ERL. 2. cerl. BPM (Beam Position Monitor) ERL FEL [1] Table 1: cerl ERL ERL cerl [3]

Σχετικά έγγραφα
TEST OF DIAMOND SINGLE CRYSTALS IN THE PARAMETRIC X-RAY SOURCE BASED ON A DOUBLE-CRYSTAL SYSTEM

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-MUS-104 No /8/26 1,a) Music Structure and Composition with Sound Directivity in 3D Space

Coakley sports as wellestablished, officially governed competitive physical activities in which participants are motivated by internal and external re

48 B 17 4 Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 48 B, km 1km. (Newell et al., 1996) PEM-Tropics A (Stoller et al.

ITU-R P (2012/02) &' (

ITU-R P ITU-R P (ITU-R 204/3 ( )

Answers to practice exercises

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Ó³ Ÿ , º 6(190) Ä1142. DESY, ƒ ³ Ê, ƒ ³ Ö European XFEL, GmbH, ƒ ³ Ê, ƒ ³ Ö ±Êʳ-,

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ITU-R BT ITU-R BT ( ) ITU-T J.61 (


MICROMASTER Vector MIDIMASTER Vector

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )

NPN Silicon RF Transistor BFQ 74

ITU-R P (2009/10)

(... )..!, ".. (! ) # - $ % % $ & % 2007

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Pierre Grandemange. To cite this version: HAL Id: tel

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.


1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Š ƒ ˆŠ œ ˆ ˆ ˆ Œ ƒ ˆ Š ˆˆ Š

Διδακτικές Σημειώσεις

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

SCOPE OF ACCREDITATION TO ISO 17025:2005

#%" )*& ##+," $ -,!./" %#/%0! %,!

ITU-R SM (2011/01)

dx A β δ: παράμετρος πυκνότητας, πόλωση του μέσου, ενέργεια πλάσματος τι περιμένουμε 1/ 2 πτώση Ένα ελάχιστο: minimum ionizing particle: MIP

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

31AÅ [DԖNDԚL ΠϱΩω] 6ȓąFȓˀȭD8 ʮ ݻ ʯ K. 31AT [DԖNDQD ΠϱΩψ] 6ȓąFȓIȊ8 K. 31AU[Ė [DԖNDSDUDGH ΠϱΩϏϧυ] K ڋ ປ Ͷ Ζປ 8.

14.5mm 14.5mm

Through-hole Type : Emitter

Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 27 Μαίου 2014

SMD AVR AVR-M AVRL. Variable resistor. 2 Zener diode (1/10) RoHS / / j9c11_avr.fm. RoHS EU Directive 2002/95/EC PBB PBDE

Research on mode-locked optical fiber laser

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China


Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Ροπή δύναµης Μεθοδολογία ασκήσεων

Supporting Information. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides

Angular distribution of coherent Cherenkov radiation from a tilted bunch passing through a slit in target

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

Œ ˆ Š ˆ ƒ ˆŠˆ Š - ˆ Š ˆ ˆŒ ˆŸ Œ ˆ œ Œ Š Œ Š Œ.. ÖÎ ² μ, Œ.. ˆ Í ±,. ˆ. Œ ϱμ,.. μ μ,.. ³ ²Õ±

6.4 Superposition of Linear Plane Progressive Waves

ΠΑΡΑΡΤΗΜΑ Ι AΠΑΝΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 6. I z. nia 2 2 3/2. ni a 3/2 3/2. I,min. I,max. = 511 A/m, ( HII,max HII,min)/ HII,max. II,min.

ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 ( " " .ITU-R SF.

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

Ó³ Ÿ , º 7(205) Ä1403 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ É ÉÊÉ ±² μ Ë ±, μ μ μ, μ Ö ² ±É μé Ì Î ± É ÉÊÉ, É ²

0CHIPSTAR MICROELECTRONICS 5.5W CS8571E CS8571E. Chipstar Micro-electronics. 470uF. 0.39uF 4 IN MODE: 0----AB CS8571 CS8571E FM AB D CS8571E

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

A 1 A 2 A 3 B 1 B 2 B 3

ˆŸ ˆ Œ ˆ ˆ œ Š Œ Œ ƒ ˆ ƒ Ÿ ˆ ŒˆŠ Š Œ ˆ ˆ Š Œ ˆŠ 235-V3

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

Πειράµατα Ηλεκτρικών Ταλαντώσεων µε τη χρήση του Συστήµατος Συγχρονικής Λήψης και Απεικόνισης (Multilog) των Γενικών Λυκείων

Aspects of High-Frequency Modelling with EKV3

ITU-R M (2013/02)!! " #

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

REAL-TIME CLOCKS MIXED-SIGNAL DESIGN GUIDE. Data Sheets Applications Notes Free Samples. DS32kHz

ITU-R P (2012/02) khz 150

MULTILAYER CHIP VARISTOR JMV S & E Series: (SMD Surge Protection)

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

ITU-R M ITU-R M ITU-R 92/8 ( (2000) GMDSS 1 GMDSS .(IMO)

& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :

ΠΡΟΣΚΛΗΣΗ ΕΝΔΙΑΦΕΡΟΝΤΟΣ KAI ΚΑΤΑΘΕΣΗΣ ΠΡΟΣΦΟΡΩΝ ΓΙΑ ΤΗΝ ΑΝΑΘΕΣΗ ΤΗΣ ΠΡΟΜΗΘΕΙΑΣ

100102; 2. Fe Cu Hg. Rapid multi-elemental analysis on four precious Tibetan medicines based on LIBS technique

