Higgs production -Theory-

Σχετικά έγγραφα
Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

The Student s t and F Distributions Page 1

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Math221: HW# 1 solutions

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Other Test Constructions: Likelihood Ratio & Bayes Tests

Approximation of distance between locations on earth given by latitude and longitude

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Matrices and Determinants

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

2 Composition. Invertible Mappings

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

EE512: Error Control Coding

Finite Field Problems: Solutions

Homework 3 Solutions

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lecture 12 Modulation and Sampling

derivation of the Laplacian from rectangular to spherical coordinates

Problem Set 3: Solutions

Example Sheet 3 Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

Statistical Inference I Locally most powerful tests

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Strain gauge and rosettes

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Riemann Hypothesis: a GGC representation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ω = radians per sec, t = 3 sec

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Galatia SIL Keyboard Information

D-Wave D-Wave Systems Inc.

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

6.003: Signals and Systems

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Every set of first-order formulas is equivalent to an independent set


Χρονοσειρές Μάθημα 3

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

w o = R 1 p. (1) R = p =. = 1

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ST5224: Advanced Statistical Theory II

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

4.6 Autoregressive Moving Average Model ARMA(1,1)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

LIGHT UNFLAVORED MESONS (S = C = B = 0)

New bounds for spherical two-distance sets and equiangular lines

6.003: Signals and Systems. Modulation

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Solution Series 9. i=1 x i and i=1 x i.

Derivation of Optical-Bloch Equations

Commutative Monoids in Intuitionistic Fuzzy Sets

Space-Time Symmetries

1. Ευθύγραμμη ομαλή κίνηση 2. Εξίσωση κίνησης 3. Μετατόπιση & διάστημα 4. ιάγραμμα ταχύτητας χρόνου 5. Στρατηγική λύσης προβλημάτων.

Section 8.3 Trigonometric Equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

On Strong Product of Two Fuzzy Graphs

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Higher Derivative Gravity Theories

Instruction Execution Times

The challenges of non-stable predicates

EE101: Resonance in RLC circuits

Large β 0 corrections to the energy levels and wave function at N 3 LO

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR

Lecture 26: Circular domains

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Homework 8 Model Solution Section

Lecture 34 Bootstrap confidence intervals

Srednicki Chapter 55

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Models for Probabilistic Programs with an Adversary

Bounding Nonsplitting Enumeration Degrees

Uniform Convergence of Fourier Series Michael Taylor

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Section 7.6 Double and Half Angle Formulas

Calculating the propagation delay of coaxial cable

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 133: ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΕΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟ 3 Javadoc Tutorial

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

ΠΡΟΣ: Θέμα: Διαγωνισμός Δημιουργικής Γραφής στα Αγγλικά για την Ε και ΣΤ Δημοτικού

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Fractional Colorings and Zykov Products of graphs

Transcript:

iggs producion -Theory- iggs uning 0 Rober arlander Bergische Universiä Wupperal suppored by

iggs producion (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 - pp (NLO QCD) - 80 0 00 300 400 00 M [Ge]

(pp"+x) [pb] #$ s = 4 Te Spira, Djouadi, Graudenz, Zerwas 9, 93 Dawson 9 NLO LO 0 40 60 80 00 0 40 60 80 300 M [Ge]

(pp"+x) [pb] #$ s = 4 Te R, Kilgore 0 Anasasiou, Melnikov 0 Ravindran, Smih, v. Neerven 03 NNLO NLO LO 0 40 60 80 00 0 40 60 80 300 M [Ge]

Influence of heory

Influence of heory NNLO++

Influence of heory NNLO++ NLO

Influence of heory NNLO++ LO

Influence of heory errors

Evens / 500 Me for 5 pb - 8000 6000 4000 000 γγ M 30 Ge iggs signal 0 80 0 40 M γγ (Ge)

_

_

_ W W

Gluon fusion (pp +X) [pb] - - pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) pp (NLO QCD) s= 8 Te 80 0 00 300 400 00 M [Ge] LC IGGS XS WG 0 NLO: Spira, Djouadi, Graudenz, Zerwas 9, 93 Dawson 9 NNLO: Resummaion: R, Kilgore 0 Anasasiou, Melnikov 0 Ravindran, Smih, v. Neerven 03 Caani, de Florian, Grazzini, Nason 0 Ahrens, Becher, Neuber, Zhang 08 Elecroweak: Acis, Passarino, Surm, Uccirai 08 Agliei, Bonciani, Degrassi, icini 04 Degrassi, Maloni 04 Djouadi, Gambino 94 Mixed EW/QCD: Anasasiou, Boughezal, Periello 09 Fully differenial NNLO: Anasasiou, Melnikov, Periello 04 Caani, Grazzini 07

Gluon fusion (pp +X) [pb] - - pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) pp (NLO QCD) s= 8 Te 80 0 00 300 400 00 M [Ge] LC IGGS XS WG 0 NLO: Spira, Djouadi, Graudenz, Zerwas 9, 93 Dawson 9 NNLO: Resummaion: ~80% R, Kilgore 0 Anasasiou, Melnikov 0 Ravindran, Smih, v. Neerven 03 Caani, de Florian, Grazzini, Nason 0 Ahrens, Becher, Neuber, Zhang 08 Elecroweak: Acis, Passarino, Surm, Uccirai 08 Agliei, Bonciani, Degrassi, icini 04 Degrassi, Maloni 04 Djouadi, Gambino 94 Mixed EW/QCD: Anasasiou, Boughezal, Periello 09 Fully differenial NNLO: Anasasiou, Melnikov, Periello 04 Caani, Grazzini 07

Gluon fusion (pp +X) [pb] - - pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) pp (NLO QCD) s= 8 Te 80 0 00 300 400 00 M [Ge] LC IGGS XS WG 0 NLO: Spira, Djouadi, Graudenz, Zerwas 9, 93 Dawson 9 NNLO: Resummaion: ~80% R, Kilgore 0 Anasasiou, Melnikov 0 Ravindran, Smih, v. Neerven 03 Caani, de Florian, Grazzini, Nason 0 Ahrens, Becher, Neuber, Zhang 08 Elecroweak: Acis, Passarino, Surm, Uccirai 08 Agliei, Bonciani, Degrassi, icini 04 Degrassi, Maloni 04 Djouadi, Gambino 94 Mixed EW/QCD: Anasasiou, Boughezal, Periello 09 Fully differenial NNLO: Anasasiou, Melnikov, Periello 04 Caani, Grazzini 07 ~30%

Gluon fusion (pp +X) [pb] - - pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) pp (NLO QCD) s= 8 Te 80 0 00 300 400 00 M [Ge] LC IGGS XS WG 0 NLO: Spira, Djouadi, Graudenz, Zerwas 9, 93 Dawson 9 NNLO: Resummaion: ~80% R, Kilgore 0 Anasasiou, Melnikov 0 Ravindran, Smih, v. Neerven 03 Caani, de Florian, Grazzini, Nason 0 Ahrens, Becher, Neuber, Zhang 08 Elecroweak: Acis, Passarino, Surm, Uccirai 08 Agliei, Bonciani, Degrassi, icini 04 Degrassi, Maloni 04 Djouadi, Gambino 94 Mixed EW/QCD: Anasasiou, Boughezal, Periello 09 Fully differenial NNLO: Anasasiou, Melnikov, Periello 04 Caani, Grazzini 07 ~30% ~%

Gluon fusion (pp +X) [pb] - - pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) pp (NLO QCD) s= 8 Te 80 0 00 300 400 00 M [Ge] LC IGGS XS WG 0 NLO: Spira, Djouadi, Graudenz, Zerwas 9, 93 Dawson 9 NNLO: Resummaion: ~80% R, Kilgore 0 Anasasiou, Melnikov 0 Ravindran, Smih, v. Neerven 03 Caani, de Florian, Grazzini, Nason 0 Ahrens, Becher, Neuber, Zhang 08 Elecroweak: Acis, Passarino, Surm, Uccirai 08 Agliei, Bonciani, Degrassi, icini 04 Degrassi, Maloni 04 Djouadi, Gambino 94 ~5% Mixed EW/QCD: Anasasiou, Boughezal, Periello 09 Fully differenial NNLO: Anasasiou, Melnikov, Periello 04 Caani, Grazzini 07 ~30% ~%

Gluon fusion (pp +X) [pb] - - pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) pp (NLO QCD) s= 8 Te 80 0 00 300 400 00 M [Ge] σ O σ LO (m ) ( σ O σ LO ) LC IGGS XS WG 0 m NLO: Spira, Djouadi, Graudenz, Zerwas 9, 93 Dawson 9 NNLO: Resummaion: ~80% R, Kilgore 0 Anasasiou, Melnikov 0 Ravindran, Smih, v. Neerven 03 Caani, de Florian, Grazzini, Nason 0 Ahrens, Becher, Neuber, Zhang 08 Elecroweak: Acis, Passarino, Surm, Uccirai 08 Agliei, Bonciani, Degrassi, icini 04 Degrassi, Maloni 04 Djouadi, Gambino 94 ~5% Mixed EW/QCD: Anasasiou, Boughezal, Periello 09 Fully differenial NNLO: Anasasiou, Melnikov, Periello 04 Caani, Grazzini 07 ~30% ~%

Gluon fusion: uncerainies perurbaive (scale variaion) PDF/αs boom loop/yukawa coupling...

Gluon fusion: recen progress iggs line shape Goria, Passarino, Rosco ; Anasasiou, Buehler, erzog, Lazopoulos Signal/Background inerference Glover, v.d. Bij 89; Binoh, Ciccolini, Kauer, Krämer 06; Campbell, Ellis, Williams ; Kauer ; Passarino validiy of effecive /m heory R, Manler, Marzani, Ozeren 09; Pak, Rogal, Seinhauser 09 Alwall, Li, Maloni ; Bagnasci, Degrassi, Slavich, icini R, Neumann, Wiesemann je veo uncerainies Anasasiou, Disserori, Grazzini, Söckli, Webber 09 Sewar, Tackmann Banfi, Monni, Salam, Zanderighi ; Becher, Neuber Tackmann, Walsh, Zuberi

Effecive Theory: (pp"+x)[pb] m M C(m, α s ) (pp"+x)[pb] NLO, LC IGLU NLO, LC IGLU σ O σ LO (m ) ( σ O σ LO [Krämer, Laenen, Spira 96] ) m - 0 00 300 400 500 600 700 800 900 00 M [Ge] ( Bergische Universiä Wupperal ) iggs producion: higher orders March 0 7 / 3

Effecive Theory: (pp"+x)[pb] m M C(m, α s ) (pp"+x)[pb] NLO, LC IGLU NLO, LC IGLU σ O σ LO (m ) ( σ O σ LO [Krämer, Laenen, Spira 96] ) m wha abou NNLO? - 0 00 300 400 500 600 700 800 900 00 M [Ge] ( Bergische Universiä Wupperal ) iggs producion: higher orders March 0 7 / 3

