Angular distribution of coherent Cherenkov radiation from a tilted bunch passing through a slit in target

Σχετικά έγγραφα
Spherical Coordinates

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

[1] P Q. Fig. 3.1

Graded Refractive-Index

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Homework 8 Model Solution Section

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Chapter 7 Transformations of Stress and Strain

derivation of the Laplacian from rectangular to spherical coordinates

Parametrized Surfaces

Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018

CRASH COURSE IN PRECALCULUS

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

IV. ANHANG 179. Anhang 178

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Section 9.2 Polar Equations and Graphs

NKT NTC Thermistor. Negative Temperature Coefficient Thermistor FEATURES

Photometric Data of Lamp

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

4.6 Autoregressive Moving Average Model ARMA(1,1)


Areas and Lengths in Polar Coordinates

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

6.4 Superposition of Linear Plane Progressive Waves

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

LUMINAIRE PHOTOMETRIC TEST REPORT

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

D Alembert s Solution to the Wave Equation

DuPont Suva 95 Refrigerant

Aluminum Electrolytic Capacitors

Areas and Lengths in Polar Coordinates

Calculating the propagation delay of coaxial cable

the total number of electrons passing through the lamp.

Hadronic Tau Decays at BaBar

Answer sheet: Third Midterm for Math 2339

Aluminum Electrolytic Capacitors (Large Can Type)

Space-Time Symmetries

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

SMD Transient Voltage Suppressors

DuPont Suva 95 Refrigerant

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Lifting Entry (continued)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Multilayer Ceramic Chip Capacitors

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Ceramic PTC Thermistor Overload Protection

Example Sheet 3 Solutions

; +302 ; +313; +320,.

NMBTC.COM /

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

XKT. Metal Oxide Varistor FEATURES

4.4 Superposition of Linear Plane Progressive Waves

Durbin-Levinson recursive method

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Srednicki Chapter 55

SHENZHEN BRILLOOP LIGHTING CO.,LTD Page 1 Of 13. LED Floodlight 24W(COB)

( ) Sine wave travelling to the right side

Higher Derivative Gravity Theories

PhysicsAndMathsTutor.com 1

2 Composition. Invertible Mappings

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Reminders: linear functions

Electronic Supplementary Information (ESI)

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Lecture 21: Scattering and FGR

Visual Systems Division Technical Bulletin MultiSync MT820/MT1020 Installation Data Desk Top and Ceiling Mount

Fused Bis-Benzothiadiazoles as Electron Acceptors

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

ST5224: Advanced Statistical Theory II

Section 8.3 Trigonometric Equations

Matrices and Determinants

ECE 468: Digital Image Processing. Lecture 8

Variational Wavefunction for the Helium Atom

Note: Please use the actual date you accessed this material in your citation.

Design Method of Ball Mill by Discrete Element Method

Strain gauge and rosettes

Multilayer Ceramic Chip Capacitors


Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Supplementary Appendix

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

1. This question is about microwaves.

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Uniform Convergence of Fourier Series Michael Taylor

EE101: Resonance in RLC circuits

Rectangular Polar Parametric

for fracture orientation and fracture density on physical model data

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Transcript:

CHANNELING 016 Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia A.Potylitsyn, S. Gogolev Angular distribution of coherent Cherenkov radiation from a tilted bunch passing through a slit in target

The Cherenkov mechanism may be realized for charge passing in vacuum near a dielectric target. For the high Lorentz-factor γ and if the condition h γλ is fulfilled (h is the impact parameter, λ is the ChR wavelength) ChR can be produced. a) b) ch сos ch = β Fresnel s law sin = ε sin ch 1 ε 1 = arccos β ε If ε < γ ( ( )) = arcsin ε sin ch then the geometry a) can be realized ( ( )) = 90 α arcsin ε cos α + ch

