CP Violation in Kaon Decays

Σχετικά έγγραφα
Hadronic Tau Decays at BaBar

Physics of CP Violation (III)

/T interactions and chiral symmetry

Isospin breaking effects in B ππ, ρρ, ρπ

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Polarizations of B V V in QCD factorization

Large β 0 corrections to the energy levels and wave function at N 3 LO

Study of CP Violation at BABAR

Three coupled amplitudes for the πη, K K and πη channels without data

Solar Neutrinos: Fluxes

Σύντομο Βιογραφικό Σημείωμα

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Theory predictions for the muon (g 2): Status and Perspectives

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Kaon physics at KLOE. M.Palutan. Frascati for the KLOE collaboration Moriond-EW 2006

Light Hadrons and New Enhancements in J/ψ Decays at BESII

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Effective weak Lagrangians in the Standard Model and B decays

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Approximation of distance between locations on earth given by latitude and longitude

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration


DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Right Rear Door. Let's now finish the door hinge saga with the right rear door

UV fixed-point structure of the 3d Thirring model

the total number of electrons passing through the lamp.

Αναερόβια Φυσική Κατάσταση

Computing the Gradient

Dark matter from Dark Energy-Baryonic Matter Couplings

Unified dispersive approach to real and virtual photon-photon scattering into two pions

Derivation of Optical-Bloch Equations

Constitutive Relations in Chiral Media

Kaon Weak Matrix Elements in 2+1 Flavor DWF QCD

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Non-Gaussianity from Lifshitz Scalar

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

Presentation Structure

Space-Time Symmetries

Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods

Example Sheet 3 Solutions

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Neutrino emissivities in quark matter

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Tridiagonal matrices. Gérard MEURANT. October, 2008

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ˆˆ ŸŒ ƒ ˆŸ CP- ˆŒŒ ˆˆ

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 21: Scattering and FGR

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan

News from NRQCD. Matthias Steinhauser TTP Karlsruhe Dresden, July 3,

Andreas Peters Regensburg Universtity

Finite Field Problems: Solutions

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

A Precision Measurement of the Neutral Pion ? :=+2/#"*1F,+/'2%21='>#1/'",%#+12/'",(?!+(4=/(%0"#%/3+%! G ='0+/'*+? 8!9&:;%1/%HI%J+K

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Lifting Entry (continued)

Reminders: linear functions

S. Gaudenzi,. π υ, «aggregation problem»

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Matrices and Determinants

6.4 Superposition of Linear Plane Progressive Waves

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Homework 3 Solutions

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Higher Derivative Gravity Theories

Assalamu `alaikum wr. wb.

Wavelet based matrix compression for boundary integral equations on complex geometries

Inverse trigonometric functions & General Solution of Trigonometric Equations

AdS black disk model for small-x DIS

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

Μάθημα 7o Συντονισμοί & Παραγωγή Σωματιδίων στις Υψηλές Ενέργειες 27/4/2017

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Elements of Information Theory

5.4 The Poisson Distribution.

Numerical Analysis FMN011

Particle Physics: Introduction to the Standard Model

GREECE BULGARIA 6 th JOINT MONITORING

Transcript:

lavi net CP Violation in Kaon Decays A. Pich IFIC, Valencia Workshop on the origins of P, CP and T violation (cpt@ictp) ICTP, Trieste, Italy, July 2 to 5 28

Superweak CP: / Wolfenstein 964 K - K Mixing is the only source of CP / Standard Model CP: / Kobayashi Maskawa 973 d j V i j W u i CP / Quark Mixing d W u, c, t W s d W s u, c, t u, c, t W W s u s d s d u,c,t u,c,t G W G Z, γ s u, c, t d s W d d u q q q q S = 2 S = A. Pich CP Violation in Kaon Decays 2