. NNLO / NNLO eff.075.05 pp @ 4 Te /M n, n=0,...,6 σ NNLO eff σ LO (m ) ( σ NNLO σ LO ) m.05 0.975 0.95 0.95 R, Manler, Marzani, Ozeren 09 Pak, Rogal, Seinhauser 09 0.9 0 40 60 80 00 0 40 60 80 300 M /Ge

. NNLO / NNLO eff.075.05 pp @ 4 Te /M n, n=0,...,6 σ NNLO eff σ LO (m ) ( σ NNLO σ LO ) m.05 0.975 0.95 0.95 0.9 R, Manler, Marzani, Ozeren 09 Pak, Rogal, Seinhauser 09 heavy op beer han % 0 40 60 80 00 0 40 60 80 300 M /Ge

m M C(m, α s ) (pp"+x)[pb] (pp"+x)[pb] NLO, LC IGLU NLO, LC IGLU σ O σ LO (m ) ( σ O σ LO [Krämer, Laenen, Spira 96] wha abou NNLO? ) m - 0 00 300 400 500 600 700 800 900 00 M [Ge] ( Bergische Universiä Wupperal ) iggs producion: higher orders March 0 7 / 3

m M C(m, α s ) (pp"+x)[pb] (pp"+x)[pb] NLO, LC IGLU NLO, LC IGLU σ O σ LO (m ) ( σ O σ LO [Krämer, Laenen, Spira 96] ) wha abou NNLO? m wha abou disribuions? - 0 00 300 400 500 600 700 800 900 00 M [Ge] ( Bergische Universiä Wupperal ) iggs producion: higher orders March 0 7 / 3

R.5..05 M =5 Ge M =65 Ge M =500 Ge LC IGGS XS WG 0 R.5..05 M =5 Ge M =65 Ge M =500 Ge LC IGGS XS WG 0 0.95 0.95 see also 0.9 LC 7 Te NLO-QCD raio of normalized disribuions R=(exac op+boom)/(effecive heory) 0.85 0 50 0 50 00 50 300 p [Ge] T Spira, Djouadi, Graudenz, Zerwas 93 Keung, Periello 09; Brein ; Anasasiou, Bucherer, Kunsz 09 0.9 LC 7 Te POWEG+PYTIA raio of normalized disribuions R=(exac op+boom)/(effecive heory) 0.85 0 50 0 50 00 50 300 p T [Ge] Bagnasci, Degrassi, Slavich, icini

gg g gg+g.9.8.7.6.5.4.3. pp @ 4 Te m = Ge K. K 0.0 K 50 0 50 00 50 300 50 0 50 00 50 300 50 0 50 00 50 300 p T [Ge] R, Neumann, Wiesemann

gg g gg+g.9.8.7.6.5.4.3. pp @ 4 Te m = Ge K K-facor almos unaffeced by /m erms. K 0.0 K 50 0 50 00 50 300 50 0 50 00 50 300 50 0 50 00 50 300 p T [Ge] R, Neumann, Wiesemann

Transverse momenum: T Bozzi, Caani, de Florian, Grazzini 03 see also: Manry, Periello de Florian, Kulesza, ogelsang 06 Kulesza, Serman, ogelsang 03 Berger, Qiu 03...

Transverse momenum: including decay: T Bozzi, Caani, de Florian, Grazzini 03 see also: Manry, Periello de Florian, Kulesza, ogelsang 06 Kulesza, Serman, ogelsang 03 Berger, Qiu 03... h (p ) > f a/h (x,µ F ) >. h (p ) f b/h (x,µ F ). a(x p ) ˆσ ab b(x p ) l (M, T, y)... } l (θ, φ) X Experim impora heoreic Analyic inclusive no poss on final Included he full dependence of iggs decays: γγ ZZ 4l, possible o apply cus on iggs boson a de Florian, Ferrera, Grazzini, Tommasini To consruc he finie par we rely on he fully-diffe code NNLO [Caani,Grazzini( 07)]. Calculaion implemened in a numerical program Res. disribuions in form of bin hisograms: hp://heory.fi.infn.i/grazzini/codes.hml. Giancarlo Ferrera Universià di Milano NNLO QCD predicions for iggs Physics a he LC S

Gluon fusion: recen progress iggs line shape Goria, Passarino, Rosco ; Anasasiou, Buehler, erzog, Lazopoulos Signal/Background inerference Glover, v.d. Bij 89; Binoh, Ciccolini, Kauer, Krämer 06; Campbell, Ellis, Williams ; Kauer ; Passarino validiy of effecive /m heory R, Manler, Marzani, Ozeren 09; Pak, Rogal, Seinhauser 09 Alwall, Li, Maloni ; Bagnasci, Degrassi, Slavich, icini R, Neumann, Wiesemann je veo uncerainies Anasasiou, Disserori, Grazzini, Söckli, Webber 09 Sewar, Tackmann Banfi, Monni, Salam, Zanderighi ; Becher, Neuber Tackmann, Walsh, Zuberi

NNLO je veo: σ(0-je) = σ(oal) - σ( -je) NNLO NLO Caani, de Florian, Grazzini 0 σ0(p cu T ) [pb] 8 6 4 direc excl. scale variaion s = 7 Te M = 65 Ge η je 3.0 NNLO NLO LC IGGS XS WG 0 σ0(p cu T ) [pb] 8 6 4 combined incl. scale variaion s = 7 Te M = 65 Ge η je 3.0 NNLO NLO LC IGGS XS WG 0 0 0 0 30 40 50 60 70 80 90 0 [Ge] p cu T 0 0 0 30 40 50 60 70 80 90 0 [Ge] Anasasiou, Disserori, Grazzini, Söckli, Webber 09 Sewar, Tackmann p cu T

ross cions secions a LOa and LONLO andrespecively, NLO respecively, e.g. using e.g. MCFM using MCFM [8, 9, [8, 53]. 9, We 53]. recall We ha, recall ha, ou, roughou, we usewe heuse large hemlarge op approximaion m op approximaion for iggs for iggs producion. producion.. Prescripions for he efficiency.rescripions Prescripions for he forefficiency he efficiency here is lile ambiguiy in he definiion of he fixed order resuls for he oal and jeoed shere lileis cross-secions, ambiguiy lile ambiguiy wih in heinhe definiion heonly definiion freedom of he of fixed he being, order fixed as resuls order usual, resuls in he for hefor choice oal heand oal or renormalaioeoed and jecross-secions, cross-secions, facorisaion and je- wih he wih scale. only hefreedom only owever, freedom given being, being, he as usual, as expressions usual, in hein of choice heσchoice and σ or renormal- arenormal- aion rurbaive a given and facorisaion and facorisaion order, here is scale. scale. some addiional owever, owever, given given freedom he expressions heinexpressions way one of Σ and ofcompues Σσ and a aσ he given a je-veo a given erurbaive ciency. For order, order, insance, here is here Banfi, a someis NNLO addiional Salam, some addiional he Zanderighi efficiency freedom freedom (0) can be in he indefined way heone wayas NLL+NNLO compues one compues he je-veo he je-veo veo efficiencies Je veo efficiency: fficiency. For insance, For insance, a NNLO a NNLO he can be defined as ɛ NLL+NNLO (a) (p,veo ) Σ he can be defined as 0(p,veo )+Σ (p,veo )+Σ (p,veo ), (4.a) ɛ (a) (p,veo ) Σ 0(p,veo )+Σ (p σ 0 +,veo )+Σ σ + σ (p ɛ (a) (p,veo ) Σ iggs producion (m 0(p,veo )+Σ (p,veo )+Σ (p,veo ),veo ) = 5 Ge), NNLO,, (4.a) (4.a) he following expressions ɛ (a) (p,veo ) Σ are eually σ 0(p,veo )+Σ 0 valid + σσ 0 (p a + σnnlo, σ + σ,veo )+Σ (p,veo ) pp, 7 Te following expressions are eually valid a σ 0 NNLO, + σ + σ ɛ (b) (p,veo ) Σ m u he following expressions are eually valid a NNLO, /4 < µ R,F < m 0.8 0.8 0(p,veo )+Σ (p,veo )+ Σ (p,veo ) MSTW008 NNLO PDFs ani-k, (4.b) ɛ (b) (p,veo ) Σ 0. ɛ (b) (p 0(p,veo )+Σ (p,veo )+ Σ (p,veo ),veo ) Σ 0(p,veo )+Σ (p σ 0,veo )+ Σ + σ ɛ (b) (p,veo ) Σ, R = 0.5 0(p,veo )+Σ (p (p,veo ), (4.b) ɛ σ 0 + σ σ 0 + σ ( N (c) (p,veo ) 0. ɛ (c) (p,veo ) + Σ + Σ (,veo )+ Σ (p,veo ) NNL (p,veo ) Σ (p,veo ) ( + σ, ) (4.b) 0.6 0.6 σ 0 + σ Σ (p,veo ) σ 0 Σ (p,veo ) σ 0 0 σ 0 ɛ (c) (p,veo ) + Σ + ( σ (p),veo ), (4.c) 0 ɛ (c) (p,veo ) + Σ ( (p,veo ) Σ (p,veo ) + Σ σ ) 0.4 0.4 (p,veo ) σ 0 Σ (p σ (p Σ σ 0 σ 0,veo ),,veo ) + σ )(4.c) nce hey differ relaive o E. (4.a) only by erms O (α 0 s 3),whicharenounderconrol. σ (p,veo ), (4.c) scheme a 0 0. scheme b 0. 0. nce Opion Σ σ 0 σ 0 σ0 (p,veo ) ey differ hey relaive differ (a) isrelaive he mos o E. o (4.a) E. widely (4.a) used, only by onlyand erms by may erms O (αs 3 appear ),whicharenounderconrol. O (α a firs sigh o be he mos s 3),whicharenounderconrol. scheme c ural, 0. ion Opion since (a) is (a) one he is keeps mos he widely mos as many widely erms used, used, as possible and may and appear may boh appear in he a firs a numeraor sigh firs o sigh and be odenominaor. he be mos he mos 0 0 owever, opion (b) can be moivaed follows: since he zeroh order erm of ɛ(p, aural, since one since keeps one as keeps many as erms many as erms possible as possible boh in boh he in numeraor he numeraor and denominaor. and denominaor.,veo ) 0 perurbaively euivalen p,veo [Ge] owever, eual oopion, iisreallyonly (b) can be moivaed ɛ(p r, opion (b) can be moivaed as follows:,veo as) ha follows: has since a non-rivial he zeroh perurbaive order ermseries, of ɛ(pgiven since he zeroh order erm of ɛ(p,veo ),veo ) Je-veo resummaion using CAESAR eual he raio o, ofiisreallyonly he inclusive -je cross ɛ(p secion above p o, iisreallyonly ɛ(p,veo ) ha has a non-rivial,veo, σ-je perurbaive NLO,veo ) ha has a non-rivial(perurbaive,veo ),oheoalcross series, given series, given Figure : Je-veo efficiency for iggs (lef) and Z-bos y he raio of he inclusive -je cross secion above p aio of he inclusive Je-veo -je cross resummaion secion above p,veo using, σ,veo -je NLO, σ (p -je CAESAR NLO (p,veo ),oheoalcross,veo ),oheoalcross differen prescripions Banfi, Salam, for he Zanderighi NNLO expansion, see Es iggs producion (m = 5 Ge), NNLO v. NLL+NNLO Z producion, hennlo Figure hick iggs v. NLL+NNLO solid : producion Je-veo line corresponds (M efficiency =5Ge) o for heiggs resul obained (lef) andw bandifferen shows he prescripions scale uncerainy for heas NNLO obained expansion, wih hese pp, 7 Te pp, 7 Te m /4 < µ R,F, Q < m, 3 schemes m Z /4 < µ R,F, Q < m Z, 3 schemes NNLO NLL+NNLO iggs MSTW008 producion NNLO PDFs (m = 5 Ge), NNLO v. NLL+NNLO MSTW008 NNLO PDFs Z producion, hennlo hick iggs v. NLL+NNLO solid producion line corresponds (M =5Ge) o he resul oba ani-k, R=0.5 ani-k 0.8, R=0.5 0.8 p band shows he scale uncerainy as obained wi pp, 7 Te pp, 7 Te secion.,veo =5Ge 60 + 9 % 57 +8 Insofar as he -je m /4 < µ R,F, Q < m, 3 schemes m Z /4 < µ R,F, Q < m Z, 3 schemes NNLO cross secion 4% p NLL+NNLO is known only,veo 0.6 MSTW008 NNLO PDFs 0.6 MSTW008 NNLO PDFs ani-k, R=0.5 ani-k 0.8 oal p,veo cross =30Ge secion one67 can +9 8 % argue ha 64+8 one should also u, R=0.5 0.8 p secion.,veo =5Ge 60 + 4 % p,veo 9 % 57 +8 Insofar as he -je cross secion 4% 0.4 0.4 Table 3: Je veo efficiencies is known 0.6 0.6 oal p,veo cross =30Ge secion one67 can +9 8 ɛ(p % and heir uncerainies argue ha 64+8 4 one %,veo )= σnlo -je (p,ve NNLO NNLO should 0. 0. values of p,veo used by ATLAS and CMS, shown NLL+NNLO NLL+NNLO σ 0 + for σ 0.4 0.4 and 0 0 Table based 3: on Je MSTW008 veo efficiencies NNLO PDFs. reducion and heir uncera ɛ(p,veo )= σnl -je.3 NNLO.3 I is sraighforward in efficiency NNLO o verify uncerainy ha his hen leads o 0. 0. values of p,veo used by ATLAS and CMS, show NLL+NNLO coincides wih NLL+NNLO he one adoped even-shape sudies σ.. when combined he and cenral based value on wih from MSTW008 inclusive he mached NNLO calculaion uncerainy PDFs. is clo (p,veo ) p,veo ) (p,veo ) (p,veo ) p,veo ) (p,veo ) (p,veo ) (p,veo )

