Fundamentals of Mass Spectrometry Fundamentals of Electrospray



Σχετικά έγγραφα
Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Fundamentals of Mass Spectrometry Gas Phase Ion/Molecule Reactions

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Electronic Supplementary Information

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Applying Markov Decision Processes to Role-playing Game

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Η ΣΥΝΘΕΣΗ ΚΑΙ ΤΑ ΣΥΝΘΕΤΑ ΝΟΗΜΑΤΑ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΝΟΗΜΑΤΙΚΗ ΓΛΩΣΣΑ

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

100 khz 45 khz 28 khz

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

(2), ,. 1).

Rapid Determination of Seven Fungicides in Citrus Fruits

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information

Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land

2. Chemical Thermodynamics and Energetics - I

Electronic Supporting Information

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Conductivity Logging for Thermal Spring Well

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Trace gas emissions from soil ecosystems and their implications in the atmospheric environment

ΑΕΡΙΟΧΡΩΜΑΤΟΓΡΑΦΙΑ (GAS CHROMATOGRAPHY) ΑΘΗΝΑ, ΔΕΚΕΜΒΡΙΟΣ 2015

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

Anisotropy of Drainable Macropores in Andosols and Alluvial Soils

( E N) 0 ~ 20 cm ( EESI-MS) ) (KQ3200B. ( Burdick&Jackson, SK Chemical, Ulsan, Korea) ( 土壤 (Soils), 2013, 45(2):

Supplementary Information

STEAM TABLES. Mollier Diagram

Development of Accurate Quantitative Analytical Methods to Determine Trace Amounts of Carbon, Sulfur, and Oxygen in Steel

E#ects of Imogolite Addition on Colloidal Stability of Montmorillonite and Kaolinite

Hydrologic Process in Wetland

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Σύνθεση και Χαρακτηρισµός Χαµηλοδιάστατων Ηµιαγωγών Αλογονιδίων του Μολύβδου και Χαλκογενιδίων.

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

X g 1990 g PSRB

ER-Tree (Extended R*-Tree)

ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΜΑΖΑΣ. Αναστασία Δέτση Αναπληρώτρια Καθηγήτρια, Σχολή Χημικών Μηχανικών ΕΜΠ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Available online at shd.org.rs/jscs/

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

REDOX (2) pe as a master variable. C. P. Huang University of Delaware CIEG 632

Changes and Issues of Consolidation Techniques of Peaty Arable Land in Hokkaido

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Fukushima Daiichi Nuclear Power Plant, FDNPP m 2 FDNPP. : 1400 m. FDNPP km. Tessier 4

ΠΛΑΣΜΑ ΗΛΕΚΤΡΙΚΗΣ ΕΚΚΕΝΩΣΗΣ ΣΕ ΑΤΜΟΣΦΑΙΡΙΚΟ ΑΕΡΑ»

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

4, Cu( II), Zn( II)

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Supporting Information

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte


Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Study of Excess Gibbs Energy for a Lattice Solution by Random Number Simulation

Abstract: Objective To examine and identify fungi with important significance in food safety by matrix2assisted laser

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Electronic Supplementary Information

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΘΕΜΕΛΙΩΔΗΣ ΚΛΑΔΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΕΙΣΗΓΜΕΝΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΑΓΟΡΑΣ

Divergent synthesis of various iminocyclitols from D-ribose

ΚΕΦΑΛΑΙΟ ΑΝΑΛΥΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ... 1

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Electronic Supplementary Information

HPLC- ESI-MS HPLC-ESI-MS HPLC-ESI-MS HPLC 11 HPLC HPLC-ESI-MS. Asterias rollestoni Bell. LC- MS. Vol.11 No.1

Autoxidation of Commercial Edible Oils and Emulsified Liquid Type Dressing by the Simple Method for the Determination of Peroxide Value

Curran et al.,**. Davies et al ,**, ,***,**/

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

ΕΘΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΤΗΣ Δ.Ε.Η.» STATISTICAL ANALYSIS OF THE FUNCTIONING OF THE NATIONAL SYSTEM OF Δ.Ε.Η.

