CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V



Σχετικά έγγραφα
Class 03 Systems modelling

Chapter 6 ( )( ) 8 ( ) ( )( ) Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 6. EX6.

Βασικά Κυκλώματα Ενισχυτών με Τρανζίστορ (Άσκηση 3)

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Capacitors - Capacitance, Charge and Potential Difference

EE101: Resonance in RLC circuits

Homework 3 Solutions

Matrices and Determinants

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Section 8.3 Trigonometric Equations

Derivation of Optical-Bloch Equations

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

w o = R 1 p. (1) R = p =. = 1

Εισαγωγική Άσκηση. Γνωριμία με το εργαστήριο

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Math221: HW# 1 solutions

( y) Partial Differential Equations

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Inverse trigonometric functions & General Solution of Trigonometric Equations

EE512: Error Control Coding

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Second Order Partial Differential Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?


Example Sheet 3 Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations

Approximate System Reliability Evaluation

Fractional Colorings and Zykov Products of graphs

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Quadratic Expressions

6.3 Forecasting ARMA processes

Srednicki Chapter 55

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Reminders: linear functions

On the Galois Group of Linear Difference-Differential Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)


Partial Differential Equations in Biology The boundary element method. March 26, 2013

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

From the finite to the transfinite: Λµ-terms and streams

Aluminum Electrolytic Capacitors (Large Can Type)

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Areas and Lengths in Polar Coordinates

Forced Pendulum Numerical approach

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Answers to practice exercises

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

5. Choice under Uncertainty

The Simply Typed Lambda Calculus

Lecture Stage Frequency Response (1/10/02) Page 210-1

ST5224: Advanced Statistical Theory II

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Magnetically Coupled Circuits

2 Composition. Invertible Mappings

Homework 8 Model Solution Section

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Second Order RLC Filters

The ε-pseudospectrum of a Matrix

Cyclic or elementary abelian Covers of K 4


Jordan Form of a Square Matrix

Aluminum Electrolytic Capacitors

Finite Field Problems: Solutions

Cable Systems - Postive/Negative Seq Impedance

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

the total number of electrons passing through the lamp.

Trigonometry 1.TRIGONOMETRIC RATIOS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

(As on April 16, 2002 no changes since Dec 24.)

Numerical Analysis FMN011

Lecture 2. Soundness and completeness of propositional logic

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

Tridiagonal matrices. Gérard MEURANT. October, 2008

PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική

Section 7.6 Double and Half Angle Formulas

Country of Origin. Japan Malaysia China

What happens when two or more waves overlap in a certain region of space at the same time?

Φυσική Β Λυκειου, Γενικής Παιδείας 2ο Φυλλάδιο - Οµαλή Κυκλική Κίνηση

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Strain gauge and rosettes

Differentiation exercise show differential equation

Transcript:

February 5, 006 CHAPTER 0 P.P.0. 0 in(t 0 0, ω H jωl j4 0. F -j.5 jωc Hence, e circuit in e frequency dmain i a hwn belw. -j.5 Ω 4 Ω 0 0 A Ω x j4 Ω x At nde, At nde, 0 - j.5 00 (5 j4 j ( 4 x where x j4 - j.5 4 - j.5 j4(.5( 0 -(7.5 j4 (.5 j.5 ( Put ( and ( in matrix frm. 5 j4 - j4 00 - (7.5 j4.5 j.5 0 where Δ ( 5 j4(.5 j.5 (-j4(-(7.5 j4.5 j.5 5.74-9.05.5 j.5 j4 7.5 j4 5 j4 00.5 j.5 0.5 j.5.95 0.96 (00 (00. 60. 0.5 j.5 5.74-9.05 7.5 j4 8.5 8.07 (00 (00.0 57..5 j.5 5.74-9.05

n e time dmain, v (t. in(t 60.0 v (t.0 in(t 57. P.P.0. The nly nn-reference nde i a upernde. 5 4 j4 - j 5 -j j4 5 ( j ( j4 ( The upernde give e cntraint f 0 60 ( Subtituting ( int ( give 5 ( j(0 60 ( j 5 ( j(0 60 4.7 0.7.76 65. 7 j 4.4 45 0 60 (-.7 j0.87 (0 j7. 6.78 j8.54 Therefre, 9.6 69.67,.76 65.7 P.P.0. Cnider e circuit belw. 0 A -j Ω 6 Ω 8 Ω j4 Ω 0 0 Fr meh, ( 8 j j4 j4 0 ( 8 j j 4 (

