* 450002 5 0% 0. 05% 0. 1% 0. 2% 0. 3% EN HS-SPME GC-MS GC-MS 54 60 63 65 80 40 0. 3% 0. 3% - 1 3 000 1. 1 150 ~ 170g / AA 42 1. 2 PEN3 Portable Electronic Nose 3 Airsense Trance MS - Perkin Elmer TurboMatrixTD Finnigan SPME Car /PDMS Carboxen /polydimethylsioxane 75μm Supelco 1 1. 3 1. 3. 1 样品制备 0% 0. 05% 0. 1% 0. 2% 0. 3% 2 3% 3% 5 ~ 8 mm 5 ~ 8 mm 10 min 60 E-mail gmzhao @ 126. com * 31271895 CARS-42 2013-03 - 14 2013-05 - 09 1 134 J /s 178 J 3-40 EN 2 mm 34 2013 Vol. 39 No. 6 Total 306
2. 5 g 15 ml 60 35 min 1 GC-MS 2 PC1 mm 5. 3 g 15 ml 98. 64% SPME 99. 96% 60 35 min - 0. 1% 0. 2% GC-MS 250 2 min GC-MS 1. 3. 2 实验条件 1 s 100 10 s 50 s DB-WAX Agilent Technologies GC 30 m 0. 25 mm 0. 25 μm 40 3 min 5 /min 80 10 /min 230 230 8 min He EI 70 ev GC MS 250 200 33 ~500amu 350 V 1. 3. 3 数据处理 WinMuster 35 ~ 37 s principle component analysis PCA GC-MS GC-MS WIL- LEY REPLIB MAINLIB NISTDEMO 4 SI RSI 800 1 000 2 2. 1 1 PC 3 0. 3% 4 4 SPME-GC-MS 5 2. 2 GC-MS Fig. 1 1 PCA PCA plot of chicken samples in different groups 2 a. 0% b. 0. 05% c. 0. 1% d. 0. 2% e. 0. 3% Fig. 2 Total ion chromatograms of volatile flavor compounds in different groups 2 2013 39 6 306 35
12 14 7 5 54 14 14 4 6 24 6 3 3 4 8 10 0. 05% 1 60 16 14 2-8 4 2 5 L- 2 3-1 10 0. 1% 63 17 14 7 4 3 40 0. 3% 6 2 10 0. 3% 0. 2% 65 4 17 14 8 4 3 6 3 10 0. 3% 80 Table 1 1 Analysis results of volatile flavor compounds of chicken in different groups / min /% 0% 0. 05% 0. 1% 0. 2% 0. 3% aldehydes 57. 79 74. 21 67. 00 76. 90 51. 67 4. 82 pentanal 4. 91 5. 01 3. 12 5. 42 2. 72 7. 19 hexanal 32. 79 45. 93 32. 08 45. 47 28. 76 9. 98 heptanal 4. 06 5. 01 4. 84 4. 95 2. 59 12. 69 octanal 4. 82 5. 60 5. 35 5. 80 3. 00 14. 78 nonanal 7. 31 7. 99 6. 67 8. 05 4. 34 15. 38 E -2-octenal -2-0. 10 0. 19 0. 18 0. 18 0. 08 16. 46 decanal 0. 43 0. 33 0. 45 0. 27 16. 85 benzaldehyde 1. 93 2. 37 3. 37 4. 76 5. 43 17. 01 E -2-nonenal -2-0. 07 0. 07 0. 08 0. 06 17. 94 undecanal 0. 02 0. 04 0. 08 0. 04 19. 28 dodecanal 0. 13 0. 08 0. 09 0. 09 20. 20 hydrocinnamaldehyde 0. 06 0. 02 20. 51 tridecanal 0. 19 0. 11 0. 12 0. 07 0. 06 21. 69 tetradecanal 0. 36 0. 19 0. 26 0. 44 0. 18 23. 01 cinnamaldehyde 0. 88 9. 55 0. 93 4. 28 23. 83 hexadecanal 0. 67 0. 37 0. 58 0. 29 0. 22 26. 80 4-methoxycinnamic aldehyde 4-0. 04 0. 12 0. 06 0. 01 alcohols 9. 31 8. 23 8. 51 8. 68 5. 71 9. 20 1-butanol 2. 49 0. 60 2. 44 1. 10 0. 64 9. 59 1-penten-3-ol 1- -3-0. 05 0. 09 0. 05 0. 09 0. 05 10. 70 cineole 0. 81 11. 98 1-pentanol 1. 30 2. 28 1. 32 2. 16 1. 34 14. 13 1-hexanol 0. 36 0. 50 0. 38 0. 50 0. 30 15. 75 1-octen-3-ol 1- -3-1. 65 2. 69 1. 57 2. 59 1. 42 15. 85 1-heptanol 0. 29 0. 45 0. 34 0. 55 0. 27 16. 37 2-ethylhexanol 2-0. 81 0. 39 0. 88 0. 63 17. 16 L-linalool L- 0. 04 17. 33 1-octanol 1. 11 0. 59 0. 71 0. 56 0. 30 18. 10 E -2-octen-1-ol -2-0. 13 0. 28 0. 15 0. 26 0. 26 19. 14 4-butoxybutan-1-ol 4- -1-0. 05 0. 03 0. 04 0. 04 19. 25 borneol 0. 15 36 2013 Vol. 39 No. 6 Total 306
