ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι 4 ο Εξάμηνο



Σχετικά έγγραφα
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. 4 ο Εξάμηνο ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Α ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ (Ασκήσεις πράξης) ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ

Κύκλοι ή Κύκλα Ισχύος με Αέρα ΑΝΟΙΚΤΟΙ- ΚΛΕΙΣΤΟΙ ΚΥΚΛΟΙ

ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ. 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10. και

ΑΤΜΟΛΕΒΗΤΕΣ-ΑΤΜΟΣΤΡΟΒΙΛΟΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ

Περιεχόμενα. 2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. Περιορισμοί του 1ου νόμου. Γένεση - Καταστροφή ενέργειας

Μηχανή εσωτερικής καύσης ή κινητήρας εσωτερικής καύσης ονομάζεται η κινητήρια θερμική μηχανή στην οποία η

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)

2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ Διεργασίες που μπορούν να εξελιχθούν προς μία μόνο κατεύθυνση.

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΟΛΟΓΙΑΣ (7 Ο ΕΞΑΜΗΝΟ)

1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8

ΑΣΚΗΣΗ 1 η. r 1. Σε κύκλο ισόογκης καύσης (OTTO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. th 1.

Τμήμα: Γοχημάτων ΑΘ.ΚΕΡΜΕΛΙΔΗΣ ΠΕ 12.04

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Εξοικονόμηση Ενέργειας

ΣΥΜΠΑΡΑΓΩΓΗ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥ ΕΡΓΟΥ

ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Ψυκτικοί Κύκλοι Κύκλοι παραγωγής Ψύξης

(διαγώνισµα Θερµοδυναµική Ι)

ΚΥΚΛΟΙ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής

Κύκλος Diesel και Μηχανές Εσωτερικής Καύσης Εισαγωγικά: Γενικά:

Ισόθερμη, εάν κατά τη διάρκειά της η θερμοκρασία του αερίου παραμένει σταθερή

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική

Η ψύξη ενός αερίου ρεύματος είναι δυνατή με αδιαβατική εκτόνωση του. Μπορεί να συμβεί:

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ


ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ

ε = = 9,5 =, γ=1,4, R = 287 J/KgK, Q = Cv ΔT = P2 Εξισώσεις αδιαβατικών μεταβολών: T [Απ: (β) 1571,9 Κ, Pa, (γ) 59,36%, (δ) ,6 Pa] ΛΥΣΗ

P. kpa T, C v, m 3 /kg u, kj/kg Περιγραφή κατάστασης και ποιότητα (αν εφαρμόζεται) , ,0 101,

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΟΛΟΓΙΑ ΑΕΡΙΟΣΤΡΟΒΙΛΩΝ 10 Ο ΕΞΑΜΗΝΟ

ΘΕΡΜΟ ΥΝΑΜΙΚΗ II Χειµερινό Εξάµηνο Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

Εργ.Αεροδυναμικής,ΕΜΠ. Καθ. Γ.Μπεργελές

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

2. Ορισµένη µάζα ενός ιδανικού αερίου πραγµατοποιεί τις παρακάτω

Σταθμοί Παραγωγής Ενέργειας

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ


Κύκλοι λειτουργίας. μηχανών

Κύκλοι παραγωγής ισχύος με ατμό Συνδυασμένοι (σύνθετοι κύκλοι)


ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

στην συμπίεση των diesel η πίεση και η θερμοκρασία είναι κατά πολύ μεγαλύτερες. η καύση των diesel γίνεται με αυτανάφλεξη και με σταθερή πίεση

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι 1

2 mol ιδανικού αερίου, η οποία

ΑΡΧΕΣ ΜΗΧΑΝΟΛΟΓΙΑΣ Σημειώσεις για Α τάξη ΕΠΑΛ ΑΡΧΕΣ ΜΗΧΑΝΟΛΟΓΙΑΣ

Υπεύθυνοι Καθηγητές: Γκαραγκουνούλης Ι., Κοέν Ρ., Κυριτσάκας Β. B ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Παραδοχή: ο αέρας είναι τέλειο αέριο µε ειδική σταθερά 287 J/kgK και συντελεστή αδιαβατικής µεταβολής 1.4

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

Εφαρμοσμένη Θερμοδυναμική

Θερμοδυναμική. Ενότητα 5: 2 ος Νόμος Θερμοδυναμικής. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ

3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Θερµοδυναµική/Ιδανικά Αέρια. Ενδεικτικές Λύσεις. Θέµα Α

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1

Προσανατολισμού Θερμοδυναμική

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA.