3 Experiments T. Takahashi Physical Review E., v.6 (000) 8606 impact-parameter h=5 mm The schematic view in the vacuum chamber. (a) The sectional diagram of the optical components, (b) the block of quartz, and (c) the cone of Teflon with the cylindrical hole of 7 mm. (M6, M7, M8) plane mirrors; (M9) a spherical mirror; and ( ) electron beam. The values of dimensions in (b) are listed in Table. e

4 T. Takahashi Physical Review E., v.6 (000) 8606 The angular distribution of radiation from the quartz of 60 mm long at λ=1.3 mm and the Teflon of 100 mm long at λ=.0 mm. The data are plotted on a logarithmic scale in order to visualize satellite peaks in the angular distribution The dependence of the angular distribution on the length of quartz. The solid, broken, and dotted curves represent the data for quartz of 60, 40, and 0 mm long, respectively. The curves at the right-hand side show the theoretical calculation.

5 Potylitsyn et al. Journal of Physics: Conference Series 36 (010) 0105 6.1 Mev (γ 1) electron energy 30 ma average beam current 10 8 maximal bunch population 1056 Bunches in a train 1.1 mm longitudinal size (rms) of electrons 4 4 mm transverse sizes of electron beam 4 µs train duration 5 mm impact-parameter 170 mm Diameter of paraboloidal mirror 151 mm focal distance DP-1M detector 1 17 mm viewed a range of wavelengths 1.45 Teflon refractive index Experimental scheme and some definitions. The angular dependence of CChR: the red circles horizontal polarization component, the blue squares vertical polarization component, the solid line theoretical simulation.

6 K. Sakaue, et al., in Proc. of IPAC 16, Busan, Korea (016), TUPOW047. 5 Mev (γ 10) electron energy quasi-optical detector 0.1 THz viewed a range of frequency 1.5 TOPAS refractive index 48.5 deg Cherenkov angle width 1 mm Prizm target size thickness 1 mm THz intensity with 1 THz as a function of the electron bunch position and electron bunch tilting angle Experimental setup for coherent Cherenkov radiation by using tilted electron bunch.

7 Incoherent Cherenkov radiation dw ChR dω dω uur ur E ( r ω) = cr ' vac, (1) 1 uuur uur (, ) R uur (, R uur Evac r ω = εfe H r ω) FH H ( r, ω ) ε P + () ur ur ur ur (, ω) = z (, ω) + x (, ω) sin ( φ) + y (, ω) cos( φ) ( ) R R R R HP r H r H r H r (3) ur ur ur = (, ω) x (, ω) cos ( φ) y (, ω) sin( φ) (4) R R R H r H r H r εcos F = H εcos + ε sin (5) F E = cos cos + ε sin (6)

8 ω i r' ε / / ( 1 c L a + H a ε ) ω e r ik ( ) * y y+ kz z ik ( y y+ kz z ) uur R uur e uur e H ( kx, y, z, ω) = k ( kx, y, z, ω) e dy ( kx, y, z, ω) e dy dz (7) c r' E + E 0 a/ a/ H ur E ( n ) { ( ) } ie ( k, y, z, ω) = εβγn, i 1 + ε βγn, γ e e x x x πβc 1+ ε βγ * e 1 x ω ω i z y 1+ ε βγn x βс βсγ ( ) (8) ur E e ( n ) { ( ) } 1 ie ( k, y, z, ω) = εβγn, i 1 + ε βγn, γ e e x x x πβc 1+ ε βγ x ω ω i z y 1+ ε βγn x βс βсγ ( ) (9) r r ω r 1 k = n ε, n= { sin( ) sin ( φ), sin( ) cos ( φ), ε sin ( ) } (10) c ε

