36 2 2014 6 CHINA EARTHQUAKEENGINEERINGJOURNAL Vol.36 No.2 June,2014 1 1,2, 1 2 (1., 200240; 2., 200032) : 6, 5~6 80m, (GB50868-2013) ;, 1, ;, : ; ; ; :TU311.3 DOI:10.3969/j.issn.1000-0844.2014.02.0207 :A :1000-0844(2014)02-0207-07 AmbientVibrationTestforaMulti-storyResidentialBuilding andthevibration Mitigation Measures ZHU Bin 1,2,CHEN Long-zhu 1,DINGLi 2 (1.Dept.of CivilEngineering,ShanghaiJiaotong University,Shanghai 200240,China; 2.Shanghai Key Laboratoryof New Technology Researchon Engineering Structure, ShanghaiResearchInstituteof Building Sciences,Shanghai 200032,China) Abstract:Brick-concretebuildingshavebeenextensivelyusedinurbanandruralareas.However, thistypeofbuilding,whichfrequentlycontainsashalowfoundation,demonstratespoorstruc- turalintegrityandissusceptibletoinfluencefromambientvibrations.thiscaseisespecialyvalid forbuildingsthatwereconstructedinpreviouseras.withthedevelopmentofmoderncitiesand theincreasingdemandforanenhancedqualityoflife,environmentalinterferencecausedbyambi- entvibrationshasbecomeacriticalissue.inareaswithsoftsoil,traficisaprimarysourceof ambientvibrations.vehiclevibrationscausedbyroadsurfaceroughnessorspeedchangescan causevibrationsthroughoutthefoundationofabuilding.therefore,thevibrationofbrick-con- cretebuildingsisrelatednotonlytotheexcitationsourceofthevibrationbutalsothesoilcharac- teristics,thefoundationconditions,andthestructuralstyle.thehumanresponsetothevibra- tionsofhousingstructuresiscloselycorrelatedwithaperson'scognitivelevelandtheircurrent physicaland psychologicalconditions.thus,thepotentialdiferenceinthereactionsamong buildingoccupantsissignificant. Residentsinasix-storybrick-concretebuilding,whichislocatedinanareaofShanghaiwith softground,frequentlycomplainedabouttheintermitentinterferencefrom vibrations,particu- 1 :2014-02-17 : (11dz1202000) : (1979-),,,,.E-mail:1931697937@qq.com
208 2014 tionsweregeneratedbyheavyvehiclestravelingonaroadthatwaslocatedapproximately80 m northofthebuilding.thefrequencyandamplitudecharacteristicsoftheambientvibrationsand thehumancomfortlevelsforthediferentstoriesofthebuildingwereanalyzedaccordingtothe standardforalowablevibrationofbuildingengineering (GB50868-2013).Tocomprehensively evaluatetheimpactinducedbythetransverselyhorizontalvibrations,whichinfluenceshuman comfortlevelsforthethreecomponentsofbuildingvibration,anumericalfiniteelementmodel tuallayer. Accordingtothetestresultsandthenumericalanalyses,twotypesoftechnicalmeasuresare proposedtoreduceunfavorablevibrations.thepaperyieldsthefolowingconclusions: (1)Thetestresultsshowthatheavy-dutyvehiclesfrom nearbyroadsarethemaincauseof thebuildingvibrations.theverticalcomponentofthevibrationsalongthestructureisalmost constant;however,itslateralcomponentissignificantlyamplified,whichprimarilyinfluences humancomfort. (2)Themeasuresindicatethatthepeakaccelerationrangeforthetoptwostoriesis68~70 db,whichislowerthanthelimitvaluesproposedbythe standardforalowablevibrationof buildingengineering (GB50868-2013).Therationalityofthelimitvaluesisdiscussedtosatisfy thedemandofhumancomfort. bletoolforjustifyingtheefectofvibrationreductionmeasures. mately21% andthetwoproposedtechnicalmeasures,whicharecompared,shouldbeapplied. larlyresidentsontheuppertwostories.themeasuresconfirmedthattheenvironmentalvibra- (FEM)ofthebuildingwasdevelopedandanalyzed.Thesoilinthemodelwassimulatedasavir- (3)Thestructuralfrequenciesandmodesareanalyzedbasedontheassumptionofavirtual layeroffoundation;thesimulatedresultscorrespondwiththemeasures.themodelisareasona- (4)Toensurethateachstoryofthe multi-storybrick-concretebuildingcomplieswiththe previouslyrecommendedstandard,thepeaklateralaccelerationshouldbereducedbyapproxi- Keywords:multi-storeyresidentialbuilding;ambientvibrationtesting;comfortevaluation;vi- 0 brationmitigationmeasures,, SAP2000,,, 1, [1], 1, 1.1 [2], 90 6,,, 2~3 [3-4] ;, 80 m, 200 m,, 4~6