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J

Διαγώνισμα B Λυκείου Σάββατο 09 Μαρτίου 2019

ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ

ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΥΣΙΜΩΝ ΘΕΡΜΟΤΗΤΑ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΗΛΕΚΤΡΙΣΜΟΣ

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια

Παραγωγή Ηλεκτρικής Ενέργειας. 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών. 1η Σειρά Ασκήσεων.

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

Εφηρμοσμένη Θερμοδυναμική

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10)

απαντήσεις Τι ονομάζεται ισόθερμη και τι ισόχωρη μεταβολή σε μια μεταβολή κατάστασης αερίων ; ( μονάδες 10 - ΕΠΑΛ 2009 )

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016

4ο Εργαστήριο: ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ

Θερμοδυναμική. Ενότητα 6: Εντροπία. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ

Φυσική Κατεύθυνσης Β Λυκείου.

3 ο κεφάλαιο. κύκλος λειτουργίας. των Μ Ε Κ. Εξεταστέα ύλη πανελλαδικών στις ερωτήσεις από 1 η έως και 24 η

Επαναληπτικό Χριστουγέννων Β Λυκείου

Επανάληψη των Κεφαλαίων 1 και 2 Φυσικής Γ Έσπερινού Κατεύθυνσης

Κατά την αδιαβατική αντιστρεπτή µεταβολή ενός ιδανικού αερίου, η πίεση του αερίου αυξάνεται. Στην περίπτωση αυτή

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΘΕΡΜΑΝΣΗ-ΨΥΞΗ-ΚΛΙΜΑΤΙΣΜΟΣ Ι ΑΣΚΗΣΕΙΣ

ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΠΑΝΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1&2

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑ 4

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ

12 η Διάλεξη Θερμοδυναμική

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J

Το παραγόµενο έργο είναι µεγαλύτερο στη µεταβολή β. Η προσφερόµενη θερµότητα είναι µεγαλύτερη στη µεταβολή β

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)

Energy resources: Technologies & Management

Θερμοδυναμική Ενότητα 7:

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Για τα έργα και που παράγει το αέριο κατά τις διαδρομές και, αντίστοιχα, ισχύει η σχέση: α. β. γ. δ. Μονάδες 5. p A B O V

2. Ασκήσεις Θερµοδυναµικής

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10)

Transcript:

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι 4 ο Εξάμηνο ΜΑΘΗΜΑ 1 ο ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ ΚΟΡΩΝΑΚΗ ΕΙΡΗΝΗ ΛΕΚΤΟΡΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 1

ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΕΠΑΝΑΛΗΨΗ 2

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Για θερμοδυναμικές μεταβολές μας ενδιαφέρει πως αλλάζει η κατάσταση του ρευστού (και όχι μόνο οι τελικές καταστάσεις). Για τον λόγο αυτό αναπαριστούμε την μεταβολή σε διαγράμματα. P (kpa) T (K) P (kpa) V m^3/kg T (K) P (kpa) V m^3/kg T (K) V m^3/kg 3

Διαφορά αδιαβατικής και ισεντροπικής μεταβολής. Αδιαβατική σημαίνει ότι δεν συναλλάσει θερμότητα με το περιβάλλον. Ισεντροπική σημαίνει ότι δεν συναλλάσει θερμότητα με το περιβάλλον και επιπλέον είναι και αντιστρεπτή (δεν υπάρχουν εσωτερικές απώλειες). Για αυτό την λέμε και αδιαβατική πλήρως αντιστρεπτή 4