Resummaion: iggs producion (m = 5 Ge), NNLO v. NLL+NNLO 0.8 pp, 7 Te m /4 < µ R,F, Q < m, 3 schemes MSTW008 NNLO PDFs ani-k, R=0.5 0.8 (p,veo ) 0.6 0.4 0.6 0.4 0. NNLO NLL+NNLO 0. NLL+NNLO (p,veo ) / cenral (p,veo ) 0.3.. 0.9 0.8 0.7 0 p,veo [Ge] (p,veo ) / cenral (p,veo ) 0.3.. 0.9 0.8 0.7 see also Becher, Neuber Tackmann, Walsh, Zuberi 0 p,veo [Ge] Banfi, Monni, Salam, Zanderighi Figure 4: Comparison of fixed-order (NNLO) and mached resummed (NLL+NNLO) predicions for he je veo efficiencies in iggs (lef) and Z producion (righ). The uncerainies are hose derived from he envelope mehod: forboh fixed order and mached resuls hey include renormalisaion and facorisaion scale uncerainies, as well as he scheme for defining he efficiency (or maching prescripion). Inhemachedcase, here

Gluon fusion (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 - pp (NLO QCD) - 80 0 00 300 400 00 M [Ge]

Gluon fusion (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 pp (NLO QCD) - In summary - 80 0 00 300 400 00 M [Ge]

Gluon fusion (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 - - pp (NLO QCD) 80 0 00 300 400 00 M [Ge] In summary enormous progress