DIRECT CP VIOLATION η + T(K L π + π ) T(K S π + π ) ε K + ε K ; η T(K L π π ) T(K S π π ) ε K 2 ε K ε K = (2.229 ±.) 3 e i φε K ; φ εk = (43.5 ±.5) Re ( ε ) K ε K 6 { η η + } 2 = (6.5 ± 2.6) 4 4 Re(ε K /ε K ) 23. ± 6.5 NA3 993 7.4 ± 5.9 E73 993 4.7 ± 2.2 NA48 22 2.7 ± 2.8 KTeV 23 A. Pich CP Violation in Kaon Decays 3

Long History of Theoretical Predictions Earlier estimates: ε K /ε K <.2 Ellis-Gaillard-Nanopoulos 76 First LO calculations: ε /ε. Gilman-Wise 79, Guberina-Peccei 8 K K Electroweak penguins: Bijnens-Wise 84, Donoghue et al 86, Buras-Gerard 87 First estimates of isospin breaking: Donoghue et al 86, Buras-Gerard 87, Lusignoli 89 First matrix elements from /N C : Buras-Bardeen-Gerard 87 Heavy top mass: Big cancellation Flynn-Randall 89, Buchalla-Buras-Harlander 9 Paschos-Wu 9, Lusignoli et al 92 NLO short-distance calculation: Re(ε K /ε K ) 7 4 Buras et al 93, Ciuchini et al 93 Modelling matrix elements: Dortmund, Lund, München, Roma, Trieste,... χpt FSI & /N C : Re(ε K /ε K ).7 3 Pallante-Pich, Pallante-Pich-Scimemi Isospin breaking (m u m d, α) Ecker et al, Cirigliano et al 3 Matrix elements at NLO in /N C : Ongoing analytical / lattice effort Amherst, Barcelona, Caltech, CP-PACS, Granada, Lund, Marseille, Montpellier, RBC, Roma,... A. Pich CP Violation in Kaon Decays 4

K 2π ISOSPIN AMPLITUDES A[K π + π ] A e iχ + 2 A 2 e iχ 2 A e iχ = A/2 A[K π π ] A e iχ 2A2 e iχ 2 A 2 e iχ 2 = A3/2 + A 5/2 A[K + π + π ] 3 2 A+ 2 eiχ+ 2 A + 2 e iχ+ 2 = A 3/2 2 3 A 5/2 I = /2 Rule: ω Re (A 2) Re (A ) 22 Strong Final State Interactions: χ χ 2 δ δ 2 45 ε K = i 2 e i (χ 2 χ ) ω { Im (A ) Re(A ) Im (A } 2) Re (A 2 ) A. Pich CP Violation in Kaon Decays 5

S = TRANSITIONS L S= eff W W s u s d s d u,c,t u,c,t G W G Z, γ d u q q q q = G F V ud Vus 2 i C i (µ) Q i (µ) Q = (s α u β ) V A (u β d α ) V A Q 3,5 = (sd) V A q (qq) V A Q 7,9 = 3 2 (sd) V A q e q (qq) V±A Q 6 = 8 q (s Lq R )(q R d L ) Q 2 = (su) V A (ud) V A Q 4 = (s α d β ) V A q (q βq α ) V A Q = 3 2 (s αd β ) V A q e q (q β q α ) V A Q 8 = 2 q e q (s L q R )(q R d L ) A. Pich CP Violation in Kaon Decays 6

S = TRANSITIONS L S= eff W W s u s d s d u,c,t u,c,t G W G Z, γ d u q q q q = G F V ud Vus 2 i C i (µ) Q i (µ) Q = (s α u β ) V A (u β d α ) V A Q 3,5 = (sd) V A q (qq) V A Q 7,9 = 3 2 (sd) V A q e q (qq) V±A Q 6 = 8 q (s Lq R )(q R d L ) Q 2 = (su) V A (ud) V A Q 4 = (s α d β ) V A q (q βq α ) V A Q = 3 2 (s αd β ) V A q e q (q β q α ) V A Q 8 = 2 q e q (s L q R )(q R d L ) q > µ : C i (µ) = z i (µ) y i (µ) (V td V ts /V ud V us ) O(α n s t n ), O(α n+ s t n ) [t log (M/m)] (Munich / Rome) A. Pich CP Violation in Kaon Decays 6