ΔΙΑΓΡΑΜΜΑ P-V P 300 250 P 300 250 200 150 +w 200 150 -w 100 100 50 50 0 0.5 1 1.5 2 2.5 3 V 0 0.5 1 1.5 2 2.5 3 V ΤΟ ΣΥΣΤΗΜΑ ΔΙΝΕΙ ΕΡΓΟ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ (ΠΑΙΡΝΟΥΜΕ ΕΡΓΟ ΑΠΟ ΤΟ ΣΥΣΤΗΜΑ) ΤΟ ΣΥΣΤΗΜΑ ΠΑΙΡΝΕΙ ΕΡΓΟ ΑΠΟ ΤΟ ΠΕΡΙΒΑΛΛΟΝ (ΔΙΝΟΥΜΕ ΕΡΓΟ ΣΤΟ ΣΥΣΤΗΜΑ) 5

ΔΙΑΓΡΑΜΜΑ P-V P 300 250 2 +Q 3 P 300 250 2 -Q 1 200 200 150 +Q 150 -Q 100 50 1 100 50 3 0 0.5 1 1.5 2 2.5 3 V 0 0.5 1 1.5 2 2.5 3 V ΔΙΝΟΥΜΕ ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΣΥΣΤΗΜΑ ΠΑΙΡΝΟΥΜΕ ΘΕΡΜΟΤΗΤΑ ΑΠΟ ΤΟ ΣΥΣΤΗΜΑ 6

ΔΙΑΓΡΑΜΜΑ P-V P 300 250 200 1 2 P 300 250 200 1 150 100 50 0 0.5 +W1 1 1.5 2 2.5 3 3 V W1>W2 150 100 50 0 2 3 +W2 0.5 1 1.5 2 2.5 3 V ΤΟ ΕΡΓΟ (ΚΑΙ Η ΘΕΡΜΟΤΗΤΑ) ΠΟΥ ΣΥΝΑΛΛΑΣΕΙ ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΜΕ ΤΟ ΣΥΣΤΗΜΑ ΕIΝΑΙ ΣΥΝΑΡΤΗΣΗ ΤΗΣ ΜΕΤΑΒΟΛΗΣ ΚΑΙ ΟΧΙ ΜΟΝΟ ΤΩΝ ΤΕΛΙΚΩΝ ΣΗΜΕΙΩΝ (ΓΙΑ ΜΗ ΑΔΙΑΒΑΤΙΚΕΣ ΜΕΤΑΒΟΛΕΣ). 7

ΔΙΑΓΡΑΜΜΑ Τ-S 8

ΔΙΑΓΡΑΜΜΑ Τ-S T T +Q -Q ΤΟ ΣΥΣΤΗΜΑ ΠΑΙΡΝΕΙ ΘΕΡΜΟΤΗΤΑ ΑΠΟ ΤΟ ΠΕΡΙΒΑΛΛΟΝ (ΔΙΝΟΥΜΕ ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΣΥΣΤΗΜΑ) S ΤΟ ΣΥΣΤΗΜΑ ΔΙΝΕΙ ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ( ΠΑΙΡΝΟΥΜΕ ΘΕΡΜΟΤΗΤΑ ΑΠΟ ΤΟ ΣΥΣΤΗΜΑ) S 9

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ Θερμικές μηχανές ή θερμοκινητήρες: ονομάζονται οι μηχανές οι οποίες μετατρέπουν την θερμότητα που παράγεται από την χημική ενέργεια της καύσης, σε μηχανικό έργο. Ανάλογα με τον τρόπο πραγματοποίησης της καύσης χωρίζονται σε δύο κατηγορίες: - στις μηχανές εσωτερικής καύσεως (Μ.Ε.Κ.) και - στις μηχανές εξωτερικής καύσεως ή ατμομηχανές. 10