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ

Επεξεπγαζία Ήσος Φυνήρ 4 η Διάλεξη ΦΗΦΙΑΚΟ ΣΟΤΝΣΙΟ

TRANSISTOR. POWER TRANSISTOR Power MOSFET Trench MOSFET Power Transistor Switching Power Transistor General Purpose Power Transistor

O.172 ITU-T (SDH) ITU-T O.172 (2005/04)

FEATURES APPLICATION PRODUCT T IDENTIFICATION PRODUCT T DIMENSION MAG.LAYERS

ΗΧΗΤΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

Erkki Mäkinen ja Timo Poranen Algoritmit

ˆ ˆŠ - Œ ˆ Œˆ Šˆ ˆ ƒˆ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΡΥΤΑΝΕΙΑ Ρέθυμνο 01/11/2010 Διεύθυνση :Οικονομικής Διαχείρισης Αριθ. Πρωτ.: 12183

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z CALIBRATION

SMD Transient Voltage Suppressors


Ó³ Ÿ , º 1(206).. 133Ä143 ˆ ˆŠ ˆ ˆŠ Š ˆ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Low Frequency Plasma Conductivity in the Average-Atom Approximation

ΒΙΟΦΥΣΙΚΗ. Αλληλεπίδραση ιοντίζουσας ακτινοβολίας και ύλης.

Supporting Information

Ceramic PTC Thermistor Overload Protection

Transcript:

ERL 1. ERL FEL [1] [2]KEK 2005 2013 12 ERL ERLcERL [3] OHO [4]ERL 2008 [5, 6] cerl 2. cerl cerl FEL 1 1 Table 1: cerl BPM (Stripline/Button) Position, Charge 45 SCM (Ce:YAG/OTR) Position, Profile 32 BLM (Fiber/CsI) Loss 10 CT Charge 4 DCCT Current 1 Movable FC Charge 3 BPM (Beam Position Monitor) BPM Fig. 1: cerl

BPM 2 Fig. 2: BPM [7] (a) (b) BPM [8, 9] BPM ERL CW BPM cerl BPM cerl 2 1 45 BPM SCM (Screen Monitor) SCM CCD cerl SCM BPM cerl 32 SCM BLM (Beam Loss Monitor) 2

BLM BLM 2 ERL BLM cerl BLM 37 1 μs 10 CT (Current Transformer) CT 3 BPM CT CT CT cerl 4 CT SN 4 Bergoz Fast CT Fig. 4: cerl CT Fig. 3: CT DCCT (DC Current Transformer) CT

DCCT 5 DCCT DCCT 2 3 1 khz 2 1 2 2 2 6(a) 2 6(b) 2 3 2 Fig. 6: 2 [10] (a) (b) 2 DCCT DCCT CT CT cerl DCCT 1 CT 7 Bergoz New Parametric CT FC (Faraday Cup) Fig. 5: DCCT [10] FC 2

Fig. 7: cerl DCCT Fig. 8: FC 2 [10] DCCT 1 μa 2 8 FC FC FC Fig. 9: cerl FC SCM cerl 2 3 FC 2 SCM FC 5 9 FC SCM

Table 2: cerl BPM ͷ ஔ ॴ μϋτ ۃ ग़ ෯ [mvpp /pc] ϩεϑνϋλʔ [mv/pc] ෦ɾ ઢ෦ φ50 φ63 Stripline (Short) Stripline (Long) 27 4 103.5 88.6 59.1 48.3 ΞʔΫ෦ φ85 8 ܗ Stripline (Long) Stripline (Short) 2 10 60.2 172.7 21.3 82.0 LCS ಥ φ50 Button 2 75.1 26.1 ෦ɾ அ෦ μϯϓϥπϯ ͷγϯνϩʔλͱಉ ۦ ಈ ߏػ Λར ग़ ͷα ͳ ܗ ঢ়ͷ ۃ ʠ ετϧοϓϥπϯ ۃ ʡͱ Ε ΕΔɻ ݺ ΕΔɻ Ҏ ͷ ج ຊతͳϏʔϜϞχλʔʹՃ ɺ ϏʔϜ அϥΠϯʹ ʠ εϧοτεωϟφʔ ʡͱʠ ภ ಎ ʡ ஔ Ε Δɻ ΕΒ Ε ΕϏʔϜͷ ʢΤ ϛολϯεʣͱਐߦ ͷ ʢόϯν ʣΛଌఆ Δ ΊͷϞχλʔ Ͱثػ Δ [11]ɻ ҎԼͰ ɺ ΕΒͷத Βಛʹ ཁ ͷߴ BPM ͱ SCMɼBLM ΛऔΓ ɺ ͷಈ ݪ ཧ γεςϝ ߏ ɺ ମతͳ Λड़ Δɻ ɺࠓ ޙ ͷ ʹ ͱ ʹޙ Ί հ Δɻ 3. ϏʔϜҐஔϞχλʔʢBPMʣ Ճ ث Λߏ Δਅ μϋτ ɺ Λ௨Δ ϏʔϜͷαΠζ ي ಓΛߟ ͳδ ϏʔϜϩε গͳ ͳδα ͳ ɾ ܗ ঢ়Ͱ ΒΕ Δɻલ ষͰड़ ͱ ΓɺBPM μϋτͷ ଆʹ ۃ Λ ஔ น ͷ ΛϐοΫΞοϓ Δ ͷͱ Δ ΒɺμΫτ ҟͳε BPM ͷσβπϯ มΘ ΔɻcERL ʹ ஔ Ε Δશ 45 ͷ BPM ɺμ Ϋτͷ ܗ ঢ় ۃ ͷλπϓʹα ද 2 ʹ ܝ 5 छ ʹ ผͰ ΔɻຊষͰ ɺ ΕΒͷத Β ɹ ͷଟ ઢ෦ BPM ʹ ɺ ͷ ࡉΛղઆ Fig. 10: ઢ෦ BPM μϋτͷ ਤͱ ۃ ෦ͷ ਅ Δɻ 3.1. 3.1.1. BPM μϋτͷ ܭ ɹ Ͱɺਤ 11 ͷα ͳϟσϧλߟ ɺετϦοϓ ϥπϯ ۃ ΒͲͷΑ ͳ৴ ग़ ΕΔ Λߟ ετϧοϓϥπϯ ۃ ͷಛ ͱ దԽ ΈΔɻԁ μϋτͷ ܘ Λ rɺμϋτத Β ਤ 10 ʹ ઢ෦ BPM μϋτͷ ਤͱ ۃ ෦ͷ ۃ ද໘ Ͱͷ ڑ Λ aɺμϋτத Β ۃ Λ ࠐݟ Ή ਅΛ ɻμΫτ ԁ ܗ ঢ়Ͱɺ ܘ 50 mm Ͱ Λ αɺ ۃ ͷ Λ l ͱ Δɻ ۃ ͷ ΔɻϏʔϜʹΑ ༠ ى ΕΔน ɺ นͷ Ε ΕϑΟʔυεϧʔʹ ଓ Ε Γɺಉ έʔ Լࠨӈʹ ஔ 4 ຕͷ ঢ় Ͱۃ ෦ औΓग़ ɻ ϒϧ Λհ 50 Ω Ͱऴ Ε Δ ͷͱ Δ 㸷㸫

R 1 = R 2 =50Ω Z strip r a α 50 Ω R 1 = R 2 = Z strip =50Ω 12 2 1 1/10 1/30 BPM BPM 2 Fig. 11: t =0 Z strip = R 1 =50Ω 2 1 0 <t<l/c 2 c t = l/c Z strip = R 2 =50Ω 2 2 t =2l/c 1 1 2l/c Fig. 12: 12 1 V 1 (t) V 1 (t) = 1 ( 2 α 2π R 1 [I beam (t) I beam t 2l )] c (3-1) I beam (t) I beam (t) =I 0 exp( t 2 /2σ 2 ) 3-1 [ ] e t2 2σ 2 e (t 2l/c)2 2σ 2 I 0 (3-2) V 1 (t) = Z strip 2 α 2π σ 13 3-2 ( ) α V 1 (ω) =Z strip 4π e ω 2 σ 2 ωl 2 sin e i( π 2 ωl c ) I0 c Z t (ω) I 0 (3-3)

Fig. 13: l = 300 mm Fig. 14: l = 300 mm,α=20 Z t (ω) BPM 14 Z t (ω) f max = c (2n 1) for n =1, 2, (3-4) 4l n =1 3-4 l opt = c 4f = λ 4 (3-5) l = nλ/2 2l/n cerl 1.3 GHz 2.6 GHz 3-5 28.8 mm 1.3 GHz 2.6 GHz 3-1.5 db 1.3 GHz 1.3 GHz 57.6 mm α 3-1 BPM α Z strip C Z strip =50Ω BPM cerl BPM α =20 50 mm BPM 8.8 mm 1mm r = a

10 Z strip 50 Ω 3 HFSS[12] 12 cerl BPM 2.6 GHz384 ps ε r 10 BHAε r =5 [13] 15 3 GdfidL[14] BPM 1mm3.3 ps 1pC 384 ps2.6 GHz Fig. 15: GdfidL BPM 3.1.2. TDR TDRTime Domain Reflectometry 50 Ω TDR 50 Ω 16(a)

16(b) 16(c) 50 Ω 17 TDR 57.6 mm BPM Tektronix TDR DSA8200TDR 80E04 50 Ω 384 ps 50 Ω Fig. 16: TDR (a)50 Ω (b) (c) Fig. 17: BPM TDR 3.1.3. s V (s) W L (s) [15] ( V (s) = E z z,t = z + s ) dz c = qw L (s) (3-6) q E z (z,t) s 1 ΔE

ΔE = q 2 k L (3-7) k L I ave P loss P loss = q I ave k L (3-8) BPM ERL cerl GdfidL 1mm3.3 ps 1pC 18 59.1 mv/pc 10 ma 4.6 mw BPM 2 BPM 125 mm [16] Fig. 18: BPM BPM BPM BPM 3.2. 3.2.1. ERL BPM BPM

BPM BPM BPM ADC FPGA [17] cerl fc 7.7 pc 100 μm 1 μs cerl 19 IC Fig. 19: 1.3 GHz 1.3 GHz BPF 20 MHz 1.3 GHz BPM 3.5 GHz 2.6 GHz 8 BPM 2.6 GHz 1.3 GHz 20 0dB -90 dbm -30 dbm Log-Linear 1 μs 200 ns 3.2.2. SL1000 ADC

Fig. 20: 12 bit FC cerl EPICS[18] 3.3. 1.3 GHz 21 x, y 21(b) 4 V t, V l, V r,v b x = k x (log V r log V l ) = k x log V r V l k x U (3-9) y = k y (log V t log V b ) = k y log V t V b k y V (3-10) U, V 4 (V t + V l + V r + V b ) k x, k y x 2 + y 2 r Fig. 21: BPM (a) (b) 2 [19] 3 CST PARTICLE STUDIO[20] 1mm U 22(a) k x (= k y ) 14.0 mm 3-10 2 22(b) BPM 22(b) x 2 + y 2 k x = k y =const.

U V BPM 1 2 BPM 8 1 1 BPM k x k y x = k x {log V tr +logv br (log V tl +logv bl )} = k x log V tr V br V tl V bl k x U (3-11) y = k y {log V tr +logv tl (log V br +logv bl )} = k y log V tr V tl V br V bl k y V (3-12) BPM 23 Δ/Σ 3.4. 3.4.1. Fig. 22: BPM (a) (b) BPM 45 cerl 2 24 BPM SCM BPM BPM BPM 150 μm 10 fc 1 μs 10 μm

Fig. 24: BPM SCM BPM BPM BPM Beam Based Alignment Fig. 23: BPM (a) (b) 3.4.2. BPM BPM 3.5. cerl 3.5.1. BPM 25(a) cerl BPM 4 BPM 25(b) BPM 4 BPM

Jefferson LaboratoryJLab ERL cerl 2 BPM BPM BPM 26(a) 180 2.6 GHz BPF 1.3 GHz Fig. 25: BPM (a) (b) 3.5.2. 2 cerl 2 SCM SCM ERL Fig. 26: BPM 2 (a) (b)

Table 3: cerl SCM φ50 Pneumatic YAG & OTR φ28 16 φ63 Pneumatic YAG φ26 5 φ100 Pneumatic YAG & OTR φ50 2 8 Pneumatic YAG & OTR 20 40 6 Pneumatic YAG / OTR 26 76 1 Stepping motor YAG / OTR 26 66 1 LCS φ41.5 Pneumatic Desmarquest 10 10 1 26(b) 2 4 cerl 300 ns 2 180 CW 2 2 4. SCM 1 cerl 32 SCM BPM SCM 3 7 SCM 4.1. SCM 4.1.1. 2 27 SCM Fig. 27: SCM

100 μm Ce:YAG Ce:YAG YAGYttrium Aluminum Garnet, Y 3 Al 5 O 12 Ce 70 ns 4 0.1 pc/μm 2 0 45 1mm OTROptical Transition Radiation OTR 28 OTR Table 4: Ce:YAG 4.57 g/cm 3 3.6 cm 1.82 360 MPa 602 J/kg K 11.7 W/m K 1970 C 525 nm 70 ns 18000 ph/mev 30 Å3 nm 0 45 Fig. 28: OTR OTR[21] (a) (b)45 e ɛ 28(a) OTR dw f dω dω d 2 W f dωdω = e2 β 2 cos 2 θ sin 2 θ 16π 3 ɛ 0 c (1 β 2 cos 2 θ) 2 (ɛ 1)(1 β 2 β ɛ sin 2 2 θ) (ɛ cos θ + ɛ sin 2 θ)(1 β ɛ sin 2 θ) (4-1) [21, 22]β c ɛ 0 θ

OTR β 1 ɛ 1 4-1 3 1 d 2 W f dωdω = e 2 16π 3 ɛ 0 c e2 sin 2 θ (1 β cos θ) 2 θ 2 4π 3 ɛ 0 c (θ 2 + γ 2 ) 2 (4-2) MCP Micro Channel Plate [23] γ =1/ 1 β 2 OTR dw b 4-1 β β OTR β 1 ɛ 1 d 2 W b dωdω e2 θ 2 ɛ 1 2 4π 3 ɛ 0 c (θ 2 + γ 2 ) 2 ɛ +1 (4-3) 3 OTR OTR ω OTR ω p ω p 10 ev 4-2 4-3 γ 29 θ ± 1 (4-4) γ γ γ Fig. 29: OTR 28(b) 45 4-3 OTR θ d 2 W dωdω = e 2 16π 3 ɛ 0 c sin θ 1 β cos θ + sin θ 1 β cos θ 2 (4-5) β 1 θ π/2, θ 1 1 2 θ θ 4-2 OTR 2 0 4-2 0 θ θ max θ max θ max 1 γ : dw dω = θ max 1 γ : dw dω = e2 8π 2 ɛ 0 c (γθ max) 4 (4-6) [ ] 2ln(γθ max ) 1 (4-7) e2 4π 2 ɛ 0 c

29 OTR γ 4 ω 1 ω 2 N photon 4-7 ω ω N photon = α ( ) [ ] ω2 2lnγ 1 ln (4-8) π ω 1 α θ max 1 1/γ 1 N beam 100 1 5 OTR 4-2 σ d 2 W ( ) dωdω exp θ2 0 (θ θ 0 ) 2 2σ 2 [(θ θ 0 ) 2 + γ 2 ] 2 dθ 0 (4-9) OTR 4-9 γ σ OTR [24] OTR cerl YAG SCM OTR OTR cerl 70 μm 40 nm OTR 0 OTR OTR OTR OTR 45 OTR SCM 50 mm φ28 mm 3 4 1mm 4.1.2. RF BPM 100 fs cerl

SCM cerl SCM RF 27 50 mm 3mm 3mm 33 mm 18 GdfidL 1mm3.3 ps 30 18 10 mv/pc 1.5 V/pC 1/100 31 RF 8 2 RF 3 0.1 mm SCM ICF BPM 180 mm SCM RF OTR Fig. 30: GdfidL RF (a) (b) Fig. 31: SCM RF FC 9 SCM SCM

4.2. ಈ ڑ Λ ͱ ΧϝϥΛϏʔϜϥΠϯ Βԕ εϋϧʔϯ ଌ ܥ ΔɻϨϯζͷલ໘ʹ ɺCCD ը ͳ ϏʔϜ ي ಓʹεΫϦʔϯΛૠ Δ Ͱ ୯ͳΔ ณ ʹա ͳ ͷͱɺεϋϧʔϯ Λ ϏʔϜͷ ΛಘΔ Ίͷ ܥ ඞཁͱͳΔɻਤ 32 ʹ ઢ෦ SCM Ͱ εϋϧʔϯ ଌ ܥ ͷ ਤͱ ਅΛ ɻલઅͰड़ ͱ Γɺ ε ΫϦʔϯ ϏʔϜ ʹର 90 ͷ ʹ Α ɺඞཁʹԠ ٵ ऩ ܕ ͷ ݮ ϑοϧλʔʢnd ϑο ϧλʔʣ औΓ ΒΕΔɻಛʹϏʔϜύϥϝʔλͷ ଌఆ Ͱ ͷ ڧ มԽ ಘΔ ॴͰ ɺϑΟ ϧλʔͷೱ Λԕ Ͱ Γସ Δ ΊͷϑΟϧλʔ νσϯδϟʔ උ Ε Δɻ ਐΈɺՄ Ҭͷ ݮ ίʔςοϯά ࢪ Ε Ϗϡʔ ϙʔτλ௨ μϋτ ෦ʹऔΓग़ ΕΔɻ ͷ ޙ 1 ຕͷΞϧϛฏ໘ϛϥʔΛհ Ԗ ʹ ΕɺμΫτΛഎʹ CCD Χϝϥ ͱ ΒΕΔɻ ϛϥʔͱұ த ܧ Δͷ ɺ ͷௐ Λ༰қʹ ΔͷͱɺΧϝϥΛϏʔϜϨϕϧΑΓ Ґஔʹ ஔ Δ ͱͱ ઢʹΑΔ CCD ࢠͷμϝʔδΛ ݮ Δ ΊͰ ΔɻΧϝϥʹ ɺΪΨϏοτΠʔαωο τλ௨ ը σʔλͷߴ ڑ Մ ͳ GigE ΧϝϥʢAllied Vision TechnologiesɼProsilica GC650ʣΛ ɻ1 ඵ ʹ 90 ϑϩʔϝͷը Λస Ͱ Δখ ܕ ͷσδλϧϟϊϋϩχϝϥͱɺccd ͷը 659 493ʢVGA ૬ ʣɺը απζ 7.4 μmʢਖ਼ ը ʣɺμΠφϛοΫϨϯδ 12 bit ʢ4096 ௐʣͰ ΔɻҰൠͷ Χϝϥ ͰΑ ߦ ΘΕΔʠ ΨϯϚ ਖ਼ ʡ ߦ Β ɺCCD Βग़ ΕΔ ѹͷ ෯ ͷ ʹ ڧ ൺ Δɻ ɺ ෦τϦΨʔʹ ҙͷσοϩπλճ λπϛϯ άͱ Մ Ͱɺ৴ ෯ͷήΠϯʢ0ʙ22 dbʣ ʢ10 μsʙ120 sʣ ωοτϫʔϋ ܦ Ͱ༰қʹ ఆͰ Δɻ ʹ ߜΓΛඋ σοετʔγϣ ϯͷ CCTV ϨϯζʢϛϡʔτϩϯɼHS5028J3ʣΛ ΔɻϨϯζͷয ڑ f ɺ ز Կ ʹ ɹ ΔϨϯζͷ Β f= L h H ɹ Fig. 32: εϋϧʔϯ ଌ ܥ ͷ ਤͱ ਅ (4-10) Ͱ ٻ ΊΒΕΔɻ ͰɺL Ϩϯζલ໘ Β ମ Ͱ ΕΒͷ ܥ ɺ ෦ Βͷ Λ ΊࠇΞ ͷ ڑ ʢ ಈ ڑ ʣɺh CCD ࢠͷαΠζɺH Ө ϧϛπτॲཧ Ε Ξϧϛ ͷ ശ ʹ ஔ ΕΔɻ ͷαπζͱ Δɻ ɺ ಈ ڑ 400 mm ਤ 27 ʹ εϋϧʔϯϗϧμʔ ԼΛ సͰ Δ ͷґஔʹϩϯζλ ஔ ɺεΫϦʔϯͷ ޱ φ28 mm ߏ ʹͳ Γɺ ͷ ʹΑ ΛऔΓग़ શମΛ 1/3 Πϯνͷ CCDʢH:4.8 mm V:3.6 mmʣͱ ɺ ͳθ ܥ Λ ஔ Δ Λม Δ ͱ Ͱ Ө Δ Ίʹ ɺ Α 50 mm ͷয ڑ ͷϩϯ Δɻ ج ຊతʹ ΞΫηεͷ қ Λߟ Ճ ث ζ ඞཁͱͳΔɻίϦϝʔλͷ μϯϓϥπϯͱ ͷ ଆʹ ஔ Δ ɺ ശ ΔଞͷϏϡʔ ఆ తͳϏʔϜϩε ༧ଌ ΕΔ ॴͰ ɺ ϙʔτ ઢγʔϧυͱ ཧతʹ ব Δ ʹ ઢʹΑΔϊΠζ μϝʔδλ ݮ Δ Ίɺ తʹ ଆʹ ஔ ΔɻͲ Βͷ Ͱ ɺΧ 㸷㸫

4.2.1. 5 [25] (1) NA o (2) NA o (3) CCD CCD 1 NA o (4) NA o (5) YAG NA o θ D NA o =sinθ D 2L (4-11) 5 (1) (3) 2 mm 0.5/0.1 mm 33(a) SCM 0.13 CCD 1 pixel 57 μm 33(b) (a) δ o 37 μm (4) δ t δ t = tna o 2n (4-12) t YAG OTR n YAG 1.82 4 OTR 1 NA o 0.036 4-12 δ t YAG (5) δ e 3 δ total δ total = δo 2 + δt 2 + δe 2 (4-13)

YAG 62 μm OTR 37 μm 57 μm CCD (5) OTR YAG OTR 29 3 SCM cerl SCM 2 YAG OTR cerl 5.5 MeV OTR 4-4 ±85 mrad 36 mrad 20 MeV ±25 mrad OTR YAG SN YAG YAG 4.3.1. SCM Fig. 33: (a) (b) 4.3. cerl SCM 34 SCMYAG GigE 2 5Hz SCM RMS

Fig. 35: Q d 2 x ds 2 = qb g mv x ω2 x (4-14) Fig. 34: SCM 4.3.2. Q SCM Q 6 Quadrupole Magnet Q 35 Q L m, q, v B g s s =0 x 0, x 0 dx 0 ds ( 4-14 x x ) = ( M F ( cos ωs 1 ω sin ωs ω sin ωs cos ωs x 0 x 0 ) )( ) x 0 x 0 (4-15) s 0 ω 2 s ( ) 1 cos ωs ω sin ωs M F = ω sin ωs cos ωs ( ) 1 0 (4-16) k 1 k ω 2 s s 4-16 M F 2 1

M D = ( ( 1 cosh ωs ω sinh ωs ω sinh ωs cosh ωs ) 1 0 k 1 ) (4-17) L ( ) 1 L M O = (4-18) 0 1 35 M FO = O M F M ( )( ) = = ( k ) 1 kl 1 L L 1 0 k 0 1 1 1 1 2 ( ) m 11 m 12 M 12 = m 21 m 22 (4-19) (4-20) 2 σ 2 σ 2 = ε(m 2 11 β 1 2m 11 m 12 α 1 + m 2 12 γ 1) (4-21) ε α 1,β 1,γ 1 1 Twiss Twiss s α(s) = β (s) (4-22) 2 γ(s) = 1+α(s)2 (4-23) β(s) 35 4-19 4-21 σ 2 = ε [ ] (1 kl) 2 β 1 2L(1 kl)α 1 + L 2 γ 1 [ ( 1 = L 2 σ1 2 k L α )] 2 1 + ε2 L 2 β 1 σ1 2 a(k b) 2 + c (4-24) 4-23 σ1 2 = εβ 1 k a, b, c 4-24 ac ε = L 2 (4-25) ac ε n = γβ L 2 (4-26) β γ Twiss β = v/c, γ =1/ 1 β 2 a, b, c Twiss a β 1 = (4-27) c ( ) a 1 α 1 = c L b (4-28) Twiss Q [26] 4-17 k 4-24 Twiss α 1 b 4-28 4-21 ( σ 2 = σ1 2 m 11 α ) 2 1 m 12 + ε2 β 1 σ1 2 m 2 12 A(m 11 + Bm 12 ) 2 + Cm 2 12 (4-29)

m 11 =cos k kl L l sin kl (4-30) l m 12 = k sin kl + L cos kl (4-31) m 11 = cosh k kl + L l sinh kl (4-32) l m 12 = k sinh kl + L cosh kl (4-33) l Twiss A, B, C ε n = γβ AC (4-34) A β 1 = (4-35) C A α 1 = B (4-36) C k 36 20 fc/bunch Q SCM 1 1 1 #18 YAG L6.0 m CCD ND k [m 1 ] SCM RMS σ x,σ y [mm] k 20 4-24 ε n 0.140 ± 0.002 mm mrad 0.136 ± 0.001 mm mrad Δε n Δa, Δc ( εn ) 2 ( ) 2 εn Δε n = (Δa) a 2 + (Δc) c 2 = γβ ( c ) ( a ) 2L 2 (Δa) a 2 + (Δc) c 2 (4-37) 7.7 pc/bunch Fig. 36: Q 5. BLM 37 cerl BLM BLM 4 cerl

2 CsI BLM 8 Tl CsI BLM BLM LCS 8 1 μs BLM cerl MAR-782 1s 50 kev 6MeV 37 12 12 2 10 DC 500 kv cerl > 7keV Fluke Biomedical 451B CsI BLM 5.1. BLM 2 2 n v Fig. 37: cerl BLM

v> c n β = v c > 1 n (5-1) 38 θ cos θ = 1 (5-2) nβ n =1.6 0.625c 51 5.0 ns/m Fig. 38: PMT [27] 39(a) L x 2 t d t d = L 2x (5-3) v f v f v f 2 3 c (5-4) Fig. 39: (a) (b) 39(b) A 1m B A v c3.3 ns/m 5-4 B AB 3.3 ns 5.0 ns 8.3 ns A B 5.0 ns 3.3 ns=1.7 ns

2 cerl 40 600 μm H10721-110 ns 8.3 ns/m ±30 cm 2 5.2. CsI BLM cerl BLM Fig. 40: cerl BLM cerl 1 μs [28] 41 CsI CsI(Tl) 5 Pure CsI CsI(Tl) 10 mm 10 mm 25 mm R11558 37 MDF 42(a)

ɹ ɹ Fig. 41: ΠϯλʔϩοΫ γϯνϩʔλ BLM ͷγ εςϝߏ Table 5: Pure CsI ͼٴ CsI(Tl) ͷ ཧಛ CsI(Pure) CsI(Tl) 4.51 4.51 g/cm3 1.86 1.95 1.86 1.79 cm 621 550 1000 ݮ ਰ 621 315 16 ऩ 2000 54000 ۶ ༥ C nm ns ɹ ph/mev ɹ Fig. 42: γϯνϩʔλ BLM ͷ ਅ (a) ϏʔϜϩε ɺϑΥτϚϧͷ ໘Λհ ࢠʹม Εɺઇ ݕ ग़෦ (b) ৴ ॲཧճ पล ʹ 2 ࢠ ग़Λ ى ଟஈͷμΠϊʔυ Ͱۃ 107 ഒఔ ʹ ෯ ΕΔɻ ͷ ݕ ग़৴ Ճ ث ਤ 43 ݕ ग़෦ ͷεϋϧʔϯλૠ ߦ ʹ ஔ Ε ৴ ॲཧճ ΒΕΔ ɺϑΥτ γϯνϩʔλ BLM ͷಈ ݧ ͷ ՌͰ ΔɻϏʔϜ Ϛϧ Βճ Ͱ 50 m Ε ΔͷͰɺSN ൺ ϩεʹಉ ظ ಘΒΕ ϓϦΞϯϓͷग़ ʢCH1, ԫʣ վળͷ Ί ݕ ग़෦ ͷϓϧξϯϓͱ Βʹ ෯ Ε ճ ʹΑΓ Δ ఆ ͷլͱ ΕʢCH2, ޙ ΒΕΔɻ৴ ॲཧճ ɺϑΥτϚϧ Βͷੜ ʣɺ ͷ ใϨϕϧʢCH3, ੨ʣʹୡ Δͱ ܯ ใ ৴ Λ ฏ ۉ Խ Δ Ίͷ ճ ɺ ͷ ग़ ʢCH4, ʣͷϨϕϧ High Β Low Γସ ग़ ҙͷ ج ४ ѹλ ʹ ܯ ใΛ ใ Δ Θ Δͷ ΔʢNormally Highʣɻ ط ଘͷΠϯ Ίͷൺ ճ ɺ ͷ ใঢ়ଶΛอ Δ Ίͷϥο λʔϩοϋγεςϝͱͷ ʹ ͳ ɺBLM ͷ νճ Βߏ Ε Γɺ ճ ͷ ఆ ൺ ใΛड ଈ ʹՃ ث ࢭ Δ ͱ Ͱ ճ ͷ ج ४ ѹ ෦ͷ PLC Λհ ԕ ͰมߋՄ ɻ ɺ ͷ ͷ ఆ ఆͰ ɺϏʔϜϩε ੜ ͱͳ Δɻ৴ ॲཧճ Λத ͱ γεςϝ Β ܯ ใ ใ Ͱ 0.8 μs Ͱಈ Γɺ ඪͷಈ ߏ ثػ ͷ ਅΛਤ 42(b) ʹ ɻ ΛΫϦΞ Δɻ 㸷㸫