S = TRANSITIONS L S= eff W W s u s d s d u,c,t u,c,t G W G Z, γ d u q q q q = G F V ud Vus 2 i C i (µ) Q i (µ) Q = (s α u β ) V A (u β d α ) V A Q 3,5 = (sd) V A q (qq) V A Q 7,9 = 3 2 (sd) V A q e q (qq) V±A Q 6 = 8 q (s Lq R )(q R d L ) Q 2 = (su) V A (ud) V A Q 4 = (s α d β ) V A q (q βq α ) V A Q = 3 2 (s αd β ) V A q e q (q β q α ) V A Q 8 = 2 q e q (s L q R )(q R d L ) q > µ : C i (µ) = z i (µ) y i (µ) (V td V ts /V ud V us ) O(α n s t n ), O(α n+ s t n ) [t log (M/m)] (Munich / Rome) q < µ : ππ Q i (µ) K? Physics does not depend on µ A. Pich CP Violation in Kaon Decays 6

ε K /ε K P (/2) = r i Im(V tsv td ) [ P (/2) P (3/2)] y i (µ) Q i (µ) ( Ω IB ) ; P (3/2) = r ω (Buras et al) y i (µ) Q i (µ) 2 i r = G F ω 2 ε K Re (A ) ; ω = Re (A 2) Re (A ) 22 ; Re (A ) = 3.37 7 GeV A. Pich CP Violation in Kaon Decays 7

ε K /ε K P (/2) = r i Im(V tsv td ) [ P (/2) P (3/2)] y i (µ) Q i (µ) ( Ω IB ) ; P (3/2) = r ω (Buras et al) y i (µ) Q i (µ) 2 i r = G F ω 2 ε K Re (A ) ; ω = Re (A 2) Re (A ) 22 ; Re (A ) = 3.37 7 GeV Q i (µ) Q i vs B i (µ) m t large ε K ε K [ ] MeV 2 { } B (/2) 6 ( Ω IB ).4 B (3/2) 8 m s (2 GeV) Delicate Cancellation. Strong Sensitivity to: m s (quark condensate) Isospin Breaking (m u m d, e.m. effects) Penguin Matrix Elements (χpt corrections) A. Pich CP Violation in Kaon Decays 7

Energy Scale Fields Effective Theory M W W,Z, γ, g τ, µ, e, ν i t, b, c, s, d, u Standard Model OPE < m c γ, g ; µ, e, ν i s, d, u L (n f =3) QCD, L S=,2 eff N C M K γ ; µ, e, ν i π, K, η χpt A. Pich CP Violation in Kaon Decays 8

Weak Currents Factorize at Large N C K π π π W K K π π π O(N 2 C ) O(N C) O() A[K π π ] = A = 2 A 2 No I = 2 enhancement at leading order in /N C A. Pich CP Violation in Kaon Decays 9

Weak Currents Factorize at Large N C K π π π W K K π π π O(N 2 C ) O(N C) O() A[K π π ] = A = 2 A 2 No I = 2 enhancement at leading order in /N C Multiscale problem: OPE N C ( ) log MW µ Short-distance logarithms must be summed 3 4 A. Pich CP Violation in Kaon Decays 9

Weak Currents Factorize at Large N C K π π π W K K π π π O(N 2 C ) O(N C) O() A[K π π ] = A = 2 A 2 No I = 2 enhancement at leading order in /N C Multiscale problem: OPE N C ( ) log MW µ Short-distance logarithms must be summed 3 4 Large χpt logarithms: FSI N C ( ) log µ M π 3 2 Infrared logarithms must also be included [δ I O(/N C ), δ δ 2 45 ] A. Pich CP Violation in Kaon Decays 9

CHIRAL PERTURBATION THEORY (χpt) Expansion in powers of p 2 /Λ 2 χ : A = n A(n) (Λ χ 4πF π.2 GeV) Amplitude structure fixed by chiral symmetry Short-distance dynamics encoded in low-energy couplings (LECs) A. Pich CP Violation in Kaon Decays

CHIRAL PERTURBATION THEORY (χpt) Expansion in powers of p 2 /Λ 2 χ : A = n A(n) (Λ χ 4πF π.2 GeV) Amplitude structure fixed by chiral symmetry Short-distance dynamics encoded in low-energy couplings (LECs) O(p 2 ) χpt: δ = δ 2 = A /2 = 2 F π (G 8 + ) 9 G 27 (MK 2 M2 π) A 3/2 = 9 F π G 27 (M 2 K M2 π ) ; A 5/2 = A. Pich CP Violation in Kaon Decays

CHIRAL PERTURBATION THEORY (χpt) Expansion in powers of p 2 /Λ 2 χ : A = n A(n) (Λ χ 4πF π.2 GeV) Amplitude structure fixed by chiral symmetry Short-distance dynamics encoded in low-energy couplings (LECs) O(p 2 ) χpt: δ = δ 2 = A /2 = 2 F π (G 8 + ) 9 G 27 (MK 2 M2 π) A 3/2 = 9 F π G 27 (M 2 K M2 π ) ; A 5/2 = Loop corrections (χpt logarithms) unambiguously predicted LECs can be determined at N C A. Pich CP Violation in Kaon Decays

O(p 2,e 2 p ) χpt Q = diag ( 2 3, 3, ) 3 L S= 2 = G 8 F 4 λl µ L µ +G 27 F (L 4 µ23 L µ + 2 ) 3 L µ2l µ 3 +e 2 F 6 G 8 g ew λu QU G R G F 2 V ud V us g R { ; L µ = iu D µu ; λ 2 λ 6 i7 ; U exp i } 2 Φ/F A /2 = { ( 2F π G 8 [(MK 2 Mπ) 2 2 ) 3 3 ε(2) 2 ] 3 F π 2 e 2 (g ew + 2 Z) + } 9 G 27 (MK 2 Mπ) 2 A 3/2 = 2 3 F π {( 5 3 G 27 + 2 ) } ε (2) G 8 (MK 2 M2 π ) F π 2 e2 G 8 (g ew + 2 Z) 3 A 5/2 = ; δ = δ 2 = ε (2) = ( 3/4) (m d m u)/(m s ˆm). ; Z (M 2 π ± M2 π )/(2 e2 F 2 π ).8 A. Pich CP Violation in Kaon Decays

O(p 2,e 2 p ) χpt ; N C g 8 = ( 3 5 C 2 2 ) ( ) q q (µ) 2 5 C + C 4 6 L 5 Fπ 3 C 6 (µ) F 3 π g 27 = 3 5 (C 2 + C ) ( ) q q (µ) 2 [ e 2 g 8 g ew = 3 C 8 (µ) + 6 ] 9 C 6(µ) e 2 (K 9 2K ) G R G F 2 V ud Vus g (R = 8, 27) R q q (µ) F 3 π = M 2 K (m s + m d )(µ)f π { } 8M2 K Fπ 2 (2L 8 L 5 ) + 4M2 π Fπ 2 L 5 A. Pich CP Violation in Kaon Decays 2