ΠΩΣ ΕΧΟΥΝ ΧΡΗΣΙΜΟΠΟΙΗΘΕΙ ΟΙ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ Πριν τις θερμικές μηχανές οι κυριότερες πηγές ισχύος για τη μεταφορά, τις αγροτικές εργασίες και τη βιομηχανία ήταν οάνθρωπος. 11

Παλαιότερα: Θερμικές μηχανές θερμοδυναμικούς κύκλους ατμού μετατροπή θερμικής ενέργειας από την καύση του ξύλου και του κάρβουνου σε έργο για να τροφοδοτήσουν τρένα, καράβια, εργοστάσια και να παράγουν ηλεκτρική ενέργεια. 20ος αιώνας: αύξηση των εφαρμογών των θερμικών μηχανών για να μετατρέψουν τη θερμική ενέργεια από την καύση αερίου ή υγρού καυσίμου σε έργο. Αυτές οι θερμικές μηχανές έχουν μεγαλύτερη ισχύ από τις θερμικές μηχανές που χρησιμοποιούν κύκλους ατμού. 12

Στον 21ο αιώνα παρά το γεγονός ότι δεν ξέρουμε πως θα εξελιχθεί το μέλλον των θερμικών μηχανών μπορούμε να δούμε ποιες βρίσκονται σε ερευνητικό στάδιο: Νέοι τύποι θερμικών μηχανών: Όπως μηχανές Stirling οι οποίες χρησιμοποιούν εναλλακτικές πηγές ενέργειας όπως βιομάζα, απορριπτόμενη θερμότητα, ηλιακή ενέργεια. Νέες ενεργειακές πηγές: Οι περισσότερες θερμικές μηχανές χρησιμοποιούν σήμερα την καύση των ορυκτών καυσίμων. Ωστόσο, οι θερμικές μηχανές μπορούν θεωρητικά να λειτουργήσουν με οποιαδήποτε πηγή θερμικής ενέργειας Νέες εφαρμογές: Η πλειονότητα των αεριοστροβίλων είναι σχετικά μεγάλοι και με αποκλειστική χρήση σε αεροσκάφη ή σε κεντρικούς σταθμούς παραγωγής ηλεκτρικής ενέργειας. Ωστόσο οι μικροί αεριοστρόβιλοι αναπτύσσονται για διασκορπισμένη ηλεκτρική παραγωγή και είναι σχετικά μικροί για να τοποθετηθούν σε σπίτια 13

Εσωτερικής καύσεως ονομάζονται οι μηχανές που ως εργαζόμενο μέσο χρησιμοποιούν τον αέρα και κατά κάποιο τρόπο το ίδιο το καύσιμο, δηλαδή καυσαέρια π.χ εμβολοφόρος κινητήρας αυτοκινήτου, αεροστρόβιλος αεροπλάνου. Εξωτερικής καύσεως ονομάζονται οι μηχανές όπου η καύση καύση δεν λαμβάνει μέρος στο χώρο παραγωγής έργου αλλά έξω από αυτόν και στις οποίες το μέσο παραγωγής έργου δεν είναι το καυσαέριο αλλά κάποιο άλλο στοιχείο όπως π.χ. νερό. Σε αυτήν την κατηγορία ανήκουν οι ατμοστρόβιλοι, οι ατμομηχανές. 14

Ανάλογα με τον τρόπο μετατροπής της θερμικής ενέργειας σε μηχανικό έργο οι θερμικές μηχανές διακρίνονται σε: - εμβολοφόρες ή παλινδρομικές (ισχύουν τόσο για τις μηχανές εσωτερικής καύσεως όσο και για τις εξωτερικής καύσεως) - περιστροφικές ή στροβίλους Στις μηχανές εσωτερικής καύσεως ονομάζονται ατμοστρόβιλοι Στις μηχανές εξωτερικής καύσεως ονομάζονται αεριοστρόβιλοι). 15

