19 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΝΕΩΝ 24-29 Ιουνίου, 2015, Βελιγράδι, Σερβία

Σχετικά έγγραφα
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Oscillatory integrals

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Section 8.3 Trigonometric Equations

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

EE512: Error Control Coding

Matrices and Determinants

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Example Sheet 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

2 Composition. Invertible Mappings

Section 7.6 Double and Half Angle Formulas

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Solutions_3. 1 Exercise Exercise January 26, 2017

C.S. 430 Assignment 6, Sample Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Inverse trigonometric functions & General Solution of Trigonometric Equations

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Srednicki Chapter 55

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Solutions to Exercise Sheet 5

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Homework 8 Model Solution Section

Quadratic Expressions

Finite Field Problems: Solutions

ST5224: Advanced Statistical Theory II

Trigonometry 1.TRIGONOMETRIC RATIOS

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Math221: HW# 1 solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

CRASH COURSE IN PRECALCULUS

Areas and Lengths in Polar Coordinates

Homework 3 Solutions

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Areas and Lengths in Polar Coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Concrete Mathematics Exercises from 30 September 2016

( ) 2 and compare to M.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Every set of first-order formulas is equivalent to an independent set

Approximation of distance between locations on earth given by latitude and longitude

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Reminders: linear functions

New bounds for spherical two-distance sets and equiangular lines

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Lecture 2. Soundness and completeness of propositional logic

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Problem Set 3: Solutions

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

The Simply Typed Lambda Calculus

PARTIAL NOTES for 6.1 Trigonometric Identities

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Second Order Partial Differential Equations

Fractional Colorings and Zykov Products of graphs

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

The challenges of non-stable predicates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

4.6 Autoregressive Moving Average Model ARMA(1,1)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Trigonometric Formula Sheet

Strain gauge and rosettes

Statistical Inference I Locally most powerful tests

Tridiagonal matrices. Gérard MEURANT. October, 2008

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Differentiation exercise show differential equation

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Συστήματα Διαχείρισης Βάσεων Δεδομένων

A Note on Intuitionistic Fuzzy. Equivalence Relation

D Alembert s Solution to the Wave Equation

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

1 String with massive end-points

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ.

Answer sheet: Third Midterm for Math 2339

Section 9.2 Polar Equations and Graphs

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

F19MC2 Solutions 9 Complex Analysis

Notes on the Open Economy

ECON 381 SC ASSIGNMENT 2

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

w o = R 1 p. (1) R = p =. = 1

Solution Series 9. i=1 x i and i=1 x i.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

On a four-dimensional hyperbolic manifold with finite volume

Second Order RLC Filters

( y) Partial Differential Equations

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

TMA4115 Matematikk 3

Transcript:

19 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΝΕΩΝ 4-9 Ιουνίου, 015, Βελιγράδι, Σερβία Lnguge: Ελληνικά Παρασκευή, 6 Ιουνίου 015 Πρόβλημα 1. Βρείτε όλους τους πρώτους αριθμούς, b, c και όλους τους ϑετικούς ακεραίους k που ικανοποιούν την εξίσωση + b + 16c = 9k + 1 Πρόβλημα. Θεωρούμε τους ϑετικούς πραγματικούς αριθμούς, b, που είναι τέτοιοι ώστε + b + c =. Βρείτε την ελάχιστη τιμή της παράστασης A = + b b + c c Πρόβλημα. Δίνεται οξυγώνιο τρίγωνο ABC. Οι ευθείες l 1 και l είναι κάθετες στην AB στα σημεία A και B, αντίστοιχα. Οι κάθετες ευθείες από το μέσον M του AB προς τις πλευρές AC και BC του τριγώνου τέμνουν τις ευθείες l 1 και l στα σημεία E και F, αντίστοιχα. Αν D είναι το σημείο τομής των ευθειών EF και MC, να αποδείξετε ότι ADB = EMF Πρόβλημα 4. Καθένα από τα ακόλουθα τέσσερα σχήματα αποτελείται από τρία μοναδιαία τετράγωνα και καλείται L-σχήμα. Δίνονται ένας 5 5 πίνακας, αποτελούμενος από 5 μοναδιαία τετράγωνα, ένας ϑετικός ακέραιος k 5 και απεριόριστος αριθμός L-σχημάτων οποιουδήποτε τύπου. Δύο παίκτες, ο A και ο B, παίζουν το ακόλουθο παιχνίδι: Ξεκινώντας με τον A, σημειώνουν εναλλάξ σε κάθε κίνησή τους ένα τετραγώνο που δεν είναι ήδη σημειωμένο, μέχρι να σημειώσουν συνολικά k μοναδιαία τετράγωνα. Μία τοποθέτηση L-σχημάτων λέγεται καλή αν τα L-σχήματα δεν επικαλύπτονται και καθένα από αυτά καλύπτει ακριβώς τρία μοναδιαία τετράγωνα του πίνακα που δεν είναι σημειωμένα. Ο B κερδίζει αν μετά από οποιαδήποτε καλή τοποθέτηση L-σχημάτων μένουν ακάλυπτα τουλάχιστον μοναδιαία τετράγωνα που δεν είναι σημειωμένα. Προσδιορίστε την ελάχιστη τιμή του k για την οποία ο B έχει στρατηγική νίκης. Διάρκεια: 4 ώρες και 0 λεπτά Κάθε πρόβλημα βαθμολογείται με 10 μονάδες