Gluon fusion (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 - - pp (NLO QCD) 80 0 00 300 400 00 M [Ge] In summary enormous progress bu sill keeps us busy

iggs Srahlung (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) s= 8 Te LC IGGS XS WG 0 NLO: an, Willenbrock 90 NNLO: Brein, Djouadi, R 03 vh@nnlo EW: Ciccolini, Dimaier, Krämer 03 AWK - - pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) pp (NLO QCD) 80 0 00 300 400 00 M [Ge] _ "(pp Z) NNLO / LO.4..8.6.4. s = 7 Te NNLO / LO (± NNLO / LO (± ") ") LC IGGS XS WG 0 0.8 0 50 00 50 300 (b) M [Ge] IGGS XS WG 0

iggs Srahlung (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) s= 8 Te LC IGGS XS WG 0 - - pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) NLO: an, Willenbrock 90 NNLO: Brein, Djouadi, R 03 vh@nnlo EW: Ciccolini, Dimaier, Krämer 03 AWK pp (NLO QCD) iggs Srahlung 80 0 00 300 400 00 M [Ge] _ based on amberg, v. Neerven, Masuura 9 K W (LC).35.3.5..5 NNLO NLO "(pp Z) NNLO / LO.4..8.6.4. 0.8 s = 7 Te NNLO / LO (± ") NNLO / LO (± ") 0 50 00 50 300 [Brein, Djouadi, R.. 03] [amberg, v. (b) Neerven, Masuura 9] [an, Willenbrock 90] M [Ge] LC IGGS XS WG 0 IGGS XS WG 0

iggs Srahlung (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) s= 8 Te LC IGGS XS WG 0 - - pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) NLO: an, Willenbrock 90 NNLO: Brein, Djouadi, R 03 vh@nnlo EW: Ciccolini, Dimaier, Krämer 03 AWK ng pp (NLO QCD) iggs Srahlung 80 0 00 300 400 00 M [Ge] _ based on amberg, v. Neerven, Masuura 9 K W (LC).35.3.5..5 NNLO Kniehl 90 NLO "(pp Z) NNLO / LO.4..8.6.4. 0.8 s = 7 Te NNLO / LO (± ") NNLO / LO (± ") 0 50 00 50 300 [Brein, Djouadi, R.. 03] [amberg, v. (b) Neerven, Masuura 9] [an, Willenbrock 90] M [Ge] LC IGGS XS WG 0 IGGS XS WG 0

iggs Srahlung (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) s= 8 Te LC IGGS XS WG 0 - - pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) NLO: an, Willenbrock 90 NNLO: Brein, Djouadi, R 03 vh@nnlo EW: Ciccolini, Dimaier, Krämer 03 AWK ng pp (NLO QCD) iggs Srahlung 80 0 00 300 400 00 M [Ge] _ based on amberg, v. Neerven, Masuura 9 K W (LC).35.3.5..5 NNLO "(pp Z) NNLO / LO.4..8.6.4. 0.8 s = 7 Te NNLO / LO (± NNLO / LO (± 0 50 00 50 300 [Brein, Djouadi, R.. 03] Kniehl 90 [amberg, v. (b) Neerven, NLO Masuura 9] je subsrucure [an, see alk Willenbrock by Gavin 90] Salam M ") ") [Ge] LC IGGS XS WG 0 IGGS XS WG 0

iggs Srahlung K W (LC).35.3.5..5..05 0.95 NNLO NNLO QCD+EW NLO NLO LO LO 0.9 80 0 40 60 80 00 M [Ge] [Brein, Djouadi, R.. 03] [Brein, Djouadi, R.. 03] [amberg, v. Neerven, [amberg, Masuura v. 9] Neerven, [an, Masuura Willenbrock 9] 90] [an, Willenbrock 90] [Ciccolini, Dimaier, Krämer 03] [Denner, Dimaier, Kallwei, Mück ] AWK R. arlander ( BU Wupperal ) Inclusive iggs Cross Secions January 0 3 / R. arlander ( BU Wupperal ) Inclusive iggs Cross Secions January 0 3 /

iggs Srahlung K W (LC).35.3.5..5..05 0.95 NNLO NNLO QCD+EW NLO NLO [amberg, v. Neerven, g [Ciccolini, Dimaier, Krämer 03] (a) (b) (c) LO [Denner, Dimaier, Kallwei, Mück ] LO 0.9 80 0 40 60 80 00 M [Ge] [Brein, Djouadi, R.. 03] [Brein, Djouadi, R.. 03] [amberg, Masuura v. 9] Neerven, [an, Masuura Willenbrock 9] 90] [an, Willenbrock 90] AWK R. arlander ( BU Wupperal ) Inclusive iggs Cross Secions January 0 3 / R. arlander ( BU Wupperal ) Inclusive iggs Cross Secions January 0 3 /

iggs Srahlung K W (LC).35.3.5..5..05 0.95 NNLO NNLO QCD+EW (a) (b) (c) LO LO NLO NLO 0.9 80 0 40 60 80 00 M [Ge] [Brein, Djouadi, R.. 03] [Brein, Djouadi, R.. 03] [amberg, v. Neerven, g [amberg, Masuura v. 9] Neerven, [an, Masuura Willenbrock 9] 90] [an, Willenbrock 90] [Ciccolini, Dimaier, Krämer 03] [Denner, Dimaier, Kallwei, Mück ] AWK Full resul a O(α sg F ) R. arlander ( BU Wupperal ) Inclusive iggs Cross Secions January 0 3 / R. arlander ( BU Wupperal ) Inclusive iggs Cross Secions January 0 3 / mann, Zirke ] Brein, R, Wiesemann, Zirke

iggs Srahlung: fully differenial NNLO dσ/dp T, [fb/ge] dσ/dp T, [fb/ge] Ferrera, Grazzini, Tramonano 0.05 0.0 0.05 0.0 l + ν l ν LC iggs XS WG 0 0.05 0.0 0.05 0.0 l + l ν ν LC iggs XS WG 0 0.005 0.005 0 00 0 40 60 p T, [Ge] 80 300 0 00 0 40 60 p T, [Ge] 80 300 δ EW [%] δ EW [%] Denner, Dimaier, Kallwei, Mück 0 5 5 δ rec l + ν δ bare l + ν δ rec l ν δ bare l ν LC iggs XS WG 0 0 5 5 δl rec + l δl bare + l LC iggs XS WG 0 0 00 0 40 60 p T, [Ge] 80 300 0 00 0 40 60 p T, [Ge] δ ν ν 80 300

iggs Srahlung (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 - pp (NLO QCD) - 80 0 00 300 400 00 M [Ge] _

iggs Srahlung (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 pp (NLO QCD) - In summary - 80 0 00 300 400 00 M [Ge] _

iggs Srahlung (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 - - pp (NLO QCD) 80 0 00 300 400 00 M [Ge] In summary under very good conrol _

iggs Srahlung (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 - - pp (NLO QCD) 80 0 00 300 400 00 M [Ge] In summary under very good conrol high pheno poenial _

(pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 NLO: Beenakker, Dimaier, Krämer, Plümper, Spira, Zerwas 0; Dawson, Reina, Wackeroh, Orr, Jackson 0-03; - pp (NLO QCD) - 80 0 00 300 400 00 M [Ge] 400 _ 0 00 σ(pp _ + X) [fb] s = 4 Te M = Ge µ 0 = m + M / 800 LO NLO 600 400 00 0 0. 0.5 5 µ/µ 0

(pp +X) [pb] - - pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) pp (NLO QCD) s= 8 Te 80 0 00 300 400 00 M [Ge] LC IGGS XS WG 0 NLO: Beenakker, Dimaier, Krämer, Plümper, Spira, Zerwas 0; Dawson, Reina, Wackeroh, Orr, Jackson 0-03; NLO+PS: Frederix, Frixione, irschi, Maloni, Piau, Torielli amc@nlo Garzelli, Kardos, Papadopoulos, Trócsányi Powel _

Weak Boson Fusion (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) s= 8 Te LC IGGS XS WG 0 - - pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) NLO QCD: Figy, Oleari, Zeppenfeld 03 vbfnlo NLO QCD+EW: Ciccolini, Denner, Dimaier 08 AWK NLO SUSY: Figy, Palmer, Weiglein pp (NLO QCD) 80 0 00 300 400 00 M [Ge] δ [%] pp jj + X QCD, no cus QCD, cus 5 EW, no cus EW, cus 0 5 0 00 300 400 500 M [Ge] 600 700

Weak Boson Fusion: Beyond-NLO gluon fusion/wbf inerference Andersen, Binoh, einrich, Smillie 07; Bredensein, agiwara, Jäger 08 gluon indu gluon induced WBF R, ollinga, Weber 08 DIS-like NNLO (inclusive) Bolzoni, Maloni, Moch, Zaro par of NNLO DIS-like NNLO (inclu ohers [Bolz + a few ohers [Bolzon missing:

Weak Boson Fusion: Beyond-NLO gluon fusion/wbf inerference Andersen, Binoh, einrich, Smillie 07; Bredensein, agiwara, Jäger 08 gluon indu gluon induced WBF R, ollinga, Weber 08 DIS-like NNLO (inclusive) Bolzoni, Maloni, Moch, Zaro par of NNLO DIS-like NNLO (inclu alk on Friday (YSF) ohers [Bolz + a few ohers [Bolzon missing:

σ (pb) a LC s = 7 Te LO NLO NNLO - - scale choice: Q/4 µ R,µ F 4Q.5..05 0.95 0.9 0.85 σ(µ R,µ F )/σ NNLO (Q) 0 00 300 400 500 600 700 800 900 00 Moch, Zaro ] Bolzoni, Maloni, Moch, Zaro m (Ge)

Gluon fusion (pp +X) [pb] pp (NNLO+NNLL QCD + NLO EW) pp (NNLO QCD + NLO EW) pp W (NNLO QCD + NLO EW) pp Z (NNLO QCD +NLO EW) s= 8 Te LC IGGS XS WG 0 - pp (NLO QCD) - 80 0 00 300 400 00 M [Ge]

sensiive o heavy paricle specrum

sensiive o heavy paricle specrum e.g. 4h generaion:

sensiive o heavy paricle specrum e.g. 4h generaion: σ m M π 56 αs π y m

sensiive o heavy paricle specrum e.g. 4h generaion: σ m M π 56 αs π y m + y m + y b m b

sensiive o heavy paricle specrum e.g. 4h generaion: σ m M π 56 αs π m + m m m + m b m b

sensiive o heavy paricle specrum e.g. 4h generaion: σ m M π 56 αs π m + m m m + m b m b = 9 π 56 αs π ulos ]

sensiive o heavy paricle specrum

~ ~ ~ sensiive o heavy paricle specrum

~ ~ ~ sensiive o heavy paricle specrum LC iggs XS WG: σ MSSM (gg φ) = ( g MSSM g SM ) σ (gg φ)+ ( g MSSM b g SM b ) σ bb(gg φ) + gmssm g SM g MSSM b g SM b σ b (gg φ),

~ ~ ~ sensiive o heavy paricle specrum LC iggs XS WG: σ MSSM (gg φ) = ( g MSSM g SM ) σ (gg φ)+ ( g MSSM b g SM b ) σ bb(gg φ) + gmssm g SM g MSSM b g SM b σ b (gg φ), All conribuions for NLO MSSM iggs known:

~ ~ ~ sensiive o heavy paricle specrum LC iggs XS WG: σ MSSM (gg φ) = ( g MSSM g SM ) σ (gg φ)+ ( g MSSM b g SM b ) σ bb(gg φ) + gmssm g SM g MSSM b g SM b σ b (gg φ), All conribuions for NLO MSSM iggs known: NLO: R, Seinhauser 04; Anasasiou, Beerli, Daleo 08; + Bucherer, Kunsz 06; Mühlleiner, Rzehak, Spira 07/ 08; Agliei, Bonciani, Degrassi, icini 06; R, ofmann, Manler ; Degrassi, Slavich 08/ ; + Bagnasci, icini /

~ ~ ~ sensiive o heavy paricle specrum LC iggs XS WG: σ MSSM (gg φ) = ( g MSSM g SM ) σ (gg φ)+ ( g MSSM b g SM b ) σ bb(gg φ) + gmssm g SM g MSSM b g SM b σ b (gg φ), All conribuions for NLO MSSM iggs known: NLO: R, Seinhauser 04; Anasasiou, Beerli, Daleo 08; + Bucherer, Kunsz 06; Mühlleiner, Rzehak, Spira 07/ 08; Agliei, Bonciani, Degrassi, icini 06; R, ofmann, Manler ; Degrassi, Slavich 08/ ; + Bagnasci, icini / alk on Thursday (YSF)

+ X) [pb] "(pp # h A s = 7 Te LC IGGS XS WG 0 + X) [pb] "(pp # h A s = 7 Te LC IGGS XS WG 0 - - -3-4 _ b gg A gg h/ bba bbh/ an$ = 5 mhmax scenario M # [Ge] 3 - - -3-4 gg A gg h/ bba bbh/ an$ = 30 mhmax scenario M # [Ge] 3 (a) (b) Fig. 4: Cenral predicions for he oal MSSM producion cross secions via gluon fusion and iggs radiaion off boom uarks b wihin he 5FS for s =7Te using NNLO and NLO MSTW008 PDFs [4, 44] for he m max h scenario; (a) an β =5,(b)an β =30. 55

+ X) [pb] "(pp # h A s = 7 Te LC IGGS XS WG 0 + X) [pb] "(pp # h A s = 7 Te LC IGGS XS WG 0 - - -3-4 _ b gg A gg h/ bba bbh/ an$ = 5 mhmax scenario M # [Ge] 3 - - -3-4 gg A gg h/ bba bbh/ an$ = 30 mhmax scenario M # [Ge] 3 (a) (b) Fig. 4: Cenral predicions for he oal MSSM producion cross secions via gluon fusion and iggs radiaion off boom uarks b wihin he 5FS for s =7Te using NNLO and NLO MSTW008 PDFs [4, 44] for he m max h scenario; (a) an β =5,(b)an β =30. 55

_ b b collinear logarihms: α s ln(m b /M ) α s ln(5/00) resummaion: boom uarks as parons b _ b _ b b 4FS 5FS

lo: 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0 /pb 0.5 NNLO LC M = Ge - µ F /M

3 LO [fb] "S = 4 Te M = Ge bb _ # _ b b µ Y = M µ R = µ F = µ gg # bb _ - µ/m M. Krämer b _ b

g b b NLO NNLO g b b spliing & mass/off-shell effecs massless/on-shell b s, no p Tb summaion of log M /m b erms resummaion of log M /m b erms "(pp bb + X) [fb] µ 0 s =(m +M )/4 b = 7 Te bb (NNLO) (pp " bb _ h + X) [fb] #s = 7 Te LC IGGS XS WG 0 µ = (m b + M h )/4 MSTW008 bb _ " h (NNLO) gg bb (NLO) gg " bb _ h (NLO) Sanander maching: σ = σ4fs + wσ 5FS +w w =log M m b arlander, Krämer, Schumacher R, Krämer, Schumacher - MSTW008 0 50 00 50 300 350 400 450 500 M h [Ge] 0 00 300 400 500 M [Ge] Dimaier, Krämer, S. Dawson, Jackson, Reina, Wackeroh see also Maloni, Ridolfi, Ubiali arlander, Kilgore

uncerainy band for ±" ± (fb) relaive differences on - $s =7 Te µ=(m b +m )/4 MSTW008 4FS gg#bb (NLO) 5FS bb# (NNLO) mached 0 50 00 50 300 350 400 450 500 m (Ge) 0.5 0.4 0.3 0. 0. -0-0. $s =7 Te µ=(m b +m )/4 MSTW008 ( 4FS ± " ± 4FS - mached ) / mached ( 5FS ± " ± 5FS - mached ) / mached mached uncerainy Sanander maching R, Krämer, Schumacher arlander, Krämer, Schumacher -0. -0.3-0.4-0.5 0 50 00 50 300 350 400 450 500 m (Ge)

NNLO je veo: 0.5 σ(p T < p T,cu ) [pb] σ(0-je) = σ(oal) - σ( -je) R, Wiesemann ; +Ozeren 09 0. 0.5 Fully NNLO differenial: 0. 0.05 0 LC@8 Te m = 5 Ge µ F = µ R = m / 4 0 0 30 40 50 60 70 80 p T,cu [Ge] LO NLO NNLO Buehler, erzog, Lazopoulos, Mueller

Conclusions coninuous heory progress imporance of heory is being recognized error esimaes will become crucial revival of precision physics?

WW ZZ 8 6 EW, ligh ferm. EW, ligh ferm., Fig. of firs paper of Ref.[7] EW, oal, CM EW [%] 4 Acis, Passarino, Surm, Uccirai 08 Agliei, Bonciani, Degrassi, icini 04 Degrassi, Maloni 04 Djouadi, Gambino 94 0 - -4 50 00 50 300 350 400 M [Ge]