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ Α 16

ΚΥΚΛΟΣ CARNOT ΠΑΡΑΓΩΓΗ ΙΣΧΥΟΣ Ο αντιστρεπτός κύκλος με τη μεγαλύτερη απόδοση 17

1-2: Ισοθερμοκρασιακή συμπίεση 2-3: Ισεντροπική συμπίεση 3-4: Ισοθερμοκρασιακή εκτόνωση 4-1: Ισεντροπική εκτόνωση 18

19

Να δειχθεί ότι η θερμική απόδοση ενός κύκλου Carnot είναι συνάρτηση μόνο των θερμοκρασιών TL,, THT 20

Παράδειγμα αξιολόγησης κύκλου ισχύος Ένας εφευρέτης ισχυρίζεται ότι κατασκεύασε μία μονάδα ισχύος η οποία δίνει καθαρό έργο 410 kj όταν η ενέργεια που καταναλώνει είναι 1000 kj. Το σύστημα παίρνει θερμότητα από τα καυσαέρια στους 500 Κ. Εάν η θερμότητα εξόδου είναι 300Κ να αξιολογήσετε αυτό το σύστημα. Θερμική απόδοση του κύκλου βάσει των στοιχείων που δίνονται: η= 410 kj 1000 kj =0.41 (41%) Η μέγιστη θερμική απόδοση οποιουδήποτε κύκλου που λειτουργεί μεταξύ των θερμοκρασιών ΤH=500 K και Τc=300 K είναι: η=1- Τc ΤH = 1-300 K 500 K =0.40 ΕΠΟΜΕΝΩΣ ΔΕΝ ΙΣΧΥΕΙ Ο ΙΣΧΥΡΙΣΜΟΣ ΤΟΥ! 21

ΚΥΚΛΟΣ OTTO 22

1-2: Ισεντροπική συμπίεση 23

2-3: Ισόχωρη προσθήκη θερμότητας 24

3-4: Ισεντροπική εκτόνωση 25

4-1: Ισόχωρη απόρριψη θερμότητας 26

27

1 2 3 4 1. Με τη βαλβίδα εισαγωγής ανοικτή, το έμβολο εισάγει φρέσκο μείγμα μέσα στον κύλινδρο 2. Και με τις δύο βαλβίδες κλειστές το έμβολο εκτελεί συμπίεση αυξάνοντας τη θερμοκρασία αλλά και την πίεση. Απαιτεί εισαγωγή έργου. Αρχίζει η διεργασία συμπίεσης καταλήγοντας σε μείγμα υψηλής θερμοκρασίας και πίεσης.η καύση στον OTTO γίνεται στο τέλος της συμπίεσης. 3. Παράγεται έργο αφού το μείγμα εκτονώνεται και έτσι επιστρέφει στο κάτω νεκρό σημείο. 4. Τα καυσαέρια απορρίπτονται από τον κύλινδρο μέσω της βαλβίδας εξαγωγής. 28

Θεωρητική ανάλυση κύκλου OTTO Παραγόμενα έργα και θερμότητες: Έργο κύκλου: ή Θεωρητικός βαθμός απόδοσης κύκλου: Καθαρό έργο Μέση πίεση κύκλου= Όγκος Εμβολισμού 29

Λόγος συμπίεσης: Θεωρητική ανάλυση κύκλου OTTO Από τις ισεντροπικές μεταβολές: Για σταθερό Cv: Ισχύει όμως: Επομένως Θεωρητικός βαθμός απόδοσης: 30

Μέση αποτελεσματική πίεση (Mean Effective Pressure-MEP) MEP= Wnet Vmax-Vmin (kpa) Wnet=MEP x Εμβαδόν επιφάνειας εμβόλου x Διαδρομή Εμβόλου 31

ΑΣΚΗΣΕΙΣ ΟΤΤΟ 32

ΚΥΚΛΟΣ DIESEL 33

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΚΥΚΛΟΥ DIESEL 1-2: Ισεντροπική συμπίεση 2-3: Ισόθλιπτη προσθήκη θερμότητας 3-4: Ισεντροπική εκτόνωση 4-1: Ισόχωρη απόρριψη θερμότητας 34