Λιμνοποτάμιο Περιβάλλον και Οργανισμοί

[1] P Q. Fig. 3.1

Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

ΑΛΚΑΛΟΕΙΔΩΝ ΘΡΥΠΤΟΦΑΝΗΣ ΑΛΕΞΑΝΔΡΟΣ Λ. ΖΩΓΡΑΦΟΣ

APPENDIX A. Summary of the English Engineering (EE) System of Units

Emulsifying Properties of Egg Yolk as a Function of Diacylglycerol Oil

Τίτλος Πτυχιακής Εργασίας :

Influence of Flow Rate on Nitrate Removal in Flow Process

Supporting Information

SUPPORTING INFORMATION

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Transcript:

J. Mass Spectrom. Soc. Jpn. Vol. 58, No. 4, 2010 REVIEW 8 Fundamentals of Mass Spectrometry Fundamentals of Electrospray Kenzo H>G6D@6 Kofu, YAMANASHI, JAPAN Clean Energy Research Center, University of Yamanashi, Electrospray is an ultimate phenomenon that occurs when the liquid is exposed to the high electric field. In order to fully exploit electrospray for the analytical science and technology, it is mandatory to understand the mechanisms for the formation of charged droplets and the following formation of gas phase ions. This article will explain the basic aspects of electrospray from various points of view. The contents are as follows: (i) electrospray ionization (ESI) is based on electrochemical reactions, (ii) what is the Taylor cone? (iii) disintegration of charged liquid droplets, (iv) mechanism for the formation of gas-phase ions from the charged liquid droplets, (v) e#ect of surface tension of liquid on electrospray, (vi) positive- and negative-mode of ESI, (vii) suppression e#ect by the presence of salts, (viii) down-sizing of electrospray, ESI nanoesi Probe ESI, (ix) field desorption, (x) field ionization, (xi) formation of multiple-charge ions, (xii) application of electrospray. (Received February 3, 2010; Accepted February 3, 2010) 1. ES (electrospray) ESI (electrospray ionization) ESI kv (Fig. 1) 1700 Correspondence to: Kenzo H>G6D@6, Clean Energy Research Center, University of Yamanashi, 4 3 11 Takeda, Kofu, Yamanashi 400 8511, JAPAN, e-mail: hiraoka@yamanashi. ac.jp 400 8511 4 3 11 300 2002 Fenn ESI 2. electrohydrodynamic atomization electrohydrodynamic emission E E V 3 kv 3 kv 139

K. Hiraoka V E r d: E K (V/r) (1) K 1 K 2/ln (2d/r) r: K 1/(2d/r) 1/2 r: K 1/ln (d/r) r: E 2V/[r ln (2d/r)] (2) r d E Gauss 1) F E da q in /e 0 (3) F E q in e 0 (3) q in s (C/m 2 ) E (3) E s/e 0 (4) (4) s E E s E Fig. 1. 2 1993, American Chemical Society Table 1. E 0 E 0 (V vs. 2H /H 2 ) 4OH 2H 2 O O 2 4e 0.42 2OH H 2 O 2 2e 0.29 2H 2 O O 2 4H 4e 1.25 2NH 4 N 2 H 5 3H 2e 1.30 NH 4 H 2 O NH 3 OH 2H 2e 1.37 2H 2 O H 2 O 2 2H 2e 1.79 OH OH e 2.02 2Cl Cl 2 (g) 2e 1.36 Fe 2OH Fe(OH) 2 2e 0.85 Fe Fe 2 2e 0.42 Fe Fe 3 3e 0.01 Pt 2OH Pt(OH) 2 2e 0.18 Pt 2H 2 O Pt(OH) 2 2H 2e 1.00 CH 3 OH 2H 2e CH 4 H 2 O 0.60 2H 2 O O 2 4e 4OH 0.42 2H 2e H 2 0.02 CH 3 COOH 2H 2e CH 3 CHO H 2 O 0.11 CH 3 OH H 2 O 2e CH 4 2OH 0.23 2NH 4 2e 2NH 3 H 2 0.53 2H 2 O 2e H 2 2OH 0.80 Na e Na 2.71 Pt(OH) 2 2e Pt 2OH 0.18 Fe(OH) 3 e Fe(OH) 2 OH 0.54 Fe(OH) 2 2e Fe 2OH 0.85 (Fig. 1) Fig. 1 TDC: total direct current 2) E 0 Table 1 (4OH 2H 2 O O 2 4e ) (2H 2 O 4H O 2 4e ) (CH 3 OH 2H 2e CH 4 H 2 O) 140

OH (2H 2 O O 2 4e 4OH ) e (Table 1) 3. Taylor Fig. 1 Taylor (SIMS) Ga, Bi Ga, Bi (SIMS) nm 99 Taylor nm (4) (3) E r (1) r (1) K 1 1) (electrostatic pressure) Rayleigh 99 Taylor (Fig. 1) Rayleigh Taylor (Fig. 1) P g g k P g gk (5) E P E E 2 3) P E 0.5e 0 E 2 (6) P E Poisson 3) P E 141

