4 261 Ⅲ,P-Ⅲ [22], P-Ⅲ Γ,, 2 ~7 f(x)= P-Ⅲ Γ(α) βα x-b) α-1 e - β(x-b),(b<x < ") ; GeoStudio (1) F = F(x x p )β ; Γ(α) α (x-b) α-1 e -β(x-b) dx x p (2),
|
|
- Ζηνόβιος Ιωάννου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 GeologicalScieceadTechologyIformatio Vol.36 No.4 Jul doi /j.cki.dzkq ,,. [J].,2017,36(4) a 1a, 1b 1b 2,, (1. ( )a. ;b ; ), P-Ⅲ 12 ; Geostudio, ,, MAPE 2.86%,MSE ; ; ; P A (2017) , [1],, 50 m [2] [14-15] ; [3-4] 1963 Vajoit, [16-17] ;, 2 [5] 145~175m, [6] ;,,, [14,18-20],, [18] [7-11] [14], ; [12], [19] ;, [13] ; ( ); ( ) (1994 ), cuggzz@ cug.edu.c (1963 ),, 126.com
2 4 261 Ⅲ,P-Ⅲ [22], P-Ⅲ Γ,, 2 ~7 f(x)= P-Ⅲ Γ(α) βα x-b) α-1 e - β(x-b),(b<x < ") ; GeoStudio (1) F = F(x x p )β ; Γ(α) α (x-b) α-1 e -β(x-b) dx x p (2), α, β >0,Γ(α) α,α, β,b P-Ⅲ P-Ⅲ 3 E(x) C v 1 [23] C s 3 E(x)=α+βb,C v 槡 b = b+ α,c s = 2 (3) 槡 b β m, 300m 124 m, x m,, 225m, m 2 40m; x 1 x 2 x m x x m, m,m ( 1) m 3 x m, P m = m %, m =1,2,, (4), P y ;,, 156 ~166, 0 ~6, (E(x), C v,c s ), P-Ⅲ P = F(x)= P(X x) = +" f(x,e(x),c v,c s )dx (5) x a 4-6 P-Ⅲ 50a,, 珚 x = 1 x m m=1 烌 1 Fig.1 PlaofMaliuliladslide 2 C v = 1 x 槡 P-Ⅲ 珚 x =125.68,C v =0.443,C s = C v 0.2,0.3,0.4,0.5,0.6,C s /C v m=1 (x m - 珚 x) 2 (x m - x) 珚 m=1 C s = (-1)(-2) 珚 x 3 C 3 烍 v 烎 (6)
3 ,3,4, 15, 1, 50a 280 mm ( 2) 3,5,10d, 93.3,56,28mm/d, 1 Table1 Parameterchoiceoftheoreticalfrequecycurvead calculatiooferror Cv Cs 50a /mm Fig.3 CalculatiomodelofMaliuliladslide P-Ⅲ Fig.2 FitigresultofPearsotypeⅢ distributiocurve 3 3, 0.2 m/d, θw 0.35cm 3 /cm 3 DataPoit 3.1,Va-Geuchte ( 5,6) Geostudio 3 1-1, Table3 Stregthcalculatioparametresof Maliulilad- SEEP slide / / / / (kn cm -3 ) (kn cm -3 ) kpa ( ), ( 3) Fig Experimetalresultsofshearstregthpara- metresoflaojiaoliladslide Table2 Statisticalresultsofshearstregthparametresof Laojiaoliladslide c/kpa φ /( ) =20,,
4 Fig.5 Soilwatercharacteristiccurve,, Morgester-Price [24] ( M-P ), M-P Geo-Slope 7,, 165 m, ,0.081,0.077, m 145 m,, ,, ( 5) 6 Fig.6 Curveofpermeabilitycoeficiet 3.1.3, 3 0.6,1.2,2.0m/d 7, 12 ( 4) Fig.7 Relatioshipbetweestabilitycoeficietof 4 ladslideadreservoirwaterlevel Table4 Workcoditiosforthecalculatioofladslide /(m d -1 ) /(mm d -1 ) , 8-a 3 150m ; 4 158m, 9, 1/3 165m,
5 Table5 Ladslidestabilitycoeficietuderthecharacteristicvalueofreservoirwaterlevel /(m d -1 ) 175m 165m 145m Fig.8 Chageofladslidestabilitycoeficietwithdiferetraifalcoditios, [25], 4 x (0),x (1) x (0) (k),x (1) = AGOx (0), 3,4, 7,8,12 x (0) = (x (0) (1),x (0) (2),,x (0) ()) (7) x (1) = (x (1) (1),x (1) (2),,x (1) ()) (8), x (0) GM(1,1) x (0) (k)+az (1) (k)=b (9), a ;b x (1) (k) x (0) (k+1)=x (1) (k+1)-x (1) (k) (10) {x t } p, m, p -m, p x m+1, x 1, {x 2 ~x m+1 }, x m+2 x p, ( ) Fig.9 Chageofladslidestabilitycoeficietuderreservoir 1.05( ) waterleveldeclieadraifal Matlab 4 (11) (12) 4.1 [26] y = x ,R 2 =0.999 (11)
6 4 265 y =-10-6 x x R ,55(1) =0.999 (12) [5], x (d);y (MAPE) (MSE), 3 [7], 6,, MAPE 2.86%,MSE 0.033, [J]., [9] 6 Table6 Errorofdiferetpredictiomethods MAPE/% MSE (1) P-Ⅲ, (2),, 0.6,1.2,2.0 (8) m/d 1.101,1.088,1.080; rometalearthscieces,2010,60(4) , 7, 8,12 3, ,, [19], [J]. (3), [21],, [1]. [J]. [23],,2012,31(6) [2],. [J].,2015,34( 2) slideifluecedbytheefectsofreservoirwateradraifal, 482. [4] HeK Q,LiX R,YaX Q,etal.TheladslidesitheThree [3] XiaM,ReG M,MaXL.Deformatioadmechaismoflad- ThreeGorges,Chia[J].NaturalHazards,2013,68(2)467- GorgesReservoirRegio,Chiaadtheefectsofwaterstor- ageadraiotheirstability[j].evirometalgeology,. [J].,2016,43(5) [6],,,. [J].,2013,34(4) ,,. [J].,2010,31(7) [8],,,. [J].,2012,31(2) ,2011,30(6) ,. [10],,. [J].,2016,35(5) [11]HuagF M,YiK L,HeT,etal.Ifluecigfactoraalysis addisplacemet predictioi reservoirladslidesa case study of Three Gorges Reservoir (Chia)[J].Tehicki vjesik,2016, [12]. [J].,2014,31(2) [13],,,. [J].,2015,32(11) [14]. [J].,2011,32( 1) [15]. [J].,2010,17(3)5-9. [16]Jia W X,Xu Q,Yag H F,etal.Mechaism adfailure processofthe Qiajiagpigladslideithe Three Gorges Reservoir,Chia[J].EvirometalEarthScieces,2014,72 [17]LiD Y,YiK L,ChiLeo.AalysisofBaishuiheladslidei- fluecedbytheefectsofreservoirwateradraifal[j].evi- [18],,. [J].,2010,31(3) [J].,2014,31(6) [20],,.,2014,35(4) ,. [M]., [22]. SL [S].,2006..P-Ⅲ [J].,1998,29(1) [24]MorgesterN R,PriceV E.Theaalysisofthestablitityof geeralslipsurface[j].geotechique,1965,15(1) [25]. [M].,2014. [26]. [M].,2002. ( 270 )
7 GeologicalEgieerigRisksadSafetyIvestmetDecisio ChegZhiyua,XuNegxiog (SchoolofEgieerigadTechology,ChiaUiversityofGeoscieces(Beijig), Beijig100083,Chia) AbstractTherisksofgeologicalegieerigareotolycomplexaditerrelated,butalsohavelifecycle characteristics.therisksarerelatedtotheucertaitiesofgeologicalegieerig,butoly withthose kowucertaities,forukowucertaitiesdootetertheprojectrisk maagemetprocess.ithe geologicalegieerigriskmaagemet,itisotrighttoevaluatethesafetyivestmetbeefitbythedif- feretaccidetlossbetweethebeforethesafety measureadtheafterthesafety measure.hece,this paperitroducestheexpectedreveueideas,addesigsaoptimalmodelofgeologicalegieerigsafety ivestmet,whichcamakeadecisioothesecurityivestmetiprojectriskmaagemettoimproveits efectiveess. Keywordsgeologicalegieerig;riskmaagemet;optimalmodelofsafety ivestmet 檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪 ( 265 ) StabilityEvaluatioadPredictioofMaliuliLadslide uderreservoirwaterleveldeclieadraifal GuoZizheg 1a,YiKulog 1a,TagYag 1b,HuagFamig 1b,FuXiaoli 2 (1a.FacultyofEgieerig;1b.GeologicalSurvey,ChiaUiversityofGeoscieces(Wuha), Wuha430074,Chia;2.ChiaIstituteofGeo-EvirometMoitorig,Beijig100081,Chia) AbstractItisofgreatsigificacetoresearchstabilitychagecharacteristicsofdebrisladslidesithe ThreeGorgesReservoirregioudertheefectofreservoirwaterlevelfluctuatioadraifaladpredict thestability.geologicalmodelofmaliuliladslidewasestablishedi WazhouDistrictofThreeGorges Reservoirregio,ad12workcoditiosweresetaftertheaalysisofrepetitioperiodofraifalothe basisofp-Ⅲ distributiocurve.simulatioofladslidestabilitywascarriedoutbyusiggeostudiosoft- ware.theresultsidicatethatthereservoirwaterleveldecliesadraifalifiltratiodecreases.thesta- bilitycoeficietofladslideadamplitudeofvariatiohasapositivecorrelatiowithbothrateofdecliig ofreservoirwaterleveladraifalitesity.theresposeofthestabilitytotheraifalismoresesitive. Thestabilitycoeficietis0.95ad0.949ithetwo mostegativeworkcoditioswithistabilityad failureofladslide.thegray modelwasusedtocarryoutroligforecastofthestabilitycoeficietof ladslideothemostegativeworkcoditio.themapeis2.86% ad MSEis0.033.Theaccuracyof graymodelisbeterthathatofthepolyomialmodel. Keywordsreservoirwaterleveldeclie;raifal;ladslidestability;graymodel;predictio
Ma;V L V Lj j Lagmur m 3 /m 3 ; L Lj j Lagmur Ma;yyj j ;G a m 3 /m 3 ; g/cm 3 ;a A 5 = GmBg 1- φ m G 1-S mw φ m -φ a a1 -G a2 3 A
36 2 2017 3 GeologcalSceceadTechologyIformato Vol.36 No.2 Mar. 2017 do10.19509/j.ck.dzkq.2017.0218. [J]. 2017362141-145. 102249 Bagham Lagmur Lagmur 20%; ; ; ; ; ; 618.13 A 1000-7849201702-0141-05 [13]
P(200 X 232) = =
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
394 June2012Vol.41No.3AGCS htp: xb.sinomaps.com ADS40 熿 X A 燄熿 X s 燄熿 u燄, GPS IMU Y A = Y s +R v, 燀 ZA 燅燀 Zs 燅燀 w燅, ADS40 (1) 2 ADS40 ADS40 GPS/ IMU (
41 3 Vol.41,No.3 2012 6 ActaGeodaeticaetCartographicaSinica Jun.,2012 WANG Tao,ZHANG Yongsheng,ZHANG Yan,etal.AirborneLinearCCDSensorGeometricCalibrationBasedonSel-calibration[J]. ActaGeodaeticaetCartographicaSinica,2012,41(3):393-400.(.
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x.
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισός (Τυχαία Μεταβλητή). Οοάζουε τυχαία εταβλητή (τ..) κάθε απεικόιση Χ: Ω για τη οποία το σύολο { ω Ω : Χ(ω) x} έχει προσδιορίσιη πιθαότητα για κάθε x. Τούτο σηαίει ότι η ατίστροφη
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
ERGO techr ΞΥΛΙΝΑ ΔΙΑΚΟΣΜΗΤΙΚΑ ΠΡΟΦΙΛ & ΚΟΡΝΙΖΕΣ ΑΠΟ ΜΑΣΙΦ ΞΥΛΟ ΒΟΓΙΑΤΖΟΓΛΟΥ SYSTEMS A.E.
ΞΥΛΙΝΑ ΔΙΑΚΟΣΜΗΤΙΚΑ ΠΡΟΦΙΛ & ΚΟΡΝΙΖΕΣ ΑΠΟ ΜΑΣΙΦ ΞΥΛΟ 361 Προφίλ ξύλινο διακοσμητικό ημικυκλικό 244cm Ø 8 mm 10/8Μ 175101.0000 30 x 7 mm 2/30x7 175101.0003 Προφίλ ξύλινο διακοσμητικό 240cm Προφίλ ξύλινο
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ( ) ΟΜΑΔΑ Α ( 40% )
ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ (0-6-005) ΟΜΑΔΑ Α ( 40% ) ) Έστω μια τυχαία μεταβλητή Χ και ένα δείγμα x, x,, x n. Θεωρούμε την τιμή k = n i= ( x && x) i.να διευκρινιστεί
ΤΡΙΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ UU
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΓΕΩΤΡΗΣΗ: ΒΑΘΟΣ ΔΕΙΓΜΑΤΟΣ : ΠΕΡΙΓΡΑΦΗ: ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΔΟΚΙΜΗΣ 1 (πλευρική τάση σ 3 =100kPa) Δοκίμιο: Αδιατάρακτο Διαμορφωμένο Χ Σταθερά μηκ/τρου μετακ.
Εξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Εξισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 0 / 0 6 εκδόσεις Ασκήσεις Πιθανότητες Τράπεζα θεμάτων. Δίνεται η
Μορφές και πρόσημο τριωνύμου
16 Φεβρουαρίου 214 Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: P(x) = αx 2 + βx + γ Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: Παραγοντοποιημένη: P(x) = αx 2 + βx + γ P(x) = k(x λ)(x μ) Μορφές τριωνύμου
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
Px α x α x... α x α. Ο αριθμός κ λέγεται βαθμός
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΑΛΓΕΒΡΑ ΘΕΜΑ Α Α1. Να δείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Px με το x ρ είναι ίσο με την τιμή του πολυωνύμου για
Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία
0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i
Επιτραπέζια μίξερ C LINE 10 C LINE 20
Επιτραπέζια μίξερ C LINE 10 Χωρητικότητα κάδου : 10 lt Ναί Βάρος: 100 Kg Ισχύς: 0,5 Kw C LINE 20 Χωρητικότητα κάδου : 20 lt Βάρος: 105 Kg Ισχύς: 0,7 Kw Ναί Επιδαπέδια μίξερ σειρά C LINE C LINE 10 Χωρητικότητα
Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
2.1 Πολυώνυμα. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; 3 2 ii. x iii. 3 iv. vi.
.1 Πολυώνυμα 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; i. 1 x + x ii. x + 7 x iii. 5 x + 7x x iv. 1 x + x v. 1 4 4 x + x + 4x vi. 1 x + 5x. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα
ΑΣΚΗΣΕΙΣ ΚΑΘΙΖΗΣΕΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ
Πανεπιστήμιο Δυτικής Αττικής Τμήμα Πολιτικών Μηχανικών ΜΑΘΗΜΑ: ΘΕΜΕΛΙΩΣΕΙΣ 6 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Α. Βαλσαμής ΑΣΚΗΣΕΙΣ ΚΑΘΙΖΗΣΕΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΑΣΚΗΣΗ 1 Να υπολογιστούν οι μακροχρόνιες καθιζήσεις
tionsweregeneratedbyheavyvehiclestravelingonaroadthatwaslocatedapproximately80 m northofthebuilding.thefrequencyandamplitudecharacteristicsof
36 2 2014 6 CHINA EARTHQUAKEENGINEERINGJOURNAL Vol.36 No.2 June,2014 1 1,2, 1 2 (1., 200240; 2., 200032) : 6, 5~6 80m, (GB50868-2013) ;, 1, ;, : ; ; ; :TU311.3 DOI:10.3969/j.issn.1000-0844.2014.02.0207
Influence of Flow Rate on Nitrate Removal in Flow Process
J. Jpn. Soc. Soil Phys. No. 33, p.1-2-,**/, ******* Influence of Flow Rate on Nitrate Removal in Flow Process Toshio TABUCHI*, Hisao KURODA**, Akiko IKENOBE** and Mayumi HIRANO** * Former professor of
1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
i j GPS BDS ; (xyz) ;(X i Y i Z i )(X j Y j Z j ) GPSBDS ;V GPS V tr BD GPSBDS ;V ts V ion V trop tr ; ρ : 0 ~ ~360 [8] ;c (1) (2) (x
40 4 20154 GeomaticsandInformationScienceofWuhanUniversity Vol.40No.4 Apr.2015 DOI:10.13203/j.whugis20130361 :1671-8860(2015)04-0529-05 /GPS 1 1 1 2 1 430079 2 400020 : /GPS /GPS /GPS GPS PDOP /GPS PDOP
, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.
212 2 28 1 Pure and Applied Mathematics Feb. 212 Vol. 28 No. 1 P bkc (c[, 1]) P bkc (L p [, 1]) (1) ( (), 364) (G, β, u),,, P bkc (c[, 1]) P bkc (L p [, 1]),. ; ; O174.12 A 18-5513(212)1-99-1 1, [2]. 1965,
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
Fig Fig. 2 Table 1 Actual dimension of part 1 3D 3D model of part Material parameters ε f /% / / MPa MPa ~ ~ 82 80
39 9 Vol. 39 No. 9 FORGING & STAMPING TECHNOLOGY 2014 9 Sep. 2014 檪 檪檪檪檪檪檪檪 201620 Deform- 3D 3 850 300 16 mm s - 1 8 mm s - 1 Deform-3D DOI 10. 13330 /j. issn. 1000-3940. 2014. 09. 001 TG376 A 1000-3940
2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. α) Να βρείτε τις ρίζες της εξίσωσης x +0x=. x + 0x β) Να λύσετε την εξίσωση x. ίνεται η εξίσωση: x λx+(λ +λ )=0 (), λ R. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
Τεχνική Έκθεση 2012. 1.1 Συνοπτική παρουσίαση... 3
Δ2.3/2 1.1 Συνοπτική παρουσίαση....................... 3 Δ2.3/3 Σύμφωνα με το τεχνικό δελτίο του έργου η δράση της παρούσας έκθεσης συνοψίζεται ως εξής. Δράση 2.3: ΣΤΟΧΑΣΤΙΚΕΣ/ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΕΣ ΥΒΡΙΔΙΚΕΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ (4) Ημερομηνία και ώρα εξέτασης: ΔΕΥΤΕΡΑ, 21 ΜΑΪΟΥ 2018 8:00 11:00 ΜΕΡΟΣ Α ΠΡΟΤΕΙΝΟΜΕΝΕΣ
Ανάλυση δοκού σε ελαστική θεμελίωση Αποτελέσματα
Ριζάρειο Πελοπίδα 15 Ανάλυση δοκού σε ελαστική θεμελίωση Αποτελέσματα Ο υπολογισμός εκτελείται. Τυπικός συνδυασμός για ανάλυση υπεδάφους : ΟΚΑ: Q3:G1+G2 Ανάλυση 1 "Black Rose" εμπορικό κέντρο γεωτεχνικών
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Α4. α. Λάθος, Σχόλιο σχολικού βιβλίου σελίδα 134 β. Λάθος, Σχόλιο 3ο (σχήμα 39β) σχολικού βιβλίου σελίδα 41 Αντιπαράδειγμα σελίδα 71 = = +,
ΘΕΜΑ Α Α. α. Ορισμός σχολικού βιβλίου σελίδα 5 β. (i, ii) Σχολικό σελίδες 5,6 A. Θεώρημα σχολικού βιβλίου σελίδα 4 Α. Θεώρημα σχολικού βιβλίου σελίδα 5 Α4. α. Λάθος, Σχόλιο σχολικού βιβλίου σελίδα 4 β.
