Stochastic Orbital Lifetime Analysis

Σχετικά έγγραφα
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Solution Series 9. i=1 x i and i=1 x i.

Approximation of distance between locations on earth given by latitude and longitude

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

the total number of electrons passing through the lamp.

Strain gauge and rosettes

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Lifting Entry (continued)

Monolithic Crystal Filters (M.C.F.)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

5.4 The Poisson Distribution.

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Μάθημα Τεχνοοικονομική ανάλυση δικτύων

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Assalamu `alaikum wr. wb.

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Other Test Constructions: Likelihood Ratio & Bayes Tests

Biostatistics for Health Sciences Review Sheet

Chapter 7 Transformations of Stress and Strain

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:


Metal thin film chip resistor networks

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία

Lecture 34 Bootstrap confidence intervals

ΕΓΚΟΛΠΙΟ e-ιπταµένου 322M e-haf 22/11/08 VERSION 1.0

Exercises to Statistics of Material Fatigue No. 5

Μηχανική Μάθηση Hypothesis Testing

Calculating the propagation delay of coaxial cable

Κουρτίνα Τσιµεντενέσεων Φράγµατος Μεσοχώρας. Messochora Dam Grout Curtain. ΛΑΜΠΡΟΠΟΥΛΟΣ, Τεχνικός Γεωλόγος M.Sc, ΕΗ Α.Ε.

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

! "##!!$%$&'(&) "&$## $%& '!($( +,' *- $ + $.$ $ $ / /

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Μετρήσεις ηλιοφάνειας στην Κύπρο

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Second Order RLC Filters

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

EE512: Error Control Coding

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

CorV CVAC. CorV TU317. 1

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Homework 3 Solutions

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

[1] P Q. Fig. 3.1

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

MSM Men who have Sex with Men HIV -

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Bayesian Data Analysis, Midterm I

6.3 Forecasting ARMA processes

; +302 ; +313; +320,.

ADVANCES IN WATER SCIENCE

ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control

Reminders: linear functions

An Introduction to Spatial Statistics: Data Types, Statistical Tools and Computer Software

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ ΟΦΕΛΟΥΣ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΕΝΕΡΓΕΙΑΣ

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Homework 8 Model Solution Section

m4.3 Chris Parrish June 16, 2016

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

Instruction Execution Times

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

DATA SHEET Surface mount NTC thermistors. BCcomponents

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr


«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Summary of the model specified

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Precision Metal Film Fixed Resistor Axial Leaded

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ECE 468: Digital Image Processing. Lecture 8

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

Transcript:

Stochastic Orbital Lifetime Analysis Kandyce Goodliff David Cornelius Analytical Mechanics Associates, Inc. Washito Sasamoto NASA Langley Research Center

Outline Need for Stochastic Analysis Orbital Lifetime Monte Carlo Tool Key Parameters Sensitivities Conclusions 2

Need for Stochastic Analysis Determine the orbital lifetime of a spacecraft Minimum mission goals based on science and/or operational requirements Maximum goals generally defined by spacecraft governing agency Point design analyses Difficult to select appropriate assumptions Ignores probability of occurrence of events Stochastic analyses Simultaneously vary multiple parameters based on probability of occurrence Provides clear, visual representation of probability of meeting a given lifetime 3

OLMC Orbital Lifetime Monte Carlo OL Orbital Lifetime Validated heritage Fortran code Long term variations of orbital parameters Limited to altitudes less than 2,500 km Perturbations Atmospheric drag Solar radiation pressure Gravitational effects due to the Earth s oblateness, the Sun, and the Moon MC Monte Carlo New Fortran code Up to 10,000 cases Sets up the key parameter sigma values established for each run 4

Products Histogram and Exceedance Probability 9% 8% Frequency % of Total Samples 7% 6% 5% 4% 3% 2% 1% Probability of Exceeding Lifetime 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0% 0 20 40 60 80 100 120 140 160 180 200 Probability of exceeding 60 months lifetime is 72% Lifetime, Months 30 40 50 60 70 80 90 Lifetime, Months 5

Key Parameters F10.7 cm solar flux predictions Difficult to predict resulting in significant uncertainty Nominal 11-year cycle but has varied between 9-17 years 250 OLMC factors Solar activity 200 magnitude Timing of the peak 150 OLMC factors modeled as normal distributions Prediction sets NASA MSFC Dr. Kenneth Schatten Custom profiles can be utilized Comparison of prediction sets show difficulty in correctly predicting solar flux magnitude and timing of the peak F10.7 cm SFU 100 50 Schatten0705 +2 Sigma Schatten0304 +2 Sigma Marshall0705 +2 Sigma Schatten0705 Nominal Schatten0304 Nominal Marshall0705 Nominal 0 9/1/02 5/28/05 2/22/08 11/18/10 8/14/13 5/10/16 2/4/19 10/31/21 7/27/24 4/23/27 1/17/30 Date 6

Key Parameters F10.7 cm solar flux predictions Difficult to predict resulting in significant uncertainty Nominal 11-year cycle but has varied between 9-17 years 250 OLMC factors Solar activity 200 magnitude Timing of the peak 150 OLMC factors modeled as normal distributions 100 Prediction sets NASA MSFC 50 Dr. Kenneth Schatten Schatten0705 +2 Sigma Custom profiles can Schatten0705 Nominal be utilized 0 Comparison of prediction sets show difficulty in correctly predicting solar flux magnitude and timing of the peak F10.7 cm SFU 9/1/02 5/28/05 2/22/08 11/18/10 8/14/13 5/10/16 2/4/19 10/31/21 7/27/24 4/23/27 1/17/30 Date 7

Key Parameters F10.7 cm solar flux predictions Difficult to predict resulting in significant uncertainty Nominal 11-year cycle but has varied between 9-17 years 250 OLMC factors Solar activity 200 magnitude Timing of the peak 150 OLMC factors modeled as normal distributions Prediction sets NASA MSFC Dr. Kenneth Schatten Custom profiles can be utilized Comparison of prediction sets show difficulty in correctly predicting solar flux magnitude and timing of the peak F10.7 cm SFU 100 50 Schatten0705 +2 Sigma Marshall0705 +2 Sigma Schatten0705 Nominal Marshall0705 Nominal 0 9/1/02 5/28/05 2/22/08 11/18/10 8/14/13 5/10/16 2/4/19 10/31/21 7/27/24 4/23/27 1/17/30 Date 8

Key Parameters F10.7 cm solar flux predictions Difficult to predict resulting in significant uncertainty Nominal 11-year cycle but has varied between 9-17 years 250 OLMC factors Solar activity 200 magnitude Timing of the peak 150 OLMC factors modeled as normal distributions Prediction sets NASA MSFC Dr. Kenneth Schatten Custom profiles can be utilized Comparison of prediction sets show difficulty in correctly predicting solar flux magnitude and timing of the peak F10.7 cm SFU 100 50 Schatten0705 +2 Sigma Schatten0304 +2 Sigma Schatten0705 Nominal Schatten0304 Nominal 0 9/1/02 5/28/05 2/22/08 11/18/10 8/14/13 5/10/16 2/4/19 10/31/21 7/27/24 4/23/27 1/17/30 Date 9

Key Parameters - Continued Launch vehicle dispersions Accuracy with which the launch vehicle is capable of placing a spacecraft into its target orbit Dispersions in OLMC Injection apse Velocity Flight path angle Modeled as normal distributions Launch vehicle manufacturers typically provide injection and non-injection apse errors, the latter being directly related to velocity and flight path angle Nominal Velocity and Flight Path Angle Non-Insertion Apse Insertion Apse Altitude Error Band Nominal Insertion Point 10

Key Parameters - Continued Launch delays Based on historical data, if available Modeled as a Weibull distribution Fixed launch delays, if no data available Vary launch date (normal distribution) Ballistic coefficient Defined as: m/(c D A) Uncertainties associated with projected area, drag coefficient, and mass Modeled as a normal distribution 11

Sensitivity to Number of MC Runs Frequency % of Total Samples 12% 10% 8% 6% 4% 2% Lifetime Distribution for 525 Km Circular Orbit 100 MC Runs 500 MC Runs 1000 MC Runs 5000 MC Runs 10000 MC Runs 0% 0 50 100 150 200 Lifetime, Months Visual inspection of histograms is recommended to determine the acceptable number of Monte Carlo runs 12

Sensitivity to Number of Orbits per Iteration Lifetime Distribution for 300 Km Circular Orbit Frequency % of Total Samples 30% 25% 20% 15% 10% 5% 1 Orbit/iteration 10 Orbits/iteration 100 Orbits/iteration 500 Orbits/iteration 0% 0 0.5 1 1.5 2 2.5 Lifetime, Months Lower altitude orbits show a high sensitivity to the number of orbits per iteration 13

Sensitivity to Solar Flux Profile 25% 525 Km Circular Orbit Frequency % of Total Samples 20% 15% 10% 5% 0705Schatten 0304Schatten 0705MSAFE 0% 0 20 40 60 80 100 120 140 160 180 200 Lifetime, Months Multiple profiles should be utilized, given the high sensitivity of lifetime to the solar flux prediction and the intrinsic variability of available predictions 14

Conclusions Normal distributions are appropriate for launch vehicle dispersions represented by injection altitude, velocity, and flight path angle Uncertainty distribution for launch delays should be determined based on data available Weibull was appropriate based on data obtained by the authors For any scenario, visual inspection of the lifetime histogram and computation of mean and median variation should be done at multiple settings for orbits per iteration and number of Monte Carlo runs to determine acceptable settings for desired reasonable distribution and repeatability Solar flux predictions are the primary driver for variations in lifetime, therefore caution needs to be exercised when basing analyses on a single prediction 15

Acknowledgements Don Avery & Carlos Liceaga Science Support Office, NASA Langley Research Center Larry Green & Jim Dempsey Space Mission Analysis Branch, NASA Langley Research Center Darryl J. Caldwell Analytical Mechanics Associates, Inc. Kristina Zaleski National Institute of Aerospace Paul Baumgartner Orbital Sciences Corporation Warren Frick ATK Barbara Sherman Boeing Launch Services 16