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΚΥΚΛΟΥ DIESEL Προσθήκη θερμότητας υπό σταθ. Πίεση P: Με ενεργειακό ισολογισμό στο κλειστό σύστημα έχουμε: Η θερμότητα απορρίπτεται στη διεργασία 4-1: Ο βαθμός απόδοσης του κύκλου είναι ο λόγος του καθαρού έργου προς τη προσδιδόμενη θερμότητα Όπως και στον κύκλο Otto η θερμική απόδοση του κύκλου Diesel αυξάνεται με την αύξηση του λόγου συμπίεσης. 35

Λόγος συμπίεσης Λόγος αποκοπής στον κύκλο Diesel Απόδειξη βαθμού απόδοσης Diesel 36

1-2: Ισεντροπική συμπίεση Όγκος Λόγος αποκοπής 37

2-3: Ισόθλιπτη προσθήκη θερμότητας 3-4: Ισεντροπική εκτόνωση 38

4-1: Ισόχωρη απόρριψη θερμότητας Λόγος συμπίεσης Λόγος αποκοπής 39

ΑΣΚΗΣΕΙΣ DIESEL 40

ΚΥΚΛΟΣ DUAL rp=1 Diesel rc=1 Otto rp>1 Απόδοση μικρότερη Otto μεγαλύτερη Diesel 41

ΚΥΚΛΟΣ STIRLING 42

ΤΥΠΟΛΟΓΙΕΣ-ΔΙΑΜΟΡΦΩΣΕΙΣ 43

ΜΟΝΟΚΥΛΙΝΔΡΗ ΜΗΧΑΝΗ STIRLING ΤΥΠΟΥ Α ΤΗ ΚΑΤΑΣΤΑΣΗ 1 1-2:Ισοθερμοκρασιακή προσθήκη θερμότητας απόεξωτερικήπηγή ΤΗ qin ΚΑΤΑΣΤΑΣΗ 2 ΚΑΤΑΣΤΑΣΗ 3 2-3: Ισόχωρη Προθέρμανση εσωτερική μεταφορά θερμότητας από το ρευστό λειτουργίας στον αναγεννητή ΤL 3-4: Ισοθερμοκρασιακή συμπίεση ΤL qout ΚΑΤΑΣΤΑΣΗ 4 4-1: Ισόχωρη αναγέννηση εσωτερική μεταφορά θερμότητας από τον αναγεννητή στο ρευστό λειτουργίας 44

1 ΙΣΟΘΕΡΜΟΚΡΑΣΙΑΚΗ ΠΡΟΣΘΗΚΗ ΘΕΡΜΟΤΗΤΑ T1=T2 2 4 3 ΙΣΟΘΕΡΜΟΚΡΑΣΙΑΚΗ ΣΥΜΠΙΕΣΗ ΜΕ ΑΠΟΡΡΙΨΗ ΘΕΡΜΟΤΗΤΑΣ T3=T4 45

ΔΙΚΥΛΙΝΔΡΗ ΜΗΧΑΝΗ STIRLING ΤΥΠΟΥ Α IΣΟΘΕΡΜΟΚΡΑΣΙΑΚΗ ΣΥΜΠΙΕΣΗ 1-2 Αρχή φάσης 1-2 Τέλος φάσης 1-2 Το αέριο ψύχεται και συστέλλεται, μαζεύοντας και τα δύο έμβολα προς το εσωτερικό των κυλίνδρων τους Στην αρχή της φάσης ο στρόφαλος βρίσκεται στις 180ο ενώστοτέλοςστις270ο 46