K. Hiraoka Fig. 2. 0.1 (1 : 1) 1 ml/min 100 mm 3.7 kv 10 mm. P E P g P g P E, Taylor 99 Taylor P g P E 3) Taylor P g P E V c V c 0.863(gd/e 0 ) 0.5 (7) d g P E P g 99 Taylor Fig. 2 (a) (e) 1 (electric sneeze) ms khz Vertes 4) Fig. 2 1 ms 4. Rayleigh Taylor Rayleigh Fig. 3. N: R: (mm) Dt: 2 1993, American Chemical Society Rayleigh N 70 80 Taylor Rayleigh Fig. 3 2) N R (mm) Rayleigh 2 Fig. 3 Fig. 1 Taylor 10 1 1,000 1 20 15 2 142

5) Rayleigh s (C/m 2 ) (4) 1) r 1, r 2, s 1, s 2, E 1, E 2 (4) r 1 /r 2 s 2 /s 1 E 2 /E 1 (8) s 1) Rayleigh R N N (ge 0 R 3 ) 0.5 8p (9) (9) R 3 N N N 2 N Rayleigh N s (10) N s N/4pR 2 2(e 0 g) 1/2 /R 1/2 (10) Rayleigh N s R N s (1) (6) 5. Rayleigh (Fig. 3) charged residue CRM ion evaporation IEM Fig. 3 1 nm 10 8 V/m 1 (Fig. 3) Fig. 1 100 mm mm Rayleigh 5 10 4 10 5 M 1.5 mm 10 5 10 5 M NaCl 150 mm (0.9 ) 1.5 mm 10 9 Na Cl 10 5 M Na Cl Na Cl 143

K. Hiraoka 8 9 6. g g 72 10 3 N/m (g 22 10 3 N/m) (g 28 10 3 N/m) / (5) (g) P g g g 7. Fig. 4. (a) (b) F: Fig. 4 Fermi (F) l l h/mv h/p (11) h: Planck m: v: p: l Dx F 144

SF 6 CCl 4 SF 6 e SF 6 (12 1) SF 5 F (12 2) CCl 4 e Cl CCl 3 (13) 8. TDC (Fig. 1) K K TDC K n (14) n 0.2 0.4 K Poisson K C 0 Debye l D 1/2 l D (nm) 0.305/C 0 (15) C 0 l D (C 0 ) l D (15) K C 0 (15) Taylor 10 2 M 150 mm Debye l D (15) 1nm 150 mm 9 Fig. 1 Q Q C V (16) Q C V Rayleigh 145

K. Hiraoka 9. ESI, nanoesi, 5) van Berkel 6) Fig. 5 100 mm mm 700 nm (probe electrospray: PESI) 7) 9) 100 mm ml/min Paschen Fig. 5. Fig. 6. Fig. 6 Fig. 7 pl 10 5 M S 10 2 M 9) 2.5 kv 1ms fl Taylor 10 ms 15 ms 1ms Rayleigh ms 146

Fig. 7. 2.5 kv 700 nm, pl, 10 5 M S 10 2 M 9 2008, American Chemical Society 7), 8) K Na (NaCl) n, 2Cl Cl 2 Fig. 6 700 nm 100 mm pl Fig. 8 8) mm Fig. 8. 8 2008, Wiley Inter Science 147

K. Hiraoka Fig. 9. Fig. 9 10) 30 mm 20 mm K Fig. 10 100 mm 1,500 1,800 mm 60 mm 11) 1 60 mm 25 30 750 m/z 782.6 m/z 756.6 [PC 34 : 1 Na] [PC 32 : 0 Na] (PC: phosphatidylcholine) m/z 810.6 [PC 36 : 1 Na] m/z 826.6 [PC 36 : 1 K] m/z 828.6 [PC 38 : 6 Na] DHB MALDI (matrixassisted laser desorption/ionization) 12) m/z 822.7, 850.7, 934.7 m/z 850.7 MALDI galactosylceramide Na [GalCer 24h : 0 Na] 13) m/z 822.7 934.7 [GalCer 422 h : 0 Na] Fig. 10. (a) m/z 782.6 ([PC 34: 1 Na] ), (b) m/z 810.6 ([PC 36: 1 Na] ), (c) m/z 826.6 ([PC 36: 1 K] ), (d) m/z 756.6 ([PC 32: 0 Na] ), (e) m/z 828.6 ([PC 38: 6 Na] ), (f) m/z 822.7 (GalCer 22h: 0 Na] ), (g) m/z 850.7 (GalCer 24 h: 0 Na] ), (h) m/z 934.7 (GalCer 30h: 0 Na] ), (i) m/z 1094.9 60 mm 1,500 1,800 mm 2. 11 2009, Wiley InterScience [GalCer 30h : 0 Na] MALDI PC galactosylceramides 12), 13) 148

