1. 2 PEN3 Portable Electronic Nose 3

Σχετικά έγγραφα
1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Differences in Contents of Neutral Aroma Components and Sensory Evaluation in Air-cured Burley Leaves from Different Curing Barns

ph Maillard MRPs maillard reaction products Maillard ph kDa Maillard Maillard DOI /j. issn

Pankow JF, Luo W, Melnychenko AN, Barsanti, KC, Isabelle LM, Chen C, Guenther AB, Rosenstiel TN.

Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius. Feng Liu, Zhou Chen, Nannan Liu

Comparative Study on Determinations of BTEX in Soils from Industrial Contaminated Sites

GC-MS 84.22% % Aroma components analysis in blackcurrant fruit and fruit wine by GC-MS

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

COMPARATIVE TABLE AgBB NIK/LCI list

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

, Vol.36, No.20

Supporting Information. Experimental section

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΔΕΙΚΤΩΝ ΓΙΑ ΤΟ ΒΟΤΑΝΙΚΟ ΚΑΙ ΓΕΩΓΡΑΦΙΚΟ ΔΙΑΧΩΡΙΣΜΟ ΤΩΝ ΚΥΠΡΙΑΚΩΝ ΕΛΑΙΟΛΑΔΩΝ

Comparison of experimental and estimated polarizabilities for organic compounds using ThermoML Archive data

Αξιοποίηση Φυσικών Αντιοξειδωτικών στην Εκτροφή των Αγροτικών

In-Depth Aroma and Sensory Profiling of Unfamiliar Table- Grape Cultivars

Determination of Organophosphate Pesticides in Soil Samples by Accelerated Solvent Extraction-Gas Chromatography

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Detection analysis of line peppers with different packaging at different shelf life by GS-MS and electronic nose

Supporting Information

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

SUPPLEMENTARY INFORMATION

phthalate esters PAEs) n=12 n=20 - GC-MS 13 PAEs 18.77~ ng/l DiBP DEP 2- PAEs PAEs PAEs PAEs DnBP (2011)

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Accumulation of Soil Arsenic by Panax notoginseng and Its Associated Health Risk

Comparison of nutrient components in muscle of wild and farmed groups of Myxocyprinus asiaticus

Extract Isolation Purification and Identification of Polysaccharides from Exocarp of Unripe Fruits of Juglans mandshurica

Supporting Information. Experimental section

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Elucidation of the Structure and Biological Activity of a New Sesquiterpene from Cistus creticus L.

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Nguyen Hien Trang* **

Supporting Information

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

2016, Vol.37, No

Δευτερογενείς μεταβολίτες: βιοσυνθετικές οδοί και βιολογικός ρόλος

Influence of Flow Rate on Nitrate Removal in Flow Process

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

ΠΡΟΓΙΟΡΙΜΟ ΣΗ ΓΔΩΓΡΑΦΙΚΗ ΠΡΟΔΛΔΤΗ ΣΟΤ ΘΤΜΑΡΙΙΟΤ ΜΔΛΙΟΤ ΜΔ ΒΑΗ ΣΙ ΠΣΗΣΙΚΈ ΣΟΤ ΔΝΩΔΙ

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

Screening of Respiration-deficient Saccharomyces cerevisiae Strains with Sugar-and Thermo-tolerances

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Comparison of HPLC fingerprint between enzymatic Calculus bovis and natural Calculus bovis

Universal Solvent GC Method Table

Electronic Supplementary Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

The Free Internet Journal for Organic Chemistry

I. HS-SPME/GC-MS analysis of VOCs emitted from pine and spruce litter into the gas phase

MVOC. Damp Dampness WHO. Volatile Organic Compounds : VOC VOC. VOC MVOC : Microbial Volatile Organic Compounds MVOC MVOC MVOC MVOC .- -,.

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

REACH SIPA ACH BERTHIER Déc 08 - version 1

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Supplementary Material for Statistical Field Theory for Polar Fluids

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

ER-Tree (Extended R*-Tree)

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

1.6 Other Intramolecular Decarboxylative Coupling Reactions Decarboxylative Coupling Reaction of Allyl Carboxylates

Γεωπονικό Πανεπιςτήμιο Αθηνών Τμήμα Αξιοποίηςησ Φυςικών Πόρων και Γεωργικήσ Μηχανικήσ

# School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan , China.

Analysis on the Ratio of Flesh Content and Nutritional. Quality of Esox lucius

CorV CVAC. CorV TU317. 1

Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill

Supporting Information for

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

LDPE : low density poly HDPE : high density. polyethylene terephthalate. GC AEDA aroma extract dilution assay PET +* ,* ppb.

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

,,, (, ) , ;,,, ; -

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Quick algorithm f or computing core attribute

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supplementary Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Emulsifying Properties of Egg Yolk as a Function of Diacylglycerol Oil

BGP TRACP-5b BGP TRACP-5b P 0.05

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

J. Dairy Sci. 93: doi: /jds American Dairy Science Association, 2010.

Supplementary Materials: Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals

Electronic Supplementary Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Electronic Supplementary Material

Supporting Information

Conductivity Logging for Thermal Spring Well

Transcript:

* 450002 5 0% 0. 05% 0. 1% 0. 2% 0. 3% EN HS-SPME GC-MS GC-MS 54 60 63 65 80 40 0. 3% 0. 3% - 1 3 000 1. 1 150 ~ 170g / AA 42 1. 2 PEN3 Portable Electronic Nose 3 Airsense Trance MS - Perkin Elmer TurboMatrixTD Finnigan SPME Car /PDMS Carboxen /polydimethylsioxane 75μm Supelco 1 1. 3 1. 3. 1 样品制备 0% 0. 05% 0. 1% 0. 2% 0. 3% 2 3% 3% 5 ~ 8 mm 5 ~ 8 mm 10 min 60 E-mail gmzhao @ 126. com * 31271895 CARS-42 2013-03 - 14 2013-05 - 09 1 134 J /s 178 J 3-40 EN 2 mm 34 2013 Vol. 39 No. 6 Total 306

2. 5 g 15 ml 60 35 min 1 GC-MS 2 PC1 mm 5. 3 g 15 ml 98. 64% SPME 99. 96% 60 35 min - 0. 1% 0. 2% GC-MS 250 2 min GC-MS 1. 3. 2 实验条件 1 s 100 10 s 50 s DB-WAX Agilent Technologies GC 30 m 0. 25 mm 0. 25 μm 40 3 min 5 /min 80 10 /min 230 230 8 min He EI 70 ev GC MS 250 200 33 ~500amu 350 V 1. 3. 3 数据处理 WinMuster 35 ~ 37 s principle component analysis PCA GC-MS GC-MS WIL- LEY REPLIB MAINLIB NISTDEMO 4 SI RSI 800 1 000 2 2. 1 1 PC 3 0. 3% 4 4 SPME-GC-MS 5 2. 2 GC-MS Fig. 1 1 PCA PCA plot of chicken samples in different groups 2 a. 0% b. 0. 05% c. 0. 1% d. 0. 2% e. 0. 3% Fig. 2 Total ion chromatograms of volatile flavor compounds in different groups 2 2013 39 6 306 35

12 14 7 5 54 14 14 4 6 24 6 3 3 4 8 10 0. 05% 1 60 16 14 2-8 4 2 5 L- 2 3-1 10 0. 1% 63 17 14 7 4 3 40 0. 3% 6 2 10 0. 3% 0. 2% 65 4 17 14 8 4 3 6 3 10 0. 3% 80 Table 1 1 Analysis results of volatile flavor compounds of chicken in different groups / min /% 0% 0. 05% 0. 1% 0. 2% 0. 3% aldehydes 57. 79 74. 21 67. 00 76. 90 51. 67 4. 82 pentanal 4. 91 5. 01 3. 12 5. 42 2. 72 7. 19 hexanal 32. 79 45. 93 32. 08 45. 47 28. 76 9. 98 heptanal 4. 06 5. 01 4. 84 4. 95 2. 59 12. 69 octanal 4. 82 5. 60 5. 35 5. 80 3. 00 14. 78 nonanal 7. 31 7. 99 6. 67 8. 05 4. 34 15. 38 E -2-octenal -2-0. 10 0. 19 0. 18 0. 18 0. 08 16. 46 decanal 0. 43 0. 33 0. 45 0. 27 16. 85 benzaldehyde 1. 93 2. 37 3. 37 4. 76 5. 43 17. 01 E -2-nonenal -2-0. 07 0. 07 0. 08 0. 06 17. 94 undecanal 0. 02 0. 04 0. 08 0. 04 19. 28 dodecanal 0. 13 0. 08 0. 09 0. 09 20. 20 hydrocinnamaldehyde 0. 06 0. 02 20. 51 tridecanal 0. 19 0. 11 0. 12 0. 07 0. 06 21. 69 tetradecanal 0. 36 0. 19 0. 26 0. 44 0. 18 23. 01 cinnamaldehyde 0. 88 9. 55 0. 93 4. 28 23. 83 hexadecanal 0. 67 0. 37 0. 58 0. 29 0. 22 26. 80 4-methoxycinnamic aldehyde 4-0. 04 0. 12 0. 06 0. 01 alcohols 9. 31 8. 23 8. 51 8. 68 5. 71 9. 20 1-butanol 2. 49 0. 60 2. 44 1. 10 0. 64 9. 59 1-penten-3-ol 1- -3-0. 05 0. 09 0. 05 0. 09 0. 05 10. 70 cineole 0. 81 11. 98 1-pentanol 1. 30 2. 28 1. 32 2. 16 1. 34 14. 13 1-hexanol 0. 36 0. 50 0. 38 0. 50 0. 30 15. 75 1-octen-3-ol 1- -3-1. 65 2. 69 1. 57 2. 59 1. 42 15. 85 1-heptanol 0. 29 0. 45 0. 34 0. 55 0. 27 16. 37 2-ethylhexanol 2-0. 81 0. 39 0. 88 0. 63 17. 16 L-linalool L- 0. 04 17. 33 1-octanol 1. 11 0. 59 0. 71 0. 56 0. 30 18. 10 E -2-octen-1-ol -2-0. 13 0. 28 0. 15 0. 26 0. 26 19. 14 4-butoxybutan-1-ol 4- -1-0. 05 0. 03 0. 04 0. 04 19. 25 borneol 0. 15 36 2013 Vol. 39 No. 6 Total 306

1 / min /% 0% 0. 05% 0. 1% 0. 2% 0. 3% 21. 24 benzyl alcohol 0. 17 0. 03 0. 07 0. 04 0. 03 22. 14 1-dodecanol 0. 10 0. 04 0. 04 0. 02 22. 31 2 2 -oxybis-ethanol 0. 26 0. 12 0. 13 0. 04 0. 02 25. 75 triethylene glycol 0. 54 0. 14 0. 39 0. 10 0. 08 ketones 6. 91 6. 13 5. 31 6. 01 3. 50 3. 49 2-butanone 2-2. 33 1. 14 2. 03 0. 98 0. 80 6. 66 2 3-pentanedione 2 3-0. 01 0. 08 11. 48 6-methyl-2-heptanone 6- -2-0. 09 0. 16 0. 06 0. 15 0. 11 12. 98 acetol 0. 41 0. 24 0. 29 0. 18 0. 11 13. 50 2 3-octanedione 2 3-3. 38 4. 17 2. 54 4. 33 2. 30 13. 72 6-methyl-5-hepten-2-one 0. 44 0. 28 0. 19 0. 17 0. 13 15. 93 acetol acetate 0. 26 0. 11 0. 18 0. 10 0. 03 20. 96 geranylacetone 0. 02 0. 02 0. 02 0. 02 Esters 0. 22 0. 11 0. 24 0. 14 0. 11 6. 98 butyl acetate 0. 11 0. 04 0. 12 0. 06 17. 28 linalyl acetate 0. 03 18. 32 butyrolactone γ- 0. 04 0. 02 0. 03 0. 02 0. 01 24. 05 cinnamyl acetate 0. 03 27. 85 isobutyl phthalate 0. 07 0. 02 0. 03 0. 03 0. 02 27. 04 coumarin 0. 03 0. 06 0. 03 0. 02 ethers 0. 62 0. 18 0. 34 0. 41 0. 21 4. 58 butyl ether 0. 21 0. 13 0. 22 0. 09 18. 21 2-2-ethoxyethoxy ethanol 0. 16 0. 11 0. 11 0. 11 0. 07 20. 68 anethole 0. 01 26. 64 2-2- 2-ethoxyexthoxy ethoxy ethanol 0. 25 0. 07 0. 10 0. 08 0. 04 Aromatic compounds 3. 96 2. 44 3. 83 1. 93 0. 46 4. 44 2 4 6 6-pentamethylheptane 0. 04 0. 15 0. 05 6. 12 toluene 2. 68 1. 93 2. 90 1. 40 8. 19 ethylbenzene 0. 21 0. 22 0. 23 0. 10 0. 05 8. 59 dimethylbenzene 1. 04 0. 16 0. 43 0. 21 0. 23 12. 26 p-cymene 0. 09 22. 57 phenol 0. 03 0. 02 0. 03 0. 02 0. 01 24. 79 azunol 0. 11 0. 12 0. 05 0. 03 terpenes 0. 06 0. 36 0. 08 35. 19 6. 12 1 3 5-cycloheptatriene 1. 38 6. 67 camphene 0. 86 7. 57 sabinene 0. 27 7. 64 α-pinene α- 2. 98 8. 03 β-pinene β- 0. 09 10. 39 limonene 0. 12 15. 47 α-copaene α- 0. 41 16. 07 guaiene 0. 11 16. 22 cyclosativen 1. 93 16. 43 ylangene 21. 77 17. 02 sativen 0. 88 17. 21 aromadendrene 0. 14 17. 53 isosativene 0. 33 17. 70 β-elemene β- 0. 25 17. 83 germacrene 0. 24 17. 90 caryophyllene 0. 02 0. 14 18. 85 humulene 0. 16 19. 17 ledene 0. 06 19. 34 isoledene 0. 14 2013 39 6 306 37

1 / min 38 2013 Vol. 39 No. 6 Total 306 /% 0% 0. 05% 0. 1% 0. 2% 0. 3% 19. 50 muurolene 0. 20 0. 01 1. 23 19. 89 delta-cadinene 1. 23 20. 20 cadina-1 4-diene -1 4-0. 11 20. 78 calamenene 0. 06 0. 16 0. 05 0. 22 21. 71 calacorene 0. 14 others 15. 81 6. 16 9. 57 3. 81 2. 02 5. 48 2-methoxy- 1 benzothieno 2 3-c 2- - 1 0. 78 quinolin-6 5H -one 2 3c -6 5-0. 11 0. 86 0. 22 0. 04 10. 51 4-ethynyl-4-methyl-1 5-hexadiene-3-ol 4- -4- -1 5- -3-2. 08 0. 42 0. 95 0. 36 0. 19 11. 25 2-pentylfuran 2-0. 17 1. 55 0. 18 0. 22 0. 14 14. 53 dimethyltrisulfide 0. 04 0. 05 0. 04 0. 03 0. 02 16. 55 4-nitrophthalamide 4-1. 02 0. 38 0. 65 0. 30 0. 16 17. 70 dimethyl sulfoxide 0. 15 0. 06 0. 08 0. 06 18. 54 19. 85 4- benzoyloxy - 2H-pyran-3-one 4- -2-1- 4-methoxyphenyl -1- methoxypropane -3-1- 4- -1-6. 85 2. 18 4. 04 1. 77 1. 29 4. 38 1. 28 2. 46 0. 75 21. 52 dimethyl sulfone 0. 08 0. 01 0. 04 0. 05 0. 02 21. 87 benzyl cyanide 0. 26 0. 12 0. 27 0. 05 0. 16 3 3. 1 4-3 3 10 4 11 0. 3% 5 5-2- > 50% > 25% 3. 2 4. 5 10-3 mg /kg 6 Strecker 7 3 ~ 4 12 5 ~ 9 1- -3-10 ~ 12 13 1 10-3 mg /kg 0. 05% 0. 1% 0. 2% 3 0. 3% L- 2-4- -1-8 14-15 9 2-