Fr meh, 6 j4 j4 6 0 0 0 Fr meh, - ( Thu, e equatin fr meh becme 6 j4 j4-0 0 ( ( 8 j Frm (, (0.5 j ( j4 Subtituting ( int (, ( 6 j4(0.5 j j4-0 0 ( j4 -(0.66 j5 - (0.66 j5 j4 Hence, 0.66 j5.56.6 - j4 7.8-5.84.94 65.44 A P.P.0.4 Mehe and frm a upermeh a hwn in e circuit belw. 0 Ω -j4 Ω j8 Ω 50 0 5 Ω -j6 Ω Fr meh, 50 (5 j4 ( j4 5 0 5 j4 j4 5 50 ( ( Fr e upermeh, j8 j4 (5 j6 (5 j4 0 ( ( Al, (

Eliminating frm ( and ( ( 5 j4 (-5 j4 60 (4-5 j4 (5 j -0 j (5 ( Frm (4 and (5, 5 j4-5 j4-5 j4 5 - j 60-0 j 5 j4-5 j4 Δ 58 j0 58.86-9.78-5 j4 5 - j 60-5 j4 Δ 98 j0 98.67 -.84-0 j 5 - j Δ Thu, 5.074 5.94 A Δ ' ' P.P.0.5 Let, where and are due t e vltage urce and current urce repectively. Fr ' cnider e circuit in Fig. (a. ' -j Ω 6 Ω 8 Ω j4 Ω 0 0 (a Fr meh, ( 8 j j4 0 ( 0.5 j ( Fr meh, 6 j4 j4 0 0 0 ( ( Subtituting ( int (, ( 6 j4(0.5 j j4 0 0 ' 0 0 0.08 j0.556 j4

Fr cnider e circuit in Fig. (b. 0 A -j Ω 6 Ω 8 Ω j4 Ω j4 Let 8 j Ω, 6 j4.846 j. 769 Ω 6 j4 ((.846 j.769 ( 0.464 j0.5 9.846 j0.77 ' Therefre, 0.496 j. 086.99 65.45 A ' ' P.P.0.6 Let v v v, where v i due t e vltage urce and i due t e current urce. Fr ' v, we remve e current urce. 0 in(5t 0 0, ω 5 0. F -j jωc j(5(0. H jωl j(5( The circuit in e frequency dmain i hwn in Fig. (a. 8 Ω (b j5 v 0 0 ' -j Ω j5 Ω (a

Nte at - j j5 -j.5 By vltage diviin, - j.5 ' (0 4.6-8. 8 j.5 Thu, v ' 4.6in(5t 8. Fr v, we remve e vltage urce. c(0t 0, ω 0 0. F -j0.5 jωc j(0(0. H jωl j(0( The crrepnding circuit in e frequency dmain i hwn in Fig (b. 8 Ω j0 Ω -j0.5 Ω 0 Let -j0.5 j80, 8 j0 8 j0 4.878 j. 9 By current diviin, ( - j(4.877 j.9 (-j0.5 ((-j0.5 4.878 j.4 6.45-5.6.05-86.4 5.94 4.88 Thu, v.05c(0t 86.4 ' Therefre, v v v v 4.6 in(5t 8..05 c(0t 86.4 (b j0

P.P.0.7 f we tranfrm e current urce t a vltage urce, we btain e circuit hwn in Fig. (a. 4 Ω -j Ω Ω j Ω S j5 Ω Ω -j Ω (a (j4(4 j j6 We tranfrm e vltage urce t a current urce a hwn in Fig. (b. j6 Let 4 j j 6 j. Then,.5 j. 6 j S 6 Ω Ω j5 Ω -j Ω -j Ω (b (6 j(j5 0 Nte at j5 ( j. 6 j By current diviin, 0 ( j (.5 j 0 ( j ( j 0 j40 44.7 6.56 j4.60 7..88 99.46 A

P.P.0.8 When e vltage urce i et equal t zer, 0 (-j4 (6 j (-j4(6 j 0 6 - j 0.4 j..4 j. Ω By vltage diviin, - j4 (0 0 6 j j4 (4-90 (0 0 6.4-8.4 8.97-5.57 (-j4(0 0 6 j P.P.0.9 T find, cnider e circuit in Fig. (a. 8 j4 8 j4 5 0 a S a 4 j 0. 4 j 0. 0 (a b (b b At nde, 0 5 4 j 8 j4 - ( j 50 ( j0.5( 50 ( j0.5 ( j0.5 ( At nde, 5 0. 0, where. 8 j4 Hence, e equatin fr nde becme

