6.003: Signals and Systems
|
|
- θάνα Αρβανίτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 6.3: Signals and Sysems Modulaion December 6, 2
2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio, phonograph, CD, cell phone, MP3 elevision, cinema, HDTV, DVD coax, wised pair, cable TV, DSL, opical fiber, E/M Modulaion can improve mach based on frequency. 2
3 Ampliude Modulaion Ampliude modulaion can be used o mach audio frequencies o radio frequencies. I allows parallel ransmission of muliple channels. x () z () cos w x 2 () z 2 () z() LPF y() cos w 2 cos w c x 3 () z 3 () cos w 3 3
4 Superheerodyne Receiver Edwin Howard Armsrong invened he superheerodyne receiver, which made broadcas AM pracical. Edwin Howard Armsrong also invened and paened he regeneraive (posiive feedback) circui for amplifying radio signals (while he was a junior a Columbia Universiy). He also invened wide-band FM. 4
5 Ampliude, Phase, and Frequency Modulaion There are many ways o embed a message in a carrier. Ampliude Modulaion (AM) + carrier: y () = x() + C cos(ω c ) Phase Modulaion (PM): y 2 () = cos(ω c + kx()) Frequency Modulaion (FM): y 3 () = cos ω c + k x(τ )dτ PM: signal modulaes insananeous phase of he carrier. y 2 () = cos(ω c + kx()) FM: signal modulaes insananeous frequency of carrier. y 3 () = cos ω c + k x(τ)dτ ' v " φ() d ω i () = ω c + φ() = ω c + kx() d 5
6 Frequency Modulaion Compare AM o FM for x() = cos( ). AM: y () = x() + C cos(ω c ) = (cos( ) +.) cos(ω c ) FM: y 3 () = cos ω c + k x(τ )dτ = cos(ω c + k sin( )) Advanages of FM: consan power no need o ransmi carrier (unless DC imporan) bandwidh? 6
7 7 Frequency Modulaion Early invesigaors hough ha narrowband FM could have arbirarily narrow bandwidh, allowing more channels han AM. ( ) y 3 () = cos ω c + k x(τ)dτ ' v " φ() d ω i () = ω c + φ() = ω c + kx() d Small k small bandwidh. Righ?
8 Frequency Modulaion Early invesigaors hough ha narrowband FM could have arbirarily narrow bandwidh, allowing more channels han AM. Wrong! y 3 () = cos ω c + k x(τ)dτ = cos(ω c ) cos k x(τ)dτ sin(ω c ) sin k x(τ )dτ If k hen cos k x(τ)dτ sin k x(τ )dτ k x(τ)dτ y 3 () cos(ω c ) sin(ω c ) k x(τ)dτ Bandwidh of narrowband FM is he same as ha of AM! (inegraion does no change he highes frequency in he signal) 8
9 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. sin( ) cos( sin( )) 9
10 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 2 sin( ) 2 2 cos(2 sin( ))
11 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 3 sin( ) 3 3 cos(3 sin( ))
12 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 4 sin( ) 4 4 cos(4 sin( )) 2
13 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 5 sin( ) 5 5 cos(5 sin( )) 3
14 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 6 sin( ) 6 6 cos(6 sin( )) 4
15 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 7 sin( ) 7 7 cos(7 sin( )) 5
16 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 8 sin( ) 8 8 cos(8 sin( )) 6
17 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 9 sin( ) 9 9 cos(9 sin( )) 7
18 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. sin( ) cos( sin( )) 8
19 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 2 sin( ) 2 2 cos(2 sin( )) 9
20 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 5 sin( ) 5 5 cos(5 sin( )) 2
21 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. m sin( ) m m cos(m sin( )) 2 increasing m
22 22 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = a k k
23 23 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = a k k
24 24 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 2 a k k
25 25 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 5 a k k
26 26 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = a k k
27 27 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 2 a k k
28 28 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 3 a k k
29 29 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 4 a k k
30 3 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 5 a k k
31 3 Phase/Frequency Modulaion Fourier ransform of firs par. x() = sin( ) y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) ' v " ya() Y a (jω) m = 5 ω c ω c ωm ω
32 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. m sin( ) m m sin(m sin( )) increasing m 32 increasing m
33 33 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = b k k
34 34 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = b k k
35 35 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 2 b k k
36 36 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 5 b k k
37 37 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = b k k
38 38 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 2 b k k
39 39 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 3 b k k
40 4 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 4 b k k
41 4 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 5 b k k
42 42 Phase/Frequency Modulaion Fourier ransform of second par. x() = sin( ) y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω ' c ) cos(m sin(ω v m ))) sin(ω " c ) sin(m sin( ))) ' v " ya() y b () Y b (jω) m = 5 ω c ω c ωm ω
43 43 Phase/Frequency Modulaion Fourier ransform. x() = sin( ) y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) ' v " ' v " ya() y b () Y (jω) m = 5 ω c ω c ωm ω
44 44 Frequency Modulaion Wideband FM is useful because i is robus o noise. AM: y () = (cos( ) +.) cos(ω c ) FM: y 3 () = cos(ω c + m sin( )) FM generaes a redundan signal ha is resilien o addiive noise.