(2) 700 nm 10 8 V/m 200 mm 10 6 V/m 2 1 Wilm Mann Taylor Poisson (17) 3) r e (dv/dt) 2/3 r 1/3 /[ 4p 2 g tan(p/2 q) (U a /U t ) 2 1 ] 1/3 (17) (dv/dt) r e : r: g: q: Taylor 1/2, U a : U t : (dv/dt) (9) (FD) 10. (FD) 10 9 V/m 10 10 V/m 14) (field ionization : FI) (field desorption: FD) Fig. 11. NaCl 2:1 10 mm 10 mm 10 8 V/m. FD Fig. 11 NaCl 2:1 10 mm 15) 10 8 V/m (Fig. 11(e)) M Na [M Na] Na Cl Cl Cl 2 (2Cl Cl 2 ) Na Taylor [M Na] Taylor [M Na] 10 8 10 9 V/m Taylor [M Na] 5 10 8 V/m 149

K. Hiraoka 10 10 V/m Taylor 2 11. (FI) (FD) Fig. 12(a) IE Fig. 12(b) E x x E [x E] [IE F]/e x c e[x c E] IE F (18) (18) ev E e[x c E] IE F x c x c e[x c E] I F Fig. 12. (a) (b) IE: F: x: x c :e[x c E] IE F x c E, IE F E 10 10 V/m AÕ (1AÕ 10 10 m) x c 12. MALDI ESI MALDI 337 nm, YAG 2 355 nm 1 ns 150

MALDI lucky survivor 16) (preformed ion), 2H 2 O 4H O 2 4e (Table 1) Rayleigh Rayleigh na na na 9) i Fig. 1 TDC [Q] 17) [Q] i/fg (19) [Q] mol/l, i (A: C/s), F Faraday (96,500 C/mol), G (L/s) i (C/s) ESI, nanoesi, (19) [Q] G (17) [Q] 10 5 M 17) [Q] 10 3 M 10 2 mol/l 13. 1995 18), 19) 1 Anal. Chem. News & Features 20) 21) (space charge field) 18) ml/min MALDI Taylor 22) Fig. 13 0.3 mm 10.5 mm Taylor 151

K. Hiraoka Fig. 13. Taylor 10 5 M 22 2005, Elsevier Science Limited Taylor 2W 10 4 W/cm 2 10.6 mm 1,000 cm 1 10 3 cm, 10 mm 10.6 mm Fig. 13 2W 1 23) Fig. 13 Fig. 1 TDC Fig. 13 9 Fig. 13 1.6 W 1.8 W 24) 27) Fig. 14 DNA 27) DNA on o# 1 25) 27) Fig. 14. 16 DNA (( ) 5 -GCT GCC AAA TAC CTC C-3 ) Netropsin DNA Netropsin 1 DNA Netropsin 2 DNA DNA DNA Netropsin 1 27 2008, the Mass Spectrometry Society of Japan 152

DNA DNA, DNA DNA 1 1 28) na open-air 29) Shiea Fig. 15. DESI 31 2004, the American Association for the Advancement of Science 30) Cooks DESI (desorption ESI) 31) (Fig. 15) 150 mm 32) DESI van Berkel 33) Rayleigh 60 Hz 153

K. Hiraoka 34) 14. kv 10 V kv kv Rayleigh 10 V 10 V/m Debye nm 10 8 V/m 1) R. A. Serway 2) P. Kebarle and L. Tang, Anal. Chem., 65, 972A (1993). 3) M. S. Wilm and M. Mann, Int. J. Mass Spectrom. Ion Process., 136, 167 (1994). 4) I. Marginean, L. Parvin, L. He#erman, and A. Vertes, Anal. Chem., 76, 4202 (2004). 5) Electrospray Ionization Mass Spectrometry, ed. by R. B. Cole, John Wiley & Sons, Inc., New York (1997). 6) G. J. van Berkel, K. G. Asano, and P. D. Schnier, J. Am. Soc. Mass Spectrom., 12, 853 (2001). 7) K. Hiraoka, K. Nishidate, K. Mori, D. Asakawa, and S. Suzuki, Rapid Commun. Mass Spectrom., 21, 3139 (2007). 8) L. C. Chen, K. Nishidate, Y. Saito, