Tme [s] Tme [s] Case. LN2 vessel n EBC Cryostat broken, and the vacuum s lost m_n2.3 [kg/s] t Mn2 m_n2 t = 776.256 [sec] R m_n2 ρn2 [m 3 /s] R.37 [m 3 /s] <. [m 3 /s] R CC = 78.57.. R < C. R. R. e C 776 8. The oxygen concentraton after the spll perod (R=, =const). t 776. 36 Ce C. 776 e C C k.. 22 C k 776 Ce k 776 95 9 Oxygen concentraton C 85 8 75 7 65 6 55 5 2 3 5 6 7 8 9 Tme [sec-hr] 8

The partal pressure: PO2 C. Pa The fatalty factor: G 6.5 PO2 F f G,, f G <. 7,, G F 776 ODH fatalty rate: φ 3. 6 6. F φ 776 ODH Classfcaton: ODH <. 7,, <. 5,, <. 3, 2, <., 3, tme Fatalty rate va tme ODH class va tme Fatalty rate [/hr] φ ODH class ODH 2 6 8 2 6 8 Tme [s] Tme [s] Case 5. LHe e_bubble Chamber broken, and the vacuum s lost me_he.37 [kg/s] t Mhee me_he t = 3.975 [s] R5 me_he ρhe [m 3 /s] R5 = 26 [m 3 /s] >. [m 3 /s] R5 CC = 78.528.. 3 R5 > C5 R5.. e C5 = After the spll perod (R=). t. 36 Ce C5. e C C5 k.. 26 C k Ce k 9

Oxygen concentraton C 997 99 99 988 985 982 979 976 973 97 3 6 9 2 5 8 2 2 27 3 Tme [sec-hr] The partal pressure: PO2 C. Pa The fatalty factor: 6.5 G PO2 F f G,, f G <. 7,, G F 5 ODH fatalty rate: φ 3. 6 6. F φ 5 ODH Classfcaton: ODH <. 7,, <. 5,, <. 3, 2, <., 3, tme Fatalty rate va tme ODH class va tme Fatalty rate [/hr] φ ODH class ODH 6 2 8 2 3 6 2 8 2 3 Tme [s] Tme [s]

Concluson Fatalty factor = 3*-6 Fatalty rate < -9 ODH class Under the worst case condton, fatalty rate s lower than -9 for Nevs e-bubble Chamber Cryostat at Atlas Buldng. Therefore, ODH s unclassfed accordng to "BNL ODH Rsk Assessment".