36 2 2, Ⅳ, Ⅶ, 1.3 1.2 7.24 m, 17.70 m,, 3.67~ 2.44 0.30m, 3 3.75m, 3.7 m,, 4.1m,, 1 1, 1, 39.84 m, Table1 Physicalandmechanicalpropertiesofthesoillayers /m /(kn m -3 ) c/kpa ( ) Ф/( ) 11 0.50~0.70 / / / / 2 1.50~1.80 18.70 20 18.0 1.07 3 3 4 1.50~5.70 17.40 14 16.5 0.57 1.1~1.60 18.40 5 29.5 1.43 9.90~10.50 16.70 12 9.5 0.78 51 8.70~9.10 17.30 / / 1.13 53 : 209 12.90~13.20 17.90 / / 1.55 54 1.70~2.30 19.40 / / / 7 19.10 / / / Ps/MPa 1 Fig.1 Measuringpointsatfloorsoftheconcernedbuilding, C20,,,,, C20 240, 10:00~15:00 M10;,, 2 2.2 2.1, (GB50868-2013) [5] 6 INV3020D 941B (VL) 2, :, 1~2 4~6
210 2014 2, Table2 Analysisresultsofenvironmentalvibrationmeasure, VL 1 /(mm s -2 ) /db /(mm s -1 ) ( 3) P1(6 ) 3.19 60.59 0.37 8.44 65.77 0.92 10.97 69.98 1.14 P2(5 ) 2.63 58.93 0.31 6.97 61.11 0.75 9.07 68.32 1.09 P3(4 ) 2.02 56.65 0.28 5.36 58.83 0.56 6.97 66.04 0.77 P4(2 ) 3.98 62.21 0.38 1.91 49.38 0.21 1.98 51.56 0.22 P5( ) 2.36 57.64 0.31 1.13 42.21 0.19 1.17 46.99 0.20 P6( ) 2.76 58.52 0.32 0.78 41.68 0.12 0.76 41.62 0.11 (1),,,, (2), 2, 2 Fig.2 Frequencyspectrumsofvibrationatthe (3)5~6, constructionsite 68.3~70.0 db, [5] 77dB 74dB, [8], 72dB 69dB, 68.3~70.0dB,, (4) 2 [5] 7, 2.3 FFT, 3 1 ( ) Fig.3 Frequencyspectrumsofvibrationattheground 3 floorofthebuilding, 2~ 4,, 3,,
36 2 : 211, 4 6 ( ) Fig.4 Frequencyspectrumsofvibrationatthe6th 3 floorofthebuilding Table3 Predominantfrequenciesofthebuilding andconstructionsite /Hz 1 /Hz 3.125 2.637 3.125 2.950 3.030 3.030 Fig.5 Theaccelerationanddisplacementvariationwith heightfornormalizedaccelerationintransversely 2.4 horizontaldirection 5 2,, 6 5,, 10s,, 6 2 1,, ( 0.05s), 3 1 5 10, : ( ) 0, 5 1 SAP2000V15 2 1,2 3 2,, 6 6;, 6, MU10 M10, ; (GB50007-5 2011) [6] 3.2.5-1 3024MPa,
212 2014 ( ) 4K1 2K1 K1 0.5K1 2.637 2.743 2.702 2.586 2.341 2.214,, 4 2.2 (3), 69dB, 6 2 db, α -20lgα=2, α=79 % 6 21 % Fig.6 Horizontalyfundamentalmodesofbuildingon, virtualyundergroundlayerwithdiferentrigidities, C20 : (GB (1), 50009-2012) [7], ( ), 5 6, ; -1, (2), ;,, K 1 0.5~4 5 6,, 30~ 1 4, 5 50m, 1, 6 5 4,, 1 6,, : K 1 3, (1), 6, 5,, 3 K 1, ;, (2) 5~6, 68~ 4 70dB, (GB50868- (Hz) 2013) 77dB Table4 Horizontalyfundamentalfrequenciesofbuildingon 74dB, virtualyundergroundlayerwithdiferentrigidities, 5dB ; (3),,, 1,,
36 2 ; (4) (inchinese) (2) 69dB, [5] 21%, 2013)[S].,2013. :, (References) [1] Hao H,Ang T C.Analytical Modeling of Trafic-induced Ground Vibrations[J].JournalofEngineering Mechanics, 1998,124(8):921-928. [2] AhmadS,Al-HussainiT M,Fishman K L.Lnvestigationon ActiveIsolationof MachineFoundationsby Open Trenches : 213 HouseandSeismicDestroying Mechanismin GansuProvince [J].NorthwesternSeismologicalJournal,2007,29(1):75-78.. (GB50868- : ChinaMachineryIndustryFederation.TheStandardforAlow- ablevibrationofbuildingengineering (GB50868-2013)[S]. Beijing:ChinaPlanningPress,2013.(inChinese) [6]. (GB 50007-2011)[S]. :,2011. Ministryof Housingand Urban-RuralDevelopmentofthe People'sRepublicChina.CodeforDesignof MasonryStruc- tures(gb50007-2011)[s].beijing:china Architecture & BuildingPress,2011.(inChinese) [7]. (GB 50009-2012)[S]. :,2012. [J].JournalofGeotechnicalEngineering,1996,122(6):454- Ministryof Housingand Urban-RuralDevelopmentofthe 461. People'sRepublicChina.LoadingCodeforDesignofBuilding [3],,,. Structures(GB50009-2012)[S].Beijing:ChinaArchitecture & [J].,2013,35(2):232-239. BuildingPress,2012.(inChinese) MA Hong-wang,WANGLan-min,CHEN Long-zhu,etal.Nu- [8],,,. mericalsimulationofearthquake Damagein Rural Masonry [J].,2013,35(4):115-123. Buildings[J].ChinaEarthquakeEngineeringJournal,2013,35 ZHU Bin,CHEN Long-zhu,GONGZhi-guo,etal.Evaluation (2):232-239.(inChinese) ofindustrialvibrationimpacttotalresidentialbuildingsin [4],. Shanghai[J].EarthquakeResistantEngineeringandRetrofit- [J].,2007,29(1):75-78. ting,2013,35(4):115-123.(inchinese) LIU Hong-mei,LIN Xue-wen.StructureTypesoftheRural