Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

Σχετικά έγγραφα
Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ»

ADVANCED STRUCTURAL MECHANICS

High order interpolation function for surface contact problem

Dr. D. Dinev, Department of Structural Mechanics, UACEG

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

D Alembert s Solution to the Wave Equation

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Matrices and Determinants

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

2 Composition. Invertible Mappings

4.6 Autoregressive Moving Average Model ARMA(1,1)

Buried Markov Model Pairwise


Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

8.5 Structural Optimization

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Computing the Gradient

Reminders: linear functions

ST5224: Advanced Statistical Theory II

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Ηλεκτρονικοί Υπολογιστές IV

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κωδικός μαθήματος:

Homework 8 Model Solution Section

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

CorV CVAC. CorV TU317. 1

Math221: HW# 1 solutions

( ) 2 and compare to M.

Numerical Analysis FMN011

Concrete Mathematics Exercises from 30 September 2016

Space-Time Symmetries

Τοίχοι Ωπλισμένης Γής: υναμική Ανάλυση Πειράματος Φυγοκεντριστή. Reinforced Soil Retaining Walls: Numerical Analysis of a Centrifuge Test

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Strain gauge and rosettes

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

derivation of the Laplacian from rectangular to spherical coordinates

Ηλεκτρονικοί Υπολογιστές IV

Homomorphism in Intuitionistic Fuzzy Automata

Higher Derivative Gravity Theories

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CONSULTING Engineering Calculation Sheet

SIMULATION DRIVEN PRODUCT DEVELOPMENT

Example Sheet 3 Solutions

Parametrized Surfaces

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Derivation of Optical-Bloch Equations

Spherical Coordinates

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά.

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

; +302 ; +313; +320,.

6.3 Forecasting ARMA processes

Forced Pendulum Numerical approach

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά

w o = R 1 p. (1) R = p =. = 1

The Simply Typed Lambda Calculus

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κωδικός μαθήματος:

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά.


Finite difference method for 2-D heat equation

FEM Method 2/5/13. FEM Method. We will explore: 1 D linear & higher order elements 2 D triangular & rectangular elements

Srednicki Chapter 55

ER-Tree (Extended R*-Tree)

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

Επώνυμο: Βαϊρακτάρης

INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS

3+1 Splitting of the Generalized Harmonic Equations

EE512: Error Control Coding

A summation formula ramified with hypergeometric function and involving recurrence relation

Lecture 26: Circular domains

ΙΕΡΕΥΝΗΣΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Transcript:

Το παρόν υλικό δημιουργήθηκε στα πλαίσια του Προγράμματος Δια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ "Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές" (Επιχειρησιακό Πρόγραμμα "Εκπαίδευση και Δια Βίου Μάθηση") για αποκλειστική χρήση από τους εκπαιδευόμενους του Προγράμματος. Τυχόν άλλη χρήση του υλικού ή/και αναπαραγωγή αυτού δεν επιτρέπεται, καθόσον αποτελεί πνευματικό δικαίωμα του εκάστοτε διδάσκοντος. 1 SECION 8.2 GDM Operational Programme Education and Lifelong Learning Continuing Education Programme for updating Knowledge of University Graduates: Modern Development in Offshore Structures George D. Manolis, Professor Department of Civil Engineering Aristotle University, hessaloniki GR 54124, Greece el: (+30 2310) 99 5663, Fax: (+30 2310) 99 5769 E mail: gdm@civil.auth.gr

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» Πρόγραμμα Δια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ Χρονική Περίοδος: 2014 2016 ΠΕΓΑ: ΣΥΓΧΡΟΝΕΣ ΕΞΕΛΙΞΕΙΣ ΣΤΙΣ ΘΑΛΑΣΣΙΕΣ ΚΑΤΑΣΚΕΥΕΣ SECION 8: ANALYSIS AND DESIGN OF MARINE SRUCURES 8.2 ΠΛΩΤΕΣ ΚΑΤΑΣΚΕΥΕΣ 8.2.2: ΥΔΡΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ (Fluid structure interaction) (2) Γεώργιος Δ. Μανώλης, καθηγητής Α.Π.Θ. Εργαστήριο Στατικής και Δυναμικής των Κατασκευών Τηλ: +30 2310 995663, Fax: +30 2310 995769 E mail: gdm@civil.auth.gr 2 SECION 8.2 GDM

COUPLED FIELD PROBLEMS PAR II: (SFI) Basic heory he response of geomaterials is strongly influenced by the presence of fluids in the pores, as described by the Biot theory of poroelasticity A key concept is the definition of effective stresses in a 3D porous continuum as follows: { eff } { } { I} p { I} 1,1,1, 0, 0, 0 where [σ} is the total solid fluid vector (6x1) and p is the fluid pressure. he constitutive law for the porous soil in rate form is d{ } [ D ] d{ } eff where {ε} are the solid skeleton strains and matrix [D ] contains the elastic parameters (soil shear modulus and Poison's ratio). 3 SECION 8.2 GDM

FEM Development he displacement field {u(x)} in the solid is interpolated by the use of shape functions [N u ] in terms of its nodal displacements {U} (see previous Figure 4 for a simple triangular solid FE with three DOF per node and three nodes): { uxt (, )} [ N]{ Ut ( )}; (3x1) (3x9)(9x1) u he solid phase equilibrium equations in discrete form are now [ B] [ ] dv [ M]{ U( t)} [ C]{ U( t)} { F( t)} {0} where [B] is the strain matrix containing derivatives of the displacement field through operator matrix [L]: { } [ L]{ u} [ L][ N ]{ U} [ B]{ U}; (6x1) (6x3)(3x9)(9x1) u By splitting the stress term into effective stresses and fluid pressure components, the equations of equilibrium become [ M]{ U( t)} [ C]{ U( t)} [ K]{ U( t)} [ Q]{ P( t)} { F( t)} {0} 4 SECION 8.2 GDM