ΙΣΟΟΓΚΗ ΘΕΡΜΑΝΣΗ 2-3 Αρχή φάσης 2-3 Τέλος φάσης 2-3 Tο αέριο που έχει ήδη συσταλθεί βρίσκεται κυρίως στον κρύο κύλινδρο. Ο στρόφαλος στρέφεται ακόμη κατά 90ο αναγκάζοντας το αέριο να επιστρέψει στον θερμό κύλινδρο και να συμπληρωθεί ο κύκλος. Καθώς μεταφέρεται κρύος όγκος αερίου από τον κρύο στο θερμό κύλινδρο, ο αναγεννητής αποδίδει θερμότητα στο εργαζόμενο μέσο, προθερμαίνοντάς το. Στην αρχή της φάσης ο στρόφαλος βρίσκεται στις 270o ενώ στο τέλος στις 360ο. 47

IΣΟΘΕΡΜΟΚΡΑΣΙΑΚΗ ΕΚΤΟΝΩΣΗ 3-4 Αρχή φάσης 3-4 Τέλος φάσης 3-4 Το αέριο θερμαίνεται και εκτονώνεται οδηγώντας και τα δύο έμβολα προς τα μέσα Στο τέλος της φάσης ο στρόφαλος βρίσκεται στις 90ο 48

ΙΣΟΟΓΚΗ ΨΥΞΗ 4-1 αποθηκεύεται ποσό θερμότητας στη μήτρα του αναγεννητή Ο όγκος στο θερμό κύλινδρο είναι μέγιστος Αρχή φάσης 4-1 Τέλος φάσης 4-1 Στην αρχή της φάσης ο στρόφαλος βρίσκεται στις 90ο ενώ στο τέλος στις 180ο 49

ΣΤΕΡΙΑ Η Γερμανική εταιρίας SOLO κατασκευάζει σύγχρονες ηλεκτρογεννήτριες που παράγουν ηλεκτρική ισχύ 2-9 kw από 8-24 kw θερμική ισχύ ΘΑΛΑΣΣΑ 50

ΚΥΚΛΟΣ ERICSSON 51

STIRLING+ERICSSON: Περιλαμβάνουν ένα ΑΝΑΓΕΝΝΗΤΗ δηλαδή ένα εναλλάκτη που χρησιμοποιεί απορριπτόμενη θερμότητα 3 Αναγεννητής 2 4 1 Ισοθερμοκρασιακός συμπιεστής Ισοθερμοκρασιακός στρόβιλος 4 1 1 1 2 4 2 3 3 ΑΠΟΔΕΙΞΗ ΒΑΘΜΟΥ ΑΠΟΔΟΣΗΣ ΚΥΚΛΟΥ ERICSSON 52

ΑΣΚΗΣΕΙΣ STIRLING -ERICSSON 53

Αέρας ακολουθεί τον κύκλο ERICSSON με λόγο συμπίεσης 10. Για χαμηλή πίεση 200 kpa, χαμηλή θερμοκρασία 100 oc και υψηλή θερμοκρασία 600 oc υπολογίστε το έργο εξόδου και το έργο εισόδου. Πρέπει να υπολογιστούν Για διεργασία σταθερής πίεσης Από τον ορισμό του λόγου συμπίεσης Η τελική απαραίτητη ιδιότητα είναι: 54

ΚΥΚΛΟΣ BRAYTON 55

ΑΝΟΙΚΤΟΣ ΚΥΚΛΟΣ ΕΣΩΤΕΡΙΚΗ ΚΑΥΣΗ ΚΛΕΙΣΤΟΣ ΚΥΚΛΟΣ ΕΞΩΤΕΡΙΚΗ ΚΑΥΣΗ 56

ΗΛΕΚΤΡΙΚΗ ΓΕΝΝΗΤΡΙΑ ΕΙΣΟΔΟΣ ΑΕΡΑ ΘΑΛΑΜΟΣ ΚΑΥΣΗΣ ΕΞΟΔΟΣ ΚΑΥΣΑΕΡΙΩΝ Άξονας Συμπιεστής Στρόβιλος Ροή Εισαγωγή καυσίμου Θάλαμος καύσης ΣΥΜΠΙΕΣΤΗΣ Πτερύγια Συμπιεστή Πτερύγια Στροβίλου 57