June 4-9, 015, Belgrde, Serbi Problem 1. Find ll prime numbers, b, c nd positive integers k which stisfy the eqution b 16c 9k 1. 9 k 1 1 mod implies The reltion b 16c 1 mod b c 1 mod. Since 0, 1 (mod ), b 0, 1 (mod ), c 0, 1 (mod ), we hve: 0 0 0 0 1 1 1 1 b 0 0 1 1 0 0 1 1 c 0 1 0 1 0 1 0 1 b c 0 1 1 1 0 From the previous tble it follows tht two of three prime numbers, b, c re equl to. Cse 1. b We hve b 16c 9 k 1 9 k 16c 17 k 4c k 4c 17, k 4c 1, c, k 4c 17, k, nd (, b, (,,, ). Cse. c If (, b 0, is solution of the given eqution, then ( b 0,, is solution too. Let. We hve b 16c 9 k 1 9 k b 15 k bk b 15. Both fctors shll hve the sme prity nd we obtin only cses: k b, b 7, k b 76, k 1, nd (, b, (,7,,1); k b 4, b 17, k b 8, k 7, nd (, b, (,17,,7 ). So, the given eqution hs 5 solutions: ( 7,,,1), (17,,,7), (,7,,1), (,17,,7), (,,,). Problem. Let, b, c be positive rel numbers such tht b c. Find the minimum vlue of the expression b c A. b c

June 4-9, 015, Belgrde, Serbi We cn rewrite A s follows: b c 1 1 1 A b c b c b c b bc c b bc c ( b c ) (( b c) ( b bc c)) bc bc b bc c b bc c (9 ( b bc c)) ( b bc c) 9 bc bc 1 ( b bc c) 1 9. bc Recll now the well-known inequlity ( x y z) ( xy yz zx) nd set x b, y b z c, to obtin ( b bc c) bc( b c) 9b where we hve used b c. By tking the squre roots on both sides of the lst one we obtin: b bc c bc. (1) Also by using AM-GM inequlity we get tht 1 1 1. () bc bc Multipliction of (1) nd () gives: 1 1 ( b bc c) 1 bc 6. bc bc So A 69 nd the equlity holds if nd only if b c 1, so the minimum vlue is. Problem. Let ABC be n cute tringle. The lines l 1, l re perpendiculr to AB t the points A, B respectively. The perpendiculr lines from the midpoint M of AB to the sides of the tringle AC, BC intersect the lines l 1, l t the points E, F, respectively. If D is the intersection point of EF nd MC, prove tht ADB EMF. Let H, G be the points of intersection of ME, MF with AC, BC respectively. From the MH MA similrity of tringles MHA nd MAE we get, thus MA ME MA MH ME. (1) MB MG Similrly, from the similrity of tringles MBG nd MFB we get, thus MF MB MB MF MG. () Since MA MB, from (1), (), we conclude tht the points E, H, G, F re concyclic.

June 4-9, 015, Belgrde, Serbi l 1 C F D l E H G A M B Therefore, we get tht FEH FEM HGM. Also, the qudrilterl CHMG is cycli so CMH HGC. We hve FEH CMH HGM HGC 90, thuscm EF. Now, from the cyclic qudrilterls FDMB nd EAMD, we get tht DFM DBM nd DEM DAM. Therefore, the tringles EMF nd ADB re similr, so ADB EMF. Problem 4. An -figure is one of the following four pieces, ech consisting of three unit squres: A 5 5 bord, consisting of 5 unit squres, positive integer k 5 nd n unlimited supply L-figures re given. Two plyers, A nd B, ply the following gme: strting with A they lterntively mrk previously unmrked unit squre until they mrked totl of k unit squres. We sy tht plcement of L-figures on unmrked unit squres is clled good if the L-figure do not overlp nd ech of them covers exctly three unmrked unit squres of the bord. B wins if every good plcement of L-figures leves uncovered t lest three unmrked unit squres. Determine the minimum vlue of k for which B hs winning strtegy. We will show tht plyer A wins if k = 1,,, but plyer B wins if k 4. Thus the smllest k for which B hs winning strtegy exists nd is equl to 4. If k 1, plyer A mrks the upper left corner of the squre nd then fills it s follows.

June 4-9, 015, Belgrde, Serbi If k, plyer A mrks the upper left corner of the squre. Whtever squre plyer B mrks, then plyer A cn fill in the squre in exctly the sme pttern s bove except tht he doesn't put the L-figure which covers the mrked squre of B. Plyer A wins becuse he hs left only two unmrked squres uncovered. For k, plyer A wins by following the sme strtegy. When he hs to mrk squre for the second time, he mrks ny yet unmrked squre of the L-figure tht covers the mrked squre of B. Let us now show tht for k 4 plyer B hs winning strtegy. Since there will be 1 unmrked squres, plyer A will need to cover ll of them with seven L-figures. We cn ssume tht in his first move, plyer A does not mrk ny squre in the bottom two rows of the chessbord (otherwise just rotte the chessbord). In his first move plyer B mrks the squre lbeled 1 in the following figure. If plyer A in his next move does not mrk ny of the squres lbeled, nd 4 then plyer B mrks the squre lbeled. Plyer B wins s the squre lbeled is left unmrked but cnnot be covered with n L-figure. If plyer A in his next move mrks the squre lbeled, then plyer B mrks the squre lbeled 5. Plyer B wins s the squre lbeled is left unmrked but cnnot be covered with n L-figure. Finlly, if plyer A in his next move mrks one of the squres lbeled or 4, plyer B mrks the other of these two squres. Plyer B wins s the squre lbeled is left unmrked but cnnot be covered with n L-figure. Since we hve covered ll possible cses, plyer B wins when k 4.