9 ( 1+ γ sin ) ( ε 1) ( ( )) iπl 1 β ε sin ( ) ( ) sin ( φ) β ε ( ( )) ChR e β cos = ω Ω 4π 1 β ε sin dw d d c e λβ 1 Spectral and angular distribution of the radiation, calculated using the method of polarization currents [D. V. Karlovets, А. P. Potylitsyn, Phys. Lett. A 373, 1988 (009).] ε ( Φ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) iγ cos φ ε sin 1+ γ sin sin φ β + Φ 1 sin cos φ + sin sin φ γ 1 β β ε sin ( ) εcos( ) + ε sin ( ) ε cos + ε sin sin ( ) sin ( φ ) γ Φ1 cos( φ) sin( ) s ( ) 1 ε ( ) 1, ε ( ( )) + ( ) ( ) ( Φ1γsin( ) cos( φ) β +Φ i 1+ γ sin ( ) sin ( φ) β ) + ( sin( φ) ( Φ1sin( ) cos( φ) + iφγ ε sin ( ) 1+ γ sin ( ) sin ( φ) β ) in φ γ ( β β sin )) (11) ( ( ) ( ) ( ) ( ) ) ( ( ) ( ) ( ) ( ) ) aπ iγsin cos φ β 1 γ sin sin φ β πh iγsin cos φ β 1 γ sin sin φ β + + + + exp 1 exp γλβ γλβ Φ = ± ( iγ Únyβ + 1+ γ sin ( ) sin ( φ) β ) ( i sin( ) cos( φ) 1 sin ( ) sin ( φ + + ) ) H i sin( ) cos( φ) + 1+ sin ( ) sin ( φ) aπ γ β γ β π γ exp 1 exp γλβ ± iγsin cos φ β + 1+ γ sin sin φ β ( ( ) ( ) ( ) ( ) ) ( β γ β ) γλβ (1)

10 V.E. Pafomov, JETP, 33, 1074 (1957) (Russian) dw ChR dω dω = ( ) cos ( ) ( ε 1) ( ( )) ( 1 cos ( )) 1 sin ( ) ( ) iπl ε sin ( ) e β sin π c β β ε ( ( ) ( )) ( ) ( ( ) ( )) ( )( ( )) e λ ε sin εcos 1 β ε sin 1 β + β ε sin iπl ε sin e Spectral and angular distribution of the radiation, calculated using method of images iπl ε sin iπl ε sin λ λ ( ) ( ( ) ( )) ε sin + εcos e ε sin εcos e + e λ ( ) ( ε sin ( ) + εcos( ) )( 1+ β ε sin ( ) ) 1 β β ε sin ( ) ( ) ( ( ) ( )) iπl ε sin iπl ε sin λ λ ( ) ( ) ( ( ) ( )) ε sin + εcos e ε sin εcos e ( ) iπ L λβ ( ( ) ( )) ( β β ε) ( ) ( ( )) 1 cos( ) e ε sin 1 + βcos iπl ε sin iπl ε sin λ λ ( ) ( ( ) ( )) ε sin + εcos e ε sin εcos (13)

11 Comparison of both models H= mm a=0 mm L=5 mm γ=10 ε=1.3 λ=1.5 mm φ = 0 o polarization currents Pafomov H= mm a=0 mm L=75 mm γ=10 ε=1.3 λ=1.5 mm φ = 0 o polarization currents Pafomov

1 Angular distribution of incoherent ChR r k { ( ) ( ) ( ) ( ( ) ( ))} sin x, cos x sin y, ε 1 cos x cos y π = λ H=50 mm L=5 mm a=0 mm γ=10 ε=1.3 λ=1.5 mm

13 H=50 mm L=5 mm a=0.1 mm γ=10 ε=1.3 λ=1.5 mm H=50 mm L=5 mm a=5 mm γ=10 ε=1.3 λ=1.5 mm

14 see, Norihiro Sei, Takeshi Sakai, et. al., Physics Letters A, 379 (015) 399 404 can be approximated as exp 4πa 4πa exp = exp = exp( 0.8419a ) γλβ 10 1.5 0.9949 H=50 mm L=5 mm γ=10 ε=1.3 λ=1.5 mm 4π a γλβ 4πa 4πa exp = exp = exp γλβ 50 1.5 0.9998 H=50 mm L=5 mm γ=50 ε=1.3 λ=1.5 mm ( 0.1675 a ) Fit 510.914 exp 0.869 a polarization currents Fit 54.6381 exp 0.167 a polarization currents