ΚΛΕΙΣΤΟΣ ΚΥΚΛΟΣ BRAYTON 58

ΒΑΘΜΟΣ ΑΠΟΔΟΣΗΣ ΑΠΛΟΥ ΚΥΚΛΟΥ BRAYTON Ιδανικός Brayton Ισχύει από ισεντροπικές μεταβολές: Αντικαθιστώντας στη σχέση του βαθμού απόδοσης: 59

Ροή Εισαγωγή καυσίμου Θάλαμος καύσης Πτερύγια Συμπιεστή Πτερύγια Στροβίλου Ισεντροπικός βαθμός απόδοσης συμπιεστή Πραγματικός κύκλος Brayton με απώλειες στο συμπιεστή και στο στρόβιλο 60

ΒΑΘΜΟΣ ΑΠΟΔΟΣΗΣ ΚΥΚΛΟΥ BRAYTON 61

ΙΣΕΝΤΡΟΠΙΚΟΙ ΒΑΘΜΟΙ ΑΠΟΔΟΣΗΣ ΣΤΡΟΒΙΛΟΣ ΣΥΜΠΙΕΣΤΗΣ 62

ΒΕΛΤΙΩΝΟΝΤΑΣ ΤΗΝ ΑΠΟΔΟΣΗ ΤΟΥ ΚΥΚΛΟΥ BRAYTONΑΝΑΓΕΝΝΗΣΗ Απλός κύκλος Brayton Kύκλος Brayton με αναγέννηση 63

64

Στην πράξη η θερμοκρασία του αέρα που εξέρχεται από τον αναγεννητή πρέπει να είναι μικρότερη από τη θερμοκρασία του αέρα που εισέρχεται στην κατάσταση 5. Αποδοτικότητα αναγεννητή Για τον ιδανικό αναγεννητή Τ3=Τ5, Άρα ηreg=1 65

ΒΕΛΤΙΩΝΟΝΤΑΣ ΤΗΝ ΑΠΟΔΟΣΗ ΤΟΥ ΚΥΚΛΟΥ BRAYTONΑΝΑΘΕΡΜΑΝΣΗ Απλός κύκλος Brayton Kύκλος Brayton με αναθέρμανση 66

ΒΕΛΤΙΩΝΟΝΤΑΣ ΤΗΝ ΑΠΟΔΟΣΗ ΤΟΥ ΚΥΚΛΟΥ BRAYTONΕΝΔΙΑΜΕΣΗ ΨΥΞΗ Απλός κύκλος Brayton Kύκλος Brayton με ενδιάμεση ψύξη 67

ΠΡΟΩΘΗΤΙΚΟΙ ΚΥΚΛΟΙ 68

ΕΦΑΡΜΟΓΕΣ 69

Μικρή επιτάχυνση μεγάλης μάζας ρευστού 70

Μεγάλη επιτάχυνση μικρής μάζας ρευστού 71

Παραγωγή ηλεκτρικής ενέργειας ΗΛΕΚΤΡΙΚΗ ΓΕΝΝΗΤΡΙΑ ΕΙΣΟΔΟΣ ΑΕΡΑ ΘΑΛΑΜΟΣ ΚΑΥΣΗΣ ΕΞΟΔΟΣ ΚΑΥΣΑΕΡΙΩΝ Άξονας Συμπιεστής Στρόβιλος 72

ΣΤΡΑΤΙΩΤΙΚΑ ΟΧΗΜΑΤΑ ΠΛΟΙΑ 73

ΒΙΒΛΙΟΓΡΑΦΙΑ: 1. Κουρεμένος Δ.Α., ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι, Εκδόσεις Συμεων, 1993 2. Schmidt P.S., Ezekoye O., Howell J.R., Baker D., Thermodynamics: An Integrated Learning System, Wiley, 2005. 3. Potter M.C., Sommerton C.W., Thermodynamics for Engineers, Schaums, McGraw-Hill, 1993 4. Moran M.J., Shapiro H.W., Fundamentals of Engineering Thermodynamics, Fifth Edition, John Wiley & Sons, Inc, 2006 74