FEM Development he stiffness term assumes its standard form, i.e., eff [ ]{ } [ ] { } [ ] K U B dv B [ D ][ B ] dv { U } he coupling term comes from the fluid pressure in the solid skeleton pores, interpolated as previously: pxt (, ) [ N]{ Pt ( )}; (1x1) (1x3)(3 x1) p We thus have [ Q] [ B] { I}[ N ] dv; (6x3) (6x6)(6x1)(1x3) p Finally, it is possible to use the same shape functions [N] for both displacement field and for the pressure in the simple triangular solid/fluid FE with three nodes. 5 SECION 8.2 GDM

ransient Seepage he equation describing transient seepage (υπόγεια ροή) in a porous solid (πορώδες υλικό) is p ( kp) ii 0 q We now define the following variables: Soil permeability (Διαπερατότητα): k ( cm / sec) Fluid compressibility rate parameter (Συμπιεστότητα υγρού): q ( MPa / sec) Volumetric strain (Παραμόρφωση όγκου): ii xx yy zz he volumetric strain is interpolated in terms of nodal values of the displacement field as ii { I} [ B]{ U}; { I} 1,1,1 ; (1x1) (1x3)(3 x9)(9x1) 6 SECION 8.2 GDM

ransient Seepage he discrete FEM form of the above seepage equation comes from use of the Galerkin method, which is essentially an error minimization between the true BVP solution and its FEM approximation: [ Q] { U( t)} [ S]{ P( t)} [ H]{ P( t)} { F ( t)} {0} Definitions for the 'damping' and 'stiffness' matrices: 1 [ S] [ Np] ( )[ Np] dv; (3x3) q [ H] [ N ] ( k) [ N ] ds; (3x3) P p he forcing function and boundary terms are contained in the load term { FFL}; (3x 1) FL 7 SECION 8.2 GDM

he Coupled System he coupled equations of motion for flow in a porous solid are now collected as: [ M] 0 { Ut ( )} [ C] 0 { Ut ( )} [ K] [ Q] { Ut ( )} { Ft ( )} 0 0 [ Q] [ S] 0 [ H] { P( t)} { FFL ( t)} { Pt ( )} { Pt ( )} Comments: he above system of equations is non symmetric he free vibration problem for flow in porous media is of minor interest he transient problem is solved by using time stepping algorithms, as in FSI problems 8 SECION 8.2 GDM

ime Stepping Finite difference method expansions (aylor series) at time nδτ, n=1,2,3,...n: 2 t { U} n1 { U} n { U} nt{ U}(1 2)... 2 { U} n 1 { U} n { U} n(1 1) t... { P} { P} { P} t{ P} t...; { P} { P} { P} n1 n n n1 n he choice of weight functions in the above expansion is dictated from numerical stability analysis considerations: ; 0.5; 0.5 2 1 1 9 SECION 8.2 GDM

ime Stepping he final form of the time stepping algorithm for SFI is condensed as 2 [ M] [ C] { } { } 1t[ K] 2t /2 [ Q] t U n F n 2 [ Q] { } 1t [ S] 1t[ H] F 1 t FL n { P)} n Special Cases: (1) If the fluid phase compresibility (συμπιεστότητα) is negligible: [S] 0 (2) If the soil permeability (διαπερατότητα) (as in clays) is negligible: [H] 0 (3) Soil sonsolidation (στερεοποίηση) implies slow (quasi static) development of the phenomenon with no inertia effects [ M]{ U} 0 10 SECION 8.2 GDM

Soil FIuid Interaction Example Figure 9: SFI example involving a dyke (ανάχωμα) foundation subjected to a simulated earthquake: (a) Centrifuge test model; (b) FEM mesh; (c) comparison between experimental and numerical results for excess pore pressure at the right edge 11 SECION 8.2 GDM

12 SECION 8.2 GDM

13 SECION 8.2 GDM

14 SECION 8.2 GDM

COUPLED FIELD PROBLEMS REFERENCES ANSYS (2008), Structural Mechanics Finite Element Software, Version 10.0, Canonsburg, Pennsylvania. Bardet J.P. (1992) A viscoelastic model for the dynamic behaviour of saturated poroelastic soils. ransactions of the ASME, Vol. 59, pp. 28 135. Biot, M. (1956) heory of propagation of elastic waves in a fluid saturated porous solid. Journal of the Acoustical Society of America, Vol. 28(4), pp. 168 191. Cook, R.D., Malkus, D.S., Plesha, M. and Witt, R. (2002) Concepts and Applications of Finite Element Analysis, 4 th Edition, John Wiley, New York. Hardjants, F.A. and assoulas, J.L. (2002) Numerical Simulation of Dynamic Response of Floating Structures, Computational Mechanics, Vol. 32, pp. 347 361. Johnson J.J., editor (1981) Soil Structure Interaction: he Status of Current Analysis Methods and Research, Research Report NUREG CR 1780, Nuclear Regulatory Commission, Washington, DC. Ohayon, R. and Felippa, C., editors (2001) Advances in Computational Methods for Fluid Structure Interaction, Dedicated Issue in Computer Methods in Applied Mechanics and Engineering, Vol. 190, Issues 24 25, pp. 2977 3292. Sarpkaya,. and Isaacson, M. (1981) Mechanics of Wave Forces on Offshore Structures, Cambridge University Press, Cambridge. Zienkiewicz, O.C. and aylor, R.L. (1991) he Finite Element Method, 4 th Edition, Vol. 2, McGraw Hill, London. 15 SECION 8.2 GDM