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Ειδικές μέθοδοι κλίσης - Τεχνικές φραγής/ποινής - Σύνθετα προβλήματα ΧΕΙΡΙΣΜΟΣ ΠΕΡΙΟΡΙΣΜΩΝ Απορία: Πως επιλύονται με τις
ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
(Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν
6. α) Να λύσετε την εξίσωση 2x 1 =3. β) Αν α, β με α< β είναι οι ρίζες της εξίσωσης του ερωτήματος (α), τότε να λύσετε την εξίσωση αx 2 +βx+3=0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. Δίνεται η εξίσωση λx=x+λ, με λr. α) Να αποδείξετε ότι η παραπάνω εξίσωση γράφεται ισοδύναμα (λ )x=(λ )(λ+), λr. β) Να βρείτε τις τιμές του λ για τις οποίες η παραπάνω εξίσωση
1. Ένα σώμα m=1 kg εκτελεί γ.α.τ. και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο φαίνεται στο σχήμα.
. Ένα σώμα m= kg εκτελεί γ.α.τ. και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο φαίνεται στο σχήμα. α. Να βρείτε τη σταθερά D και την ολική ενέργεια του ταλαντωτή. β. Να γράψετε τις εξισώσεις
ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ
ΘΕΩΡΙΑ Α ΛΥΚΕΙΟΥ ΤΑΥΤΟΤΗΤΕΣ ). (α + β) = α +αβ + β ). (α β) = α αβ + β. 3). (α + β) 3 = α 3 + 3α β +3αβ + β 3 ). (α β) 3 = α 3 3α β +3αβ β 3. 5). α β = (α β)(α + β) 6). α + β = (α + β) αβ. 6). α 3 β 3
,, [7-9] 1, n 1,, n, [10] [11-1], LED, θ,,, Solidworks TracePro, 1 Fig.1 Schematicofbeampropagation, ( ) s p r s = Er = n1cosαi-ncosαt, (1a) E i n 1co
34 6 Vol.34,No.6 014 6 ACTAOPTICASINICA June,014 (, 36101) (LED), TracePro, (PMMA) (PC), 0.5, 0.5,, 93% ; ; ; O435 A doi:10.3788/aos01434.06005 ResearchofGrazingIncidenceDiffuserwith Microstructureof Double-SidedTriangularPrism
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου
Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου Ακ. Ετος 2018-2019 Θεωρούµε µια συνάρτηση f : I R, όπου το I είναι διάστηµα του R. Ορισµός Μια συνάρτηση F : I R λέγεται αντιπαράγωγος ή αρχική συνάρτηση
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Χρηµατικά µέτρα των ωφελειών από ανταλλαγή. ανταλλαγή. ανταλλαγή. Πλεόνασµα καταναλωτή. Διάλεξη 8
Χρηµατικά µέτρα των ωφελειών από ανταλλαγή Διάλεξη 8 Πλεόνασµα καταναλωτή Μπορείτε να αγοράσετε όσο βενζίνη θέλετε, µε το λίτρο, όταν µπείτε στην αγορά πετρελαιοειδών. Ε: Ποιο είναι το µέγιστο που θα πληρώνατε
ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΛ 2019
ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΛ 09 ΘΕΜΑ Α Α. α) ορισμός σελ.5 β)i) για να έχει μια συνάρτηση αντίστροφη πρέπει να είναι -. ii) ορισμός σελ.35 Α. ορισμός σελ.4 Α3. απόδειξη σελ.35 Α4. α)λ
( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region
Chapter 3 Exercise Solutios EX3. TN, 3, S 4.5 S 4.5 > S ( sat TN 3 Trasistor biased i the saturatio regio TN 0.8 3 0. / K K K ma (a, S 4.5 Saturatio regio: 0. 0. ma (b 3, S Nosaturatio regio: ( 0. ( 3
High Voltage Ceramic Capacitor (Radial Disc Type)
High Voltage Ceramic Capacitor (Radial Disc Type) 1. Material Characteristics Series No TEMP. CHAR. Working Temperature ( ) Insulation Resistance ( MΩ) 1 UJ -25~+85 100000 2 SL -25~+85 100000 Disspation
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)
Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π Δ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) 3Νο ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1 Να μελετήσετε
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:
ΑΡΧΙΜΗΔΗΣ ΙΙΙ Ενίσχυση Ερευνητικών Ομάδων στο ΤΕΙ Δυτικής Μακεδονίας» - MIS 383583
ΑΡΧΙΜΗΔΗΣ ΙΙΙ Ενίσχυση Ερευνητικών Ομάδων στο ΤΕΙ Δυτικής Μακεδονίας» - MIS 383583 Υποέργο 11: 3D Προσομοίωση της κατεργασίας της διάτρησης, βασισμένη στον προγραμματισμό συστήματος CAD Παραδοτέο του Π.Ε.
ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ
ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )
ΠΡΟΣΤΑΣΙΑ ΓΕΩΜΕΜΒΡΑΝΩΝ ΜΕ ΓΕΩΥΦΑΣΜΑΤΑ: ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΣΧΕΤΙΣΕΙΣ ΚΑΤΑ ΕΝ 13719
Επιβλέπων : Δ. Κ. Ατματζίδης, Καθηγητής ΠΡΟΣΤΑΣΙΑ ΓΕΩΜΕΜΒΡΑΝΩΝ ΜΕ ΓΕΩΥΦΑΣΜΑΤΑ: ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΣΧΕΤΙΣΕΙΣ ΚΑΤΑ ΕΝ 13719 ΔΙΑΤΡΙΒΗ ΓΙΑ ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ ΕΙΔΙΚΕΥΣΗΣ ΜΑΡΙΑΝΝΑ ΑΦΡΟΔΙΤΗ T. ΚΟΝΔΥΛΗ Διπλ.
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Πυκνότητα φορτίου. dq dv. Μικρή Περιοχή. φορτίου. Χωρική ρ Q V. Επιφανειακή σ. dq da Γραµµική λ Q A. σ = dq dl. Q l. Γ.
Πυκνότητα φορτίου Πυκνότητα φορτίου Οµοιόµορφη Μικρή Περιοχή Χωρική ρ Q V ρ= dq dv Επιφανειακή σ Q A σ = dq da Γραµµική λ Q l λ= dq dl Γ. Βούλγαρης 1 Παράσταση της έντασης Ηλεκτρικού Πεδίου. Η Εφαπτόµενη
Η συνάρτηση y = αχ 2 + βχ + γ
Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική
Ανάλυση ευστάθειας πρανούς Εισαγωγή δεδομένων
Ριζάρειο - Πελοπίδα 5 γεωτεχνικών τεκμηρίωση - στάδιο Ανάλυση ευστάθειας πρανούς Εισαγωγή δεδομένων Έργο Ημερομηνία : 04.0.03 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Ανάλ ευστάθειας Σεισμική ανάλυση :
1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R
1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 99 Α. α) Ψ β) Η συνάρτηση
Πανεπιστήμιο Πελοποννήσου
Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Ακολουθίες και Σειρές Συναρτήσεων ρ. Κωνσταντίνος Κυρίτσης Εκπαιδευτικός Οργανισµός ΒΙΤΑΛΗ Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 10 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν
, x > a F X (x) = x 3 0, αλλιώς.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης 11ο Φροντιστήριο - Θέµατα Εξετάσεων από προηγούµενα έτη Επιµέλεια : Κωνσταντίνα Φωτιάδου
Συνέχεια - Παράγωγος ως συνάρτηση. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης
4 η Διάλεξη Συνέχεια - Παράγωγος ως συνάρτηση 27 Σεπτεµβρίου 2016 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Finney R.L. / Weir M.D. / Giordano F.R. Πανεπιστημιακές
ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ
ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ Θ Ε Μ Α 1 Από τους 120 μαθητές ενός Λυκείου, οι 24 μαθητές συμμετέχουν σε ένα διαγωνισμό Α, οι 20 μαθητές συμμετέχουν σε ένα διαγωνισμό Β και οι 12 μαθητές
ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ Φ 250 25,6 275 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,800 Φ 250 1,800 Υ: 1.75 B:0.59 Π: 0.