O(p 2,e 2 p ) χpt ; N C g 8 = ( 3 5 C 2 2 ) ( ) q q (µ) 2 5 C + C 4 6 L 5 Fπ 3 C 6 (µ) F 3 π g 27 = 3 5 (C 2 + C ) ( ) q q (µ) 2 [ e 2 g 8 g ew = 3 C 8 (µ) + 6 ] 9 C 6(µ) e 2 (K 9 2K ) G R G F 2 V ud Vus g (R = 8, 27) R q q (µ) F 3 π = M 2 K (m s + m d )(µ)f π { } 8M2 K Fπ 2 (2L 8 L 5 ) + 4M2 π Fπ 2 L 5 Equivalent to standard calculations of B i µ dependence only captured for Q 6,8 A. Pich CP Violation in Kaon Decays 2

O [ p 4, (m u m d )p 2,e 2 p 2] χpt Nonleptonic weak Lagrangian: O(G F p 4 ) L (4) weak = i G 8 N i F 2 Oi 8 + i G 27 D i F 2 Oi 27 + h.c. Electroweak Lagrangian: O(G F e 2 p 2 ) L EW = e 2 i G 8 Z i F 4 O EW i + h.c. O(e 2 p 2 ) Electromagnetic + O(p 4 ) Strong: K i, L i K ππ, ππγ Inclusive, DAPHNE A. Pich CP Violation in Kaon Decays 3

A (X) n = a (X) n [ + L A (X) n ] + C A (X) n O(p 4 ) χpt Loops: Large correction NLO in /N C L A (8) /2 =.27 ±.5 +.47 i ; L A (27) /2 =.2 ±.6 +.47 i ; L A (27) 3/2 L A (g) /2 =.27 ±.5 +.47 i ; L A (g) 3/2 =.4 ±.5.2 i =.5 ±.2.2 i Pallante-Pich-Scimemi A. Pich CP Violation in Kaon Decays 4

A (X) n = a (X) n [ + L A (X) n ] + C A (X) n O(p 4 ) χpt Loops: Large correction NLO in /N C L A (8) /2 =.27 ±.5 +.47 i ; L A (27) /2 =.2 ±.6 +.47 i ; L A (27) 3/2 L A (g) /2 =.27 ±.5 +.47 i ; L A (g) 3/2 =.4 ±.5.2 i =.5 ±.2.2 i Pallante-Pich-Scimemi 2 All local O(p 4 ) couplings fixed at N C C A (X) n Small correction to O(p 2 ) results A. Pich CP Violation in Kaon Decays 4

A (X) n = a (X) n [ + L A (X) n ] + C A (X) n O(p 4 ) χpt Loops: Large correction NLO in /N C L A (8) /2 =.27 ±.5 +.47 i ; L A (27) /2 =.2 ±.6 +.47 i ; L A (27) 3/2 L A (g) /2 =.27 ±.5 +.47 i ; L A (g) 3/2 =.4 ±.5.2 i =.5 ±.2.2 i Pallante-Pich-Scimemi 2 All local O(p 4 ) couplings fixed at N C C A (X) n Small correction to O(p 2 ) results 3 Isospin Breaking: O [ (m u m d )p 2,e 2 p 2] Sizeable corrections Cirigliano-Ecker-Neufeld-Pich A. Pich CP Violation in Kaon Decays 4

A (X) n = a (X) n [ + L A (X) n ] + C A (X) n O(p 4 ) χpt Loops: Large correction NLO in /N C L A (8) /2 =.27 ±.5 +.47 i ; L A (27) /2 =.2 ±.6 +.47 i ; L A (27) 3/2 L A (g) /2 =.27 ±.5 +.47 i ; L A (g) 3/2 =.4 ±.5.2 i =.5 ±.2.2 i Pallante-Pich-Scimemi 2 All local O(p 4 ) couplings fixed at N C C A (X) n Small correction to O(p 2 ) results 3 Isospin Breaking: O [ (m u m d )p 2,e 2 p 2] Sizeable corrections 4 Re(g 8 ), Re(g 27 ), χ χ 2 fitted to data Cirigliano-Ecker-Neufeld-Pich A. Pich CP Violation in Kaon Decays 4

ε K ε K [ ] 5 MeV 2 { } B (/2) 6 ( Ω eff ).4 B (3/2) 8 m s (2 GeV) Delicate Cancellation. Strong Sensitivity to: m s (quark condensate) m s (2 GeV) = 5 ± 2 MeV Isospin Breaking (m u m d, α) Ω eff =.6 ±.8 Penguin Matrix Elements χpt Loops (FSI): B (/2) 6, (.35 ±.5) ; B(3/2) 8, Cirigliano-Ecker-Neufeld-Pich (.54 ±.2) A. Pich CP Violation in Kaon Decays 5

ε K ε K [ ] 5 MeV 2 { } B (/2) 6 ( Ω eff ).4 B (3/2) 8 m s (2 GeV) Delicate Cancellation. Strong Sensitivity to: m s (quark condensate) m s (2 GeV) = 5 ± 2 MeV Isospin Breaking (m u m d, α) Ω eff =.6 ±.8 Penguin Matrix Elements χpt Loops (FSI): B (/2) 6, Re ( ε /ε ) = (.35 ±.5) ; B(3/2) 8, Cirigliano-Ecker-Neufeld-Pich (.54 ±.2) ( ) +9 9 ± 2 µ 6 ms ± 6 /NC 4 Pallante-Pich-Scimemi (updated) Exp. world average: Re(ε /ε) = (6.5 ± 2.6) 4 A. Pich CP Violation in Kaon Decays 5

ε K ε K [ ] 5 MeV 2 { } B (/2) 6 ( Ω eff ).4 B (3/2) 8 m s (2 GeV) Delicate Cancellation. Strong Sensitivity to: m s (quark condensate) m s (2 GeV) = 5 ± 2 MeV Isospin Breaking (m u m d, α) Ω eff =.6 ±.8 Penguin Matrix Elements χpt Loops (FSI): B (/2) 6, Re ( ε /ε ) = (.35 ±.5) ; B(3/2) 8, Cirigliano-Ecker-Neufeld-Pich (.54 ±.2) ( ) +9 9 ± 2 µ 6 ms ± 6 /NC 4 Pallante-Pich-Scimemi (updated) Exp. world average: Re(ε /ε) = (6.5 ± 2.6) 4 Challenge: Control of subleading /N C corrections to χpt couplings A. Pich CP Violation in Kaon Decays 5

ˆ ε /ε = Im (V ts V td ) [ P (/2) P (3/2)] 4 Im (V ts V td ) P(/2) 5 4 BEIJING LUND MARS V. Cirigliano 3 2 VAL DORTMUND TRIESTE TAIPEI ROMA MUNICH RBC CP-PACS MONTP 5 5 2 25 3 4 Im (V tsv td ) P (3/2) Q i I from original calculations Ω eff Updated A. Pich CP Violation in Kaon Decays 6

ELECTROWEAK PENGUINS contribute at O(p ) (m q, p ) e 2 g 8 g ew F 6 = 6 C 7 (µ) O (µ) 2 C 8 (µ) O 2 (µ) N C 3 C 8(µ) qq(µ) 2 O (µ) (s L γ µ d L )( d R γ µ s R ) ; O 2 (µ) (s L s R )( d R d L ) M 8 (GeV 3 ) KPdR FGdR 4 CDGM CDGM 3 BGP Narison DGGM 99 Large Nc.5 2. 2.5 3..5.. T T I A C E L RBC 3 BGLLMPS 5 BGHHLR 6 CP PACS 3 M 8 (2π) I=2 Q 8 (µ ) K mq=p= = 8 F 3 O 2(µ ) µ = 2 GeV M 8 N C 2 F 3 qq(µ ) 2 2M 4 K F 3 (m s + m q ) 2 (µ )F 2 π A. Pich CP Violation in Kaon Decays 7