45 45 Summary Modulaion is useful for maching signals o media. Examples: commercial radio (AM and FM) Close wih unconvenional applicaion of modulaion in microscopy.
46 6.3 Microscopy Dennis M. Freeman Sanley S. Hong Jekwan Ryu Michael S. Mermelsein Berhold K. P. Horn Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 46
47 6.3 Model of a Microscope microscope Microscope = low-pass filer Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 47
48 Phase-Modulaed Microscopy microscope Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 48
49 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 49
50 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 5
51 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 5
52 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 52
53 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 53
54 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 54
55 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 55
56 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 56
57 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 57
58 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 58
59 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 59
60 Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 6
61 MIT OpenCourseWare hp://ocw.mi.edu 6.3 Signals and Sysems Fall 2 For informaion abou ciing hese maerials or our Terms of Use, visi: hp://ocw.mi.edu/erms.
6.003: Signals and Systems. Modulation
6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulaion) - 4.3: Διαμόρφωση Συχνότητας (Frequency Modulaion FM) καθ. Βασίλης Μάγκλαρης maglaris@nemode.nua.gr
3 Frequency Domain Representation of Continuous Signals and Systems
3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 3
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulaion) - 3 4.4: Βρόχος Κλειδωμένης Φάσης (Phase-Locked Loop - PLL) 4.5: Μη Γραμμικά Φαινόμενα
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulaion) - 1 0.0: Μετάδοση Αναλογικής & Ψηφιακής Πληροφορίας (Baseband, Bandpass) Σύντομη
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
CT Correlation (2B) Young Won Lim 8/15/14
CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any
Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12
ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic
Fourier transform of continuous-time signals
Fourier ransform of coninuous-ime signals Specral represenaion of non-periodic signals Fourier ransform: aperiodic signals repeiion of a finie-duraion signal x()> periodic signals. x x T x kt x kt k k
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
HFC SERIES High Freq. Wound Ceramic Chip Inductors
FEATURES High frequency applications. Low DC resistance and high allowable DC current. Close tolerance application.2% tolerence is available for particular inductance values. Small footprint as well as
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.
Τµήµα Ηλεκτρονικής ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Σπουδαστής: Γαρεφαλάκης Ιωσήφ Α.Μ. 3501 Επιβλέπων καθηγητής : Ασκορδαλάκης Παντελής. -Χανιά 2010- ΠΕΡΙΛΗΨΗ : Η παρούσα
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμορφώσεις γωνίας Διαμόρφωση Συχνότητας Στενής Ζώνης + Περιεχόμενα n Διαμορφώσεις γωνίας n Διαμόρφωση φάσης PM n Διαμόρφωση
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
BandPass (4A) Young Won Lim 1/11/14
BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Balanced Slope Demodulator EEC 112. v o2
Balanced Slope Demodulator EEC 11 The circuit below isabalanced FM slope demodulator. ω 01 i i (t) C 1 L 1 1 Ideal +v o (t) 0 C 0 v o1 v o + + C 0 Ideal 0 ω 0 L C i i (t) It is the same as the circuit
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
HMY 220: Σήματα και Συστήματα Ι
HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Digital Signal Octave Codes (0B)
Digital Signal Aliasing and Folding Frequencies Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ ΚΑΙ ΔΙΑΙΤΟΛΟΓΙΑΣ Πτυχιακή Εργασία Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους Εκπόνηση:
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
D-Wave D-Wave Systems Inc.
D-Wave D-Wave sems Inc. Anaol Yu. mirnov D-Wave sems Inc. Vancouver Briish Columbia HE QUANUM COMPUING COMPANY M Decoherence and Noise Conrol in rongl Driven uperconducing Quanum Bis Collaboraion: M. Grajcar
Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers
2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye
ME 374, System Dynamics Analysis and Design Homewk 9: Solution June 9, 8 by Jason Frye Problem a he frequency response function G and the impulse response function ht are Fourier transfm pairs herefe,
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #4 Η ιδιότητα της συνέλιξης Απόκριση Συχνότητας ΓΧΑ Συστημάτν Απόκριση συχνότητας ΓΧΑ Συστημάτν που περιγράφονται από Διαφορικές Εξισώσεις Η ιδιότητα πολλαπλασιασμού
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 7: Διαμόρφωση Γωνίας (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση γωνίας Ορισμοί Η έννοια της Στιγμιαίας Συχνότητας Διαμόρφωση Φάσης (Phase
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Can I open a bank account online? Ερώτηση αν μπορείτε να ανοίξετε τραπεζικό λογαριασμό μέσω του ίντερνετ
- Γενικά Can I withdraw money in [country] without paying fees? Πληροφόρηση σχετικά με το αν πρέπει να πληρώσετε ποσοστά προμήθειας όταν κάνετε ανάληψη σε μια συγκεκριμένη χώρα What are the fees if I use
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Άσκηση η Να υπολογιστεί η έξοδος του συστήματος με κρουστική απόκριση h()=u()-u(-4) και είσοδο x()=u(-) u(-3)
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple
A/ Ονόματα και ένα παράδειγμα 1 Present Simple 7 Present PERFECT Simple 2 Present Continuous 8 Present PERFECT Continuous 3 Past Simple (+ used to) 9 Past PERFECT Simple she eats she is eating she ate