ΚΑΜΙΝΑΔΑΣ Kw ΒΑΡΟΣ 1 B:0.59 150 25,6 275 1,700 2 3 4 5 ΣΤΡΟΓΓΥΛΟ Τ 90 B:0.73 B:0.76 Υ: 1.72 B:0.62 Π: 0.98 B:0.66 Π:1.06 150 150 24 20 20 20 288 295 305 1,700 1,700 1,700 1,800 ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ
Κατανοµές-Λυµένα Παραδείγµατα. 2. Ποια είναι η πιθανότητα µεταξύ 12:00 και 12:10 να µπουν ακριβώς 4 πελάτες µεταξύ 12:02-12:03 και 12:05-12:06;
Τµήµα Επιστήµης των Υλικών 1 Μάθηµα: Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες ιδάσκων: Κ. Πετρόπουλος Κατανοµές-Λυµένα Παραδείγµατα Παράδειγµα 1. Σε ένα κατάστηµα µπαίνουν κατά µέσο όρο 6 πελάτες
3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li
Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Τον ορισµό της συνάρτησης και τον τρόπο εύρεσης του πεδίου ορισµού της. Τις πράξεις µεταξύ συναρτήσεων, τις γραφικές παραστάσεις
ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 11 Ιανουαρίου 21 Η δεσµευµένη µέση τιµή µιας τυχαίας µεταβλητής Y σε δεδοµένο σηµείο µιας άλλης τυχαίας µεταϐλητής X = x, συµϐολιϲόµενη
Πραγματικοί αριθμοί. Κεφάλαιο Οι πράξεις και οι ιδιότητές τους. = 2. Να υπολογίσετε
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους. Έστω α, β δύο πραγματικοί αριθμοί για τους οποίους ισχύει α + β = 0 και β + α την τιμή της παράστασης αβ + αβ. =. Να υπολογίσετε. Αν x y
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 6 (λύσεις)
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 6 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση 1: (α) Να προσεγγισθεί η τιµή του e µε ακρίβεια 0.001. (ϐ) Να προσεγγισθεί ο ln µε ακρίβεια 0.1. Λύση : Αν ξεκινήσουµε
ΠΑΡΑΡΤΗΜΑ Ι Υπόδειγμα Οικονομικής Προσφοράς
ΠΑΡΑΡΤΗΜΑ Ι Υπόδειγμα Οικονομικής Προσφοράς ΟΜΑΔΑ Α - ΑΝΑΛΩΣΙΜΑ ΕΚΤΥΠΩΤΩΝ Α/Α CPV ΠΕΡΙΓΡΑΦΗ ΕΙΔΟΥΣ Μ.Μ. ΠΟΣΟΤΗΤΑ ΤΙΜΗ ΜΟΝΑΔΑ Σ 1 PRINTHEAD HP BLACK & YELLOW HP 940 (C4900A) 2 PRINTHEAD HP MAGENTA & CYAN
ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )
ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής
Χρηματικά μέτρα των ωφελειών από ανταλλαγή
Χρηματικά μέτρα των ωφελειών από ανταλλαγή Έστω η αγορά πετρελαιοειδών. Μπορείτε να αγοράσετε όση βενζίνη θέλετε, με 1 το λίτρο, όταν μπείτε στην αγορά πετρελαιοειδών. Ε: Ποιο είναι το μέγιστο που θα πληρώνατε
Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ
Χαράλαµπος Α. Χαραλαµπίδης 3 Νοεµβρίου 29 ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Ας ϑεωρήσουµε µια συνεχή τυχαία µεταβλητή X ορισµένη στον Ω µε πεδίο τιµών το διάστηµα [α, ϐ], όπου α < ϐ πραγµατικοί αριθµοί. Η οµοιόµορφη
Αυτόματος Έλεγχος. Ενότητα 4 η : Πρότυπα μεταβλητών κατάστασης. Παναγιώτης Σεφερλής. Εργαστήριο Δυναμικής Μηχανών Τμήμα Μηχανολόγων Μηχανικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Πρότυπα μεταβλητών κατάστασης Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Ελεγκτής αντλιών τύπου ABS PC 111/211
Ελεγκτής αντλιών τύπου ABS PC 111/211 (10/2014) Εγειρίδιο εγκατάστασης και χρήσης www.sulzer.com Ελεγκτής αντλιών τύπου ABS PC 111/211, Εγειρίδιο εγκατάστασης και χρήσης Δικαιώματα πνευματικής ιδιοκτησίας
[1-3] : [12-13] [4-5] x ( H K x x ) + x ( H K y y ) H +w=u s t ( 1) ; :H ;K x K y x y ;w ;u s ;t [6] (2) [7] KH+MH t=q (2) :K ;M ;Q ;H ;H
25 3 20125 ChinaJournalofHighwayandTransport Vol.25 No.3 May2012 :1001-7372(2012)03-0059-06 ( 410004) : : ; ; : ; ; ; ; :U416.14 :A DevelopingLawofTransientSaturatedAreasofHighwaySlope UnderRainfalConditions
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε
Ανάλυση με τη μέθοδο πεπερασμένων στοιχείων Τοπολογία
Ανάλυση με τη μέθοδο πεπερασμένων στοιχείων Τοπολογία Έργο Ημερομηνία : 8.0.05 Καθολικές ρυθμίσεις Τύπος έργου : Τύπος ανάλυσης : Σήραγγες : Επαυξημένη εισαγωγή : Αναλυτικά αποτελέσματα : Κατασκευές από
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
ΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΣΤΑΤΙΣΤΙΚΗ ΒΑΡΙΟΓΡΑΜΜΑΤΑ ΚΑΙ ΜΕΘΟΔΟΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
009 ΤΕΙ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ ΝΙΚΟΣ ΓΙΑΝΝΟΠΟΥΛΟΣ ΑΜ 3 Πέμπτη, 0 Δεκεμβρίου 009 ΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΣΤΑΤΙΣΤΙΚΗ ΒΑΡΙΟΓΡΑΜΜΑΤΑ ΚΑΙ ΜΕΘΟΔΟΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Περίληψη
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)
ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Αναλογικής Πηγής: Κβάντιση Εισαγωγή Αναλογική πηγή: μετά από δειγματοληψία γίνεται διακριτού χρόνου άπειρος αριθμός bits/έξοδο για τέλεια αναπαράσταση Θεωρία Ρυθμού-Παραμόρφωσης
Άσκηση. (i)(α) Να αποδειχθεί ότι η ƒ αντιστρέφεται και να βρεθεί το σύνολο τιμών της. (β) Να βρεθεί ο πραγματικός αριθμός a, τέτοιος ώστε να ισχύει
Πειραματικό λύκειο Αναβρύτων Δρεκόλιας Δημήτρης Γ Λυκείου 2//2 Άσκηση Έστω η συνάρτηση f(x) = 2e x x 2 + με πεδίο ορισμού το σύνολο D f = R. (i)(α) Να αποδειχθεί ότι η ƒ αντιστρέφεται και να βρεθεί το
Slide D-FLOW 8km. 13a. 400mm / d
22 2 2011 6 The Chinese Journal of Geological Hazard and Control Vol. 22 No. 2 Jun. 2011 1 1 1 2 1. 361005 2. 423037 1003-8035 2011 02-0108-07 TU457 A 0 10 ANSYS10. 0 1-9 2-3 Slide5. 0 9 1 2D-FLOW 8km
Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ροπή δύναµης Μεθοδολογία ασκήσεων
ΦΥΣ 131 - Διαλ.3 1 Ροπή δύναµης Μεθοδολογία ασκήσεων q Κάντε ένα σκίτσο του προβλήµατος και διαλέξτε το σώµα ή σώµατα που θα αναλύσετε. q Για κάθε σώµα σχεδιάστε τις δυνάµεις που ασκούνται (διάγραµµα ελευθέρου
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
ΘΕΜΑ Α ΘΕΜΑ B. Β.1. Γνωρίζουμε ότι τα σημεία Α(π,4) και Β(-2π,6) ανήκουν στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΘΕΜΑ Α Α.1. Η απόδειξη βρίσκεται στη σελίδα 175 του σχολικού βιβλίου. Α.. Η διατύπωση του ορισμού βρίσκεται στη σελίδα 163 του σχολικού βιβλίου «εκθετική συνάρτηση». Α.3. i) Λάθος ii) Λάθος iii) Σωστό
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
4 8 c +t +t - (t +t ) - <t +t < - < t t < + +c ( ) +t + ( ) +t + [ - (t +t )] (t + t ) + t + t t 0 + +c c x i R + (i ΔABC ABC ) x i x i c ABC 0 ABC AC
8 No8Vol JOURNALOF NEIJIANG NORMAL UNIVERSITY * * ( 6499) : ; ; ; ; ; : ; ; DOI:060/jcki-6/z0808006 :G647 :A :67-78(08)08-00-09 0 [4] [] [6] [7] ( ) ( [8] ) [9] [] : [] [] :08-06- : (ZG0464) (ZY600) 06
Model VRT Miniature Type (Tapped Base Type)
odel VRT iniature Type (Tapped Base Type) F n F A H m φ D1 B B1 S1 1 F1 T1 f1 n1 F1 T 1 n f1 1 ain dimensions Table surface dimensions odel No. aximum stroke idth Heiht enth ass Table mountin tap position
Μαρούσι, 26-09-2014 Αρ. Πρωτ.: 154339/Δ14 Βαθμός Προτ.: ΕΞΑΙΡ. ΕΠΕΙΓΟΝ Αναρτητέα στο Διαδίκτυο ΑΔΑ: Αναρτητέα στο Μητρώο ΑΔΑΜ: ΑΠΟΦΑΣΗ
Να διατηρηθεί μέχρι: Βαθμός Ασφαλείας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ------ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΟΙΚΟΝΟΜΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ------ ΔΙΕΥΘΥΝΣΗ ΠΡΟΜΗΘΕΙΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΥΛΙΚΟΥ ΤΜΗΜΑ Α ΚΑΤΑΡΤΙΣΗΣ