CP / Charge Asymmetry in K ± (3π) ± Decays T(u,v) 2 + g u + h u 2 + k v 2 + u (s 3 s )/m 2 π ; v (s s 2 )/m 2 π ; s (s + s 2 + s 3 )/3 ; s i (p K p πi ) 2 ; 3 = odd π NA48/2: A g g+ g g + + g = (.5 ± 2.) 4 π ± π + π (.8 ±.9) 4 π ± π π Theory: A π± π + π g = (.24 ±.2) 4 ; A π± π π g = (. ±.7) 4 (Gámiz-Prades-Scimemi) A. Pich CP Violation in Kaon Decays 8

K πν ν T F(Vis V id, m2 i ) ( ν MW 2 L γ µ ν L ) π s L γ µ d L K s d s d W u; c; t u; c; t W W l Z Br(K + π + ν ν) = (8. ±.) A 4 [ η 2 + (.4 ρ) 2] Br(K L π ν ν) = (2.8 ±.4) A 4 η 2 Buras et al Long-distance contributions are negligible A(K L π ν ν) Direct CP / BNL-E787: few events! Br(K + π + ν ν) = (.47.89 +.3 ) KEK-E39a: Br(K L π ν ν) < 2. 7 (9% CL) New Experiments Needed A. Pich CP Violation in Kaon Decays 9

SUMMARY Qualitative understanding of ε /ε within the Standard Model Quantitative prediction using the /N C expansion and χpt Large chiral corrections generated by infrared logarithms Detailed analysis of isospin breaking corrections Good agreement with experiment Re ( ε /ε ) = (but large uncertainties) ( 9 ± 2 µ +9 6 ms ± 6 /NC ) 4 Challenge: Control of subleading /N C corrections to χpt couplings On-going theoretical efforts using both analytical & lattice tools A. Pich CP Violation in Kaon Decays 2

BACKUP SLIDES A. Pich CP Violation in Kaon Decays 2

Isospin Breaking in ε /ε ǫ K ω + { Im A () Re A () { Im A () ω + Re A () ( ) ImA 2 + + f 5/2 ReA () 2 } ( Ω eff ) ImAemp 2 Re A () 2 } ω ReA 2 ReA = ω + ( + f5/2 ) ; ω + ReA+ 2 ; Ω IB = ReA () ReA ReA () 2 Im A non emp 2 ImA () Cirigliano-Ecker-Neufeld-Pich α = α 2 LO NLO LO NLO Ω IB.7 5.9 ± 4.5 8. ± 6.5 22.7 ± 7.6.4.4 ±.5 8.7 ± 3. 8.4 ± 3.6 f 5/2 8.3 ± 2.4 Ω eff.7 6.3 ± 4.5 9.3 ± 5.8 6. ± 7.7 Ω eff =.6 ±.8 Ω IB f 5/2 Ω π η IB =.6 ±.3 A. Pich CP Violation in Kaon Decays 22

ELECTROWEAK PENGUINS contribute at O(p ) (m q, p ) e 2 g 8 g ew F 6 = 6 C 7 (µ) O (µ) 2 C 8 (µ) O 2 (µ) N C 3 C 8(µ) qq(µ) 2 O (µ) (s L γ µ d L )( d R γ µ s R ) ; O 2 (µ) (s L s R )( d R d L ) These D=6 vacuum condensates appear in the left-right correlator: Π µν LR (q) 2i d 4 x e iqx T(L µ (x), R ν () ) ( g µν q 2 + q µ q ν) Π LR ( q 2 ) υ a 2.5 2.5.5 -.5 - ALEPH τ (V,A, I=) ν τ parton model/perturbative QCD.5.5 2 2.5 3 3.5 Mass 2 (GeV/c 2 ) 2 Π LR (Q 2 ) = dt ImΠ LR(t) π t + Q 2 = Õ2n+4 2 (Q 2 ) n+2 n= }{{}}{{} Data QCD OPE [ lim Q 2 Q6 Π LR (Q 2 ) = 4πα s 4 O 2 + 2 ] O N C O dq 2 Q D Π LR (Q 2 ) A. Pich CP Violation in Kaon Decays 23