15 Coherent Cherenkov radiation The spectral-angular density of Coherent Cherenkov radiation (CChR) from a bunch with population N: r ( + ( )) CChR dw dwchr = N 1 ( N 1) F k, dωdω dωdω r r Fo rm factor Fk ( ) ( r) exp i ω sin( ) sin( ) x ω sin( ) cos ( ) y ω r = ρ φ + φ + z dr, c c cβ dw ChR dωdω is the spectral-angular density for a single charge. r 1 1 x y z ρ() r = ρ(, x y,) z = exp + +. (*) 3/ ( π) σ σ xσyσ z x σ y σ z

16 Form factor a tilted electron bunch with distribution of electrons in the bunch is a Gaussian: π z Vϕ = xsin ( ) sin ( φ) + ysin ( ) cos ( φ) + λ β

17 Form factor for tilted electron bunch r r Fk ( ) ( r)exp i ω sin( ) sin( ) x ω sin( ) cos ( ) y ω r = ρ φ + φ + z dr, c c cβ r 1 1 x ycos( ψ) zsin( ψ) ysin( ψ) + zcos( ψ) ρ() r = exp. (**) 3/ + + ( π) σ σ xσ yσ z x σ y σz r 1 ( ) exp k x x ( ky kz )( y z ) ( ky kz )( y z ) cos( ) kykz( y z ) sin ( ) = + + + +, (14) Fk σ σ σ σ σ ψ σ σ ψ π 1,, = sin, cos, (15) λ β { kx ky kz} sin( ) ( φ) sin( ) ( φ) π 1,, = sin,cos sin, (16) λ β { kx ky kz} ( x) ( x) ( y)

18 Angular distribution of coherent Cherenkov radiation from a tilted bunch passing through a target CChR H=50 mm L=5 mm a=0 mm γ=10 ε=1.3 λ=1.5 mm σx= σy=707 µm σz= 100 µm ψ=0 deg CChR H=50 mm L=5 mm a=0 mm γ=10 ε=1.3 λ=1.5 mm σx= σy=707 µm σz= 100 µm ψ=3.6 deg

19 Angular distribution of coherent Cherenkov radiation from a tilted bunch passing through a slit in target CChR H=50 mm L=5 mm a=5 mm γ=10 ε=1.3 λ=1.5 mm σx= σy=707 µm σz= 100 µm ψ=0 deg CChR H=50 mm L=5 mm a=5 mm γ=10 ε=1.3 λ=1.5 mm σx= σy=707 µm σz= 100 µm ψ=3.6 deg

3 z ( ) b i i π π Vϕ = sin x 1 ( βγ sin ( )) y λ + + β βγλ x b x b H=50 mm a=0 mm γ=100 ε=1.3 λ=1.5 mm σx= σy=707 µm σz= 100 µm

0 Coherent Cherenkov radiation from a tilted bunch The schematic view of generation CChR a tilted «pancake-like» electron bunch

1 Coherent Cherenkov radiation from a tilted bunch 1 N 1 N 1 N The schematic view of generation CChR a tilted «pancake-like» electron bunch

Coherent Cherenkov radiation from a tilted bunch ψ=-8 ψ=8

3 Conclusion 1. The developed model allows to simulate the spectral-angular distribution of ChR generated by short electron bunches for which t = y + y? z σ σ σ σ for any target geometry.. ChR produced by an ultrashort electron bunch with the axes tilted relative to the bunch velocity possesses the strong azimuthal asymmetry. 3. Simulation results show that the maximal ChR yield is placed in the plane coinciding with the bunch axes and confirm the experimental data. 4. The observed effect can be used to produce the intense THz radiation beam concentrated in the narrow angular range in contrast with the conventional ChR where an intensity is distributed along the cone surface with the opening angle ChR

THANK FOR YOUR ATTENTION!