1 / min /% 0% 0. 05% 0. 1% 0. 2% 0. 3% 21. 24 benzyl alcohol 0. 17 0. 03 0. 07 0. 04 0. 03 22. 14 1-dodecanol 0. 10 0. 04 0. 04 0. 02 22. 31 2 2 -oxybis-ethanol 0. 26 0. 12 0. 13 0. 04 0. 02 25. 75 triethylene glycol 0. 54 0. 14 0. 39 0. 10 0. 08 ketones 6. 91 6. 13 5. 31 6. 01 3. 50 3. 49 2-butanone 2-2. 33 1. 14 2. 03 0. 98 0. 80 6. 66 2 3-pentanedione 2 3-0. 01 0. 08 11. 48 6-methyl-2-heptanone 6- -2-0. 09 0. 16 0. 06 0. 15 0. 11 12. 98 acetol 0. 41 0. 24 0. 29 0. 18 0. 11 13. 50 2 3-octanedione 2 3-3. 38 4. 17 2. 54 4. 33 2. 30 13. 72 6-methyl-5-hepten-2-one 0. 44 0. 28 0. 19 0. 17 0. 13 15. 93 acetol acetate 0. 26 0. 11 0. 18 0. 10 0. 03 20. 96 geranylacetone 0. 02 0. 02 0. 02 0. 02 Esters 0. 22 0. 11 0. 24 0. 14 0. 11 6. 98 butyl acetate 0. 11 0. 04 0. 12 0. 06 17. 28 linalyl acetate 0. 03 18. 32 butyrolactone γ- 0. 04 0. 02 0. 03 0. 02 0. 01 24. 05 cinnamyl acetate 0. 03 27. 85 isobutyl phthalate 0. 07 0. 02 0. 03 0. 03 0. 02 27. 04 coumarin 0. 03 0. 06 0. 03 0. 02 ethers 0. 62 0. 18 0. 34 0. 41 0. 21 4. 58 butyl ether 0. 21 0. 13 0. 22 0. 09 18. 21 2-2-ethoxyethoxy ethanol 0. 16 0. 11 0. 11 0. 11 0. 07 20. 68 anethole 0. 01 26. 64 2-2- 2-ethoxyexthoxy ethoxy ethanol 0. 25 0. 07 0. 10 0. 08 0. 04 Aromatic compounds 3. 96 2. 44 3. 83 1. 93 0. 46 4. 44 2 4 6 6-pentamethylheptane 0. 04 0. 15 0. 05 6. 12 toluene 2. 68 1. 93 2. 90 1. 40 8. 19 ethylbenzene 0. 21 0. 22 0. 23 0. 10 0. 05 8. 59 dimethylbenzene 1. 04 0. 16 0. 43 0. 21 0. 23 12. 26 p-cymene 0. 09 22. 57 phenol 0. 03 0. 02 0. 03 0. 02 0. 01 24. 79 azunol 0. 11 0. 12 0. 05 0. 03 terpenes 0. 06 0. 36 0. 08 35. 19 6. 12 1 3 5-cycloheptatriene 1. 38 6. 67 camphene 0. 86 7. 57 sabinene 0. 27 7. 64 α-pinene α- 2. 98 8. 03 β-pinene β- 0. 09 10. 39 limonene 0. 12 15. 47 α-copaene α- 0. 41 16. 07 guaiene 0. 11 16. 22 cyclosativen 1. 93 16. 43 ylangene 21. 77 17. 02 sativen 0. 88 17. 21 aromadendrene 0. 14 17. 53 isosativene 0. 33 17. 70 β-elemene β- 0. 25 17. 83 germacrene 0. 24 17. 90 caryophyllene 0. 02 0. 14 18. 85 humulene 0. 16 19. 17 ledene 0. 06 19. 34 isoledene 0. 14 2013 39 6 306 37
1 / min 38 2013 Vol. 39 No. 6 Total 306 /% 0% 0. 05% 0. 1% 0. 2% 0. 3% 19. 50 muurolene 0. 20 0. 01 1. 23 19. 89 delta-cadinene 1. 23 20. 20 cadina-1 4-diene -1 4-0. 11 20. 78 calamenene 0. 06 0. 16 0. 05 0. 22 21. 71 calacorene 0. 14 others 15. 81 6. 16 9. 57 3. 81 2. 02 5. 48 2-methoxy- 1 benzothieno 2 3-c 2- - 1 0. 78 quinolin-6 5H -one 2 3c -6 5-0. 11 0. 86 0. 22 0. 04 10. 51 4-ethynyl-4-methyl-1 5-hexadiene-3-ol 4- -4- -1 5- -3-2. 08 0. 42 0. 95 0. 36 0. 19 11. 25 2-pentylfuran 2-0. 17 1. 55 0. 18 0. 22 0. 14 14. 53 dimethyltrisulfide 0. 04 0. 05 0. 04 0. 03 0. 02 16. 55 4-nitrophthalamide 4-1. 02 0. 38 0. 65 0. 30 0. 16 17. 70 dimethyl sulfoxide 0. 15 0. 06 0. 08 0. 06 18. 54 19. 85 4- benzoyloxy - 2H-pyran-3-one 4- -2-1- 4-methoxyphenyl -1- methoxypropane -3-1- 4- -1-6. 85 2. 18 4. 04 1. 77 1. 29 4. 38 1. 28 2. 46 0. 75 21. 52 dimethyl sulfone 0. 08 0. 01 0. 04 0. 05 0. 02 21. 87 benzyl cyanide 0. 26 0. 12 0. 27 0. 05 0. 16 3 3. 1 4-3 3 10 4 11 0. 3% 5 5-2- > 50% > 25% 3. 2 4. 5 10-3 mg /kg 6 Strecker 7 3 ~ 4 12 5 ~ 9 1- -3-10 ~ 12 13 1 10-3 mg /kg 0. 05% 0. 1% 0. 2% 3 0. 3% L- 2-4- -1-8 14-15 9 2-
250 11 3. 3 24 2 3-0. 3% 24 35. 19% 2 2 0. 05% 0. 1% 0. 2% 1 2 3 0. 5% 0. 05% 2 3-0. 1% 0. 2% 11 21 0. 3% 3. 4 0. 3% β- α- 11 3. 8 γ- γ- 17 11 18 3 0. 3% 0. 3% 1-4- -1- β- 2-6 10-3 mg /kg 11 3. 5 Strecker 4 1 10-5 mg / 1% 0. 3% kg 19 4-1- 4- -1-14 -NH 2 -O- 3. 6 3. 7 3 11 4 16 11 0. 3% 13 0. 1% 40 2013 39 6 306 39
2007. 9. M. 1993. 10. 0. 3% GC-MS J. 2002 25 4 257-258. 11. M. 2004. 12 Buscailhon S Berdague J L Monin G. Time-related 1. M. changes in volatile compounds of lean tissue during processing 2008. of French dry-cured ham J. Journal of the Sci- 2. ence of Food and Agriculture l993 63 1 69-75. J. 2011 11 20-25. 13 Shahidi F Rubin L J D' Souza L A. Meat flavor volatiles A review of the composition techniques of analy- 3. sis and sensory evaluations J. CRC Critical Reviews of J. 2008 24 9 175-178. Food Science and Nutrition 1986 24 141-243. 14. 4 Maarse H. Volatile compounds in foods and beverages J. 2005 44 M. New York Marcel Dekker Inc 1991 107-177. 1 82-85. 5 Sanchez-Pena C M Luna G Garcia-Gonzalez D L et a1. Characterization of French and Spanish dry-cured hams influence of the volatiles from the muscles and the subcutaneous fat quantified by SPME-GC J. Meat Science 2005 69 635-645. 6 Elmore J S Motterm D S Enser M et al. Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles J. Food Chemistry 1999 47 1 619-1 625. 7 Forss D A. Odor and flavor compounds from lipids J. Progress in the chemistry of fats and other lipids 1972 13 4 181-258. 8. M. 15. M. 2010. 16. J. 2009 33 6 883-884. 17 Mottram D S. Flavour formation in meat and meat products a review J. Food Chemistry 1998 62 4 415-424. 18 Farmer L J. Poultry Meat Science M. New York CAB International 1999 127-158. 19 Ruiz J Ventanas J. New device for direct extraction of volatiles in solid samples using SPME J. Food Chemistry 2001 49 11 5 115-5 121. Effects of cinnamon additions on volatile flavor compounds of stewed chicken LIU Xin ZHAO Gai-ming TIAN Wei LIU Yan-xia SUN Ling-xia LIU Yong-an Henan Key Lab of Meat Quality and Safety Control Henan Agricultural University Zhengzhou 450002 China ABSTRACT To compare the effects of cinnamon additions on volatile flavor compounds of stewed chicken and provide references for cinnamon application in traditional sauced meat processing. Electronic nose and HS-SPME-GC-MS were used to detect the stewed chicken samples with different cinnamon concentrations 0% 0. 05% 0. 1% 0. 2% and 0. 3%. Results The electronic nose signals of different samples showed a strong cluster property. With the increase of cinnamon addition 54 60 63 65 and 80 volatile flavor compounds were identified successively. Compared with the contrast group 40 new flavor compounds cinnamaldehyde cineole geranylacetone coumarin p-cymene caryophyllene etc were found in the cinnamon groups. Terpenes content increased the most in 0. 3% cinnamon group. The newly-added volatile flavor compounds in chicken samples with cinnamon were mainly contributed by the addition of cinnamon. When the addition amount of cinnamon reached to 0. 3% terpenes in chicken samples sharply increased and volatile flavour components changed greatly. Key words cinnamon chicken volatile flavor compounds electronic nose HS-SPME-GC-MS 40 2013 Vol. 39 No. 6 Total 306