n f /N C Correction to QCD PENGUIN (m q ) Im(g 8 ) = Im[C 6 (µ)] ( q α q β q 2 { ) g αβ W DGRR ( q 2 ) = 6L 5 ( qq F 3 ) 2 + 8n f 6π 2 F 4 (Hambye-Peris-de Rafael 3) dq 2 Q D 2 W DGRR (Q 2 ) dω q d 4 x d 4 y d 4 z e iqx T [ ( s L q R )(x) ( q R d L )() ( d R γ αu R )(y) (ū R γ α s R )(z) ] con } -. -.2 -.3 -.4 -.5 -.6 2 n (z f z W µ had. ) DGRR Available theoretical information: (very poor) [ lim Q 2 W DGRR (Q 2 ) = F4 ( ) ] πα s qq 2 Q 2 6Q 2 6L 5 F 3 lim Q 2 W DGRR (Q 2 ) = Q 2 ( ) { qq 2 F 2 F 2 8Q 2 ( L 5 5 ) } 2 L 3 -.7 2 3 4 z Big enhancement ( 3) claimed Infrared unstability from pion pole: Large non-factorizable contribution claimed before Q ǫ dq 2 Q 2 + mπ 2 2 ǫ m ǫ π (Bardeen et al, Bijnens-Prades) A. Pich CP Violation in Kaon Decays 24

Phenomenological K ππ Fit Cirigliano-Ecker-Neufeld-Pich PDG + KLOE 2 [Γ(K S π + π (γ)/γ(k S π π )] LO-IC LO-IB NLO-IC NLO-IB Re g 8 5.9 ±. 5. ±. 3.67 ±.4 3.65 ±.4 Re g 27.294 ±..27 ±..297 ±.4.33 ±.4 χ χ 2 (48.6 ± 2.6) (48.5 ± 2.6) (48.6 ± 2.6) (54.6 ± 2.4) IC [m u m d = α = ] ; IB [m u m d, α ] ππ ππ: δ δ 2 = (47.7 ±.5) Colangelo Gasser Leutwyler Before KLOE 2 (χ χ 2 ) LO IC = 57 A. Pich CP Violation in Kaon Decays 25

UNITARITY TRIANGLE CONSTRAINTS η f i t t e r.6 Summer 27.5.4.3.2 excluded area has CL >.95 γ sin2β ε K m d α m s & m d ε K sol. w/ cos2β < (excl. at CL >.95) α CKM γ. γ V α ub β -.4 -.2.2.4.6.8 ρ A. Pich CP Violation in Kaon Decays 26

Future Kaon Initiatives CERN-SPS Rare K decays LFV Chiral dynamics Φ factory Hadron xsec K S decays, interferometry U-7 Frequent K decays J-PARC Λ Ξ hypernuclei K Rare Decay A. Ceccucci NA48/2 2 kaon decays P-326 (NA48/3) > 3 kaon decays Δ[Br(K + π + νν)] ~. Flavour Physics A. Pich Super B 27

Plans for K + π + νν J-PARC: LoI ; plans to use the BNL-E949 detector CERN: P-326 ; about 8 SM events in two years Plans for K L π νν KEK: E39a ; data taking completed (three runs) Present limit < 2. -7 9% CL (% of Run- data) Aims to reach the Grossman-Nir bound (~ -9 ) J-PARC: proposal (>2) Step I: E39a detector at J-PARC ~ SM sensitivity Step II: New detector & dedicated beam-line ~ SM events CERN: would need an upgraded proton complex Flavour Physics A. Pich Super B 27

K. Komatsubara K L π l + l Plenty of Room for New Physics Flavour Physics A. Pich Super B 27