250 11 3. 3 24 2 3-0. 3% 24 35. 19% 2 2 0. 05% 0. 1% 0. 2% 1 2 3 0. 5% 0. 05% 2 3-0. 1% 0. 2% 11 21 0. 3% 3. 4 0. 3% β- α- 11 3. 8 γ- γ- 17 11 18 3 0. 3% 0. 3% 1-4- -1- β- 2-6 10-3 mg /kg 11 3. 5 Strecker 4 1 10-5 mg / 1% 0. 3% kg 19 4-1- 4- -1-14 -NH 2 -O- 3. 6 3. 7 3 11 4 16 11 0. 3% 13 0. 1% 40 2013 39 6 306 39

2007. 9. M. 1993. 10. 0. 3% GC-MS J. 2002 25 4 257-258. 11. M. 2004. 12 Buscailhon S Berdague J L Monin G. Time-related 1. M. changes in volatile compounds of lean tissue during processing 2008. of French dry-cured ham J. Journal of the Sci- 2. ence of Food and Agriculture l993 63 1 69-75. J. 2011 11 20-25. 13 Shahidi F Rubin L J D' Souza L A. Meat flavor volatiles A review of the composition techniques of analy- 3. sis and sensory evaluations J. CRC Critical Reviews of J. 2008 24 9 175-178. Food Science and Nutrition 1986 24 141-243. 14. 4 Maarse H. Volatile compounds in foods and beverages J. 2005 44 M. New York Marcel Dekker Inc 1991 107-177. 1 82-85. 5 Sanchez-Pena C M Luna G Garcia-Gonzalez D L et a1. Characterization of French and Spanish dry-cured hams influence of the volatiles from the muscles and the subcutaneous fat quantified by SPME-GC J. Meat Science 2005 69 635-645. 6 Elmore J S Motterm D S Enser M et al. Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles J. Food Chemistry 1999 47 1 619-1 625. 7 Forss D A. Odor and flavor compounds from lipids J. Progress in the chemistry of fats and other lipids 1972 13 4 181-258. 8. M. 15. M. 2010. 16. J. 2009 33 6 883-884. 17 Mottram D S. Flavour formation in meat and meat products a review J. Food Chemistry 1998 62 4 415-424. 18 Farmer L J. Poultry Meat Science M. New York CAB International 1999 127-158. 19 Ruiz J Ventanas J. New device for direct extraction of volatiles in solid samples using SPME J. Food Chemistry 2001 49 11 5 115-5 121. Effects of cinnamon additions on volatile flavor compounds of stewed chicken LIU Xin ZHAO Gai-ming TIAN Wei LIU Yan-xia SUN Ling-xia LIU Yong-an Henan Key Lab of Meat Quality and Safety Control Henan Agricultural University Zhengzhou 450002 China ABSTRACT To compare the effects of cinnamon additions on volatile flavor compounds of stewed chicken and provide references for cinnamon application in traditional sauced meat processing. Electronic nose and HS-SPME-GC-MS were used to detect the stewed chicken samples with different cinnamon concentrations 0% 0. 05% 0. 1% 0. 2% and 0. 3%. Results The electronic nose signals of different samples showed a strong cluster property. With the increase of cinnamon addition 54 60 63 65 and 80 volatile flavor compounds were identified successively. Compared with the contrast group 40 new flavor compounds cinnamaldehyde cineole geranylacetone coumarin p-cymene caryophyllene etc were found in the cinnamon groups. Terpenes content increased the most in 0. 3% cinnamon group. The newly-added volatile flavor compounds in chicken samples with cinnamon were mainly contributed by the addition of cinnamon. When the addition amount of cinnamon reached to 0. 3% terpenes in chicken samples sharply increased and volatile flavour components changed greatly. Key words cinnamon chicken volatile flavor compounds electronic nose HS-SPME-GC-MS 40 2013 Vol. 39 No. 6 Total 306