ίξλ Βͳ ʣ ғͱͳδɻblm ͱίϧϝʔλλ ɹ ۦ ͷα ͳұ ͷϗʔϝϩεௐ ʹΑ ɺ cerl ͷฏ ۉ ϏʔϜ ॱௐʹ ڧ Ε Δɻ ɹ ɹ Fig. 43: cerl Ͱߦ γϯνϩʔλ BLM ͷಈ ݧ 5.3. cerl ௐ ӡసͱͷ cerl Λ CW ϞʔυͰӡస Δࡍʹ ɺϏʔϜϩε ʹΑΔ ઢͷ ੜΛͰ Δ খ Δ ͱ ཁͰ ΓɺຊষͰड़ छ BLM ͷग़ Λ ͳ Β ʹϏʔϜ ΕΔɻϏʔϜϩεͷ ௐ ʹ ɺਤ 44(a) ʹ ϏʔϜίϦϝʔλΛ Δɻ Ε ਫ ಔ ͷϩουλ Լࠨӈͷ 4 Βಠ ʹૠ Ͱ Δߏ ʹͳ ΓɺϏʔϜϩ εͷ ݪ ҼͱͳΔϏʔϜϋϩʔ ϏʔϜςΠϧͷআ ʹڈ ར ΔɻcERL ʹ ಉ ͷίϧϝʔλ ਤ 1 ʹ 5ϲॴʹ ஔ Ε Δ ɺϏʔϜͷΤωϧΪʔ ߴ ɹ ͳδͱϗʔϝϩεͱ ੜ Δ ઢ ʹ ٸ Ճ Δ Ͱͳ ثػ ͷ Խ ট Ίɺपճ෦ͷϏʔ Ϝϩε ʹݮ ΕΒͷதͰ ΤωϧΪʔηΫγϣ ϯʹ ஔ Ε 2 ʢਤ 1 தͷ COL01 ͱ COL02ʣ Fig. 44: ϏʔϜίϦϝʔλʹΑΔϏʔϜϩεௐ (a) ΞʔΫ෦ ίϧϝʔλͷ ( b) ϏʔϜϩεௐ ͷ ࢠ ಛʹ Ͱ Δɻ ͷα ͳίϧϝʔλλ Ϗʔ Ϝϩεௐ ͷ ࢠΛਤ 44(b) ʹ ɻάϥϑͷԣ Ͱɺ ʹ ϝπϯμϯϓͱଌఆ ϏʔϜ 6. ࠓ ޙ ͷ ʢ੨ʣͱμΫτத ΒίϦϝʔλϩουઌ Ͱͷ cerl 2013 12 ʹपճ෦Λ ΉՃ ث શମͰ ڑ ʢ ʣɺ ͼٴ ड़ ϑνπόʔ BLM ͷग़ ৴ ͷௐ ӡసλ ҎདྷɺCW ӡసʹ ΔϏʔϜ ͷ ෯ʢ ʣ ද Ε ΔɻίϦϝʔλΛμΫτ ͷ ڧ ΤϛολϯεΛҡ ߴόϯν த ʹ ૠ ͱɺ ʹΞʔΫ෦Ͱͷ ՙͷϏʔϜΛ Δ ΊͷϚγϯελσΟ ਫ਼ ϏʔϜϩε ݮ গ ɺ Βʹૠ Λଓ ΔͱϏʔϜͷ తʹߦΘΕɺண ʹ ͷ Λ Δ [29]ɻ ίξ Ͱ ϏʔϜ ମ ݮ গ Δͷ ɺ ΕΒͷ ͱฒߦ ϏʔϜͷϢʔβʔར ʹ Δɻ ɺ ͷ ͷ దͳίϦϝʔλૠ ४උ ਐΊΒΕ Γɺ2015 3 ʹ LCS ਤதʹ ҹͱ ғɺ ͳθ ϏʔϜϩε ʹΑΔ४୯৭ΤοΫεઢͷੜ ʹ [30, 31]ɻࠓ খʹͳΔ ϏʔϜ ʹ Ө ڹ Λ༩ ͳ ʢϏʔϜ ޙ ϏʔϜͱϨʔβʔͷ Β ͷτοϋεઢ ڧ 㸷㸫

BPM BPM 45 BPM 27 10 TeledyneSP6T 1 6 BPM 10 BPM 11 BPM BPM BPM SCM SCM OTR SCM OTRCOTRCOTR SCM YAG COTR [32] BLM BLM CsI BLM cerl ps 100 fs 1 SCM OTR CTR) [33] SCM OTR EO 20 MeV

7. cerl BPMSCMBLM cerl ERL [1] D. Douglas et al., Proc. of IPAC2012, New Orleans, pp. 2111-2115 (2012). [2] D. M. Gassner et al., Proc. of IBIC2014, Monterey, pp. 49-54 (2014). [3], 11,, pp. 1-5 (2014). [4] http://accwww2.kek.jp/oho/ohotxt4.html [5], OHO 08, 8 (2008). [6], OHO 08, 9 (2008). [7] F. Sannibale, Fundamental Accelerator Theory, Lecture No. 13, Michigan State Univ. (2007). [8] T. Suwada et al., Phys. Rev. ST Accel. Beams 6, 032801 (2003). [9] K. Yanagida et al., Phys. Rev. ST Accel. Beams 15, 012801 (2012). [10] P. Forck, Joint University Accelerator School 2011, Lecture Notes on Beam Instrumentation and Diagnostics (2011). [11] S. Sakanaka et al., Proc. of ERL2013, Novosibirsk, pp. 16-21 (2013). [12] http://www.ansys.jp/products/electromagnetics/hfss/ [13] M. Tobiyama et al., Proc. of BIW08, Tahoe City, pp. 205-209 (2008). [14] http://www.gdfidl.de [15], OHO 11, 2 (2011). [16] Y. Tanimoto et al., Proc. of IPAC2013, Shanghai, pp. 3315-3317 (2013). [17] http://www.i-tech.si/acceleratorsinstrumentation/libera-brilliance-plus/ [18] http://www.aps.anl.gov/epics/ [19] T. Shintake et al., Nucl. Instrum. Meth. A 254 pp. 146-150 (1987). [20] https://www.cst.com/products/cstps [21] B. Gitter, Technical report, UCLA Department of Physics (1992). [22] L. Wartski et al., J. Appl. Phys. 46, pp. 3644-3653 (1975). [23] Y. Hashimoto et al., Proc. of IBIC2013, Oxford, pp. 338-341 (2013).

[24] M. A. Tordeux et al., Proc. of EPAC2000, Vienna, pp. 1818-1820 (2000). [25], 6,, pp. 448-451 (2009). [26], 12,, THP017 (2015). [27] T. Obina et al., Proc. of IBIC2013, Oxford, pp. 638-643 (2013). [28], 12,, THP083 (2015). [29] S. Sakanaka et al., Proc. of ERL2015, Stony Brook, MOPCTH07 (2015). [30] R. Nagai et al., Proc. of IPAC2015, Richmond, TUPJE002 (2015). [31] A. Kosuge et al., Proc. of IPAC2015, Richmond, TUPWA066 (2015). [32] S. Matsubara et al., Proc. of IBIC2012, Tsukuba, pp. 34-37 (2012). [33], 12,, THP088 (2015).