5 0.( 0 8 j4 50 ( j0.5 Subtituting ( int (, j0.5 50 ( j0.5 ( j0.5 (50 j0.5 50 0-50 ( j (5 j 7 -.70 j6. 7.5 7. 9 j 7.5 7.9 T find, we remve e independent urce and inert a - vltage urce between terminal a-b, a hwn in Fig. (b. At nde a, -0. 8 j4 4 j But, and 8 j4 8 j4 4 j S, 8 j4.6 j0.8 (0. j j j and j.66 9.46.6 j0.8.7 7.0 4.47 7.64 Ω

P.P.0.0 T find N, cnider e circuit in Fig. (a. 4 Ω j Ω 4 Ω j Ω 8 Ω Ω -j Ω a 8 Ω Ω -j Ω a N 0 0 -j4 Ω N (a b (b b N N (4 j (9 j.76 j0.706 Ω (4 j(9 j j T find N, hrt-circuit terminal a-b a hwn in Fig. (b. Ntice at mehe and frm a upermeh. Fr e upermeh, 0 8 ( j (9 j 0 ( - Al, j4 ( Fr meh, j 8 ( j 0 ( ( Slving fr, we btain 50 j6 79.65-5. N 9 j 9.487-8.4 8.96 -.68 A N Uing e Nrtn equivalent, we can find a in Fig. (c. N N 0 j5 Ω (c

By current diviin, N.76 j0.706 N (8.96 -.68 N 0 j5.76 j4.94 (.54.5 (8.96 -.68.858-8.05.97 -.0 A P.P.0. 0 nf -j0 kω -9 jωc j(5 0 (0 0 0 nf -9 -j0 kω jωc j(5 0 (0 0 Cnider e circuit in e frequency dmain a hwn belw. -j0 kω 0 0 kω 0 kω -j0 kω A a vltage fllwer, At nde, 0 - j0 0 4 ( j ( j ( At nde, 0 0 - j0 ( j ( Subtituting ( int ( give 4 j6 r - 90

Hence, Nw, But frm ( Hence, v (t 0.667 c(5000t 90 (t v - j0k 0.667 in(5000t -j (t i (t i - 4-4 -j66.66 μa - j0k 66.67 c(5000t 90 μa 66.67 in(5000t μa P.P.0. Let R R jωc jωrc R R The lp gain i / G R R R R R jωrc -6 where ωrc (000(0 0 ( 0 0 jωrc jωrc j0 0.05 84.9 / G j0 0. 78.69 G.047 5.6

P.P.0. The chematic i hwn belw. Since ω πf 000 rad / f 477.465 Hz. Setup/Analyi/AC Sweep a Linear fr pint tarting and ending at a frequency f 447.465 Hz. When e chematic i aved and run, e utput file include Frequency M(_PRNT P(_PRNT 4.775E0 5.440E-04-5.5E0 Frequency M($N_0005 P($N_0005 4.775E0.68E-0 -.546E0 Frm e utput file, we btain 0.68-54.6 and 0.544-55. ma Therefre, (t 0.68 c(000t 54.6 v (t i 0.544 c(000t 55. ma

P.P.0.4 The chematic i hwn belw. We elect ω rad/ and f 0.595 Hz. We ue i t btain e value f capacitance, where C ωx c, and inductance, where L X L ω. Nte at AC de nt allw fr an AC PHASE cmpnent; u, we have ued AC in cnjunctin wi G t create an AC current urce wi a magnitude and a phae. T btain e deired utput ue Setup/Analyi/AC Sweep a Linear fr pint tarting and ending at a frequency f 0.595 Hz. When e chematic i aved and run, e utput file include Frequency M(_PRNT P(_PRNT.59E-0.584E00.580E0 Frequency M($N_0004 P($N_0004.59E-0 9.84E00 4.478E0 Frm e utput file, we btain 9.84 44.78 and.584 58 A x 6 R 0 0 P.P.0.5 ( -9 C eq C 0 0 0 μf R 0 0 P.P.0.6 f R R R.5 kω and C C C nf f -9 6.66 khz πrc (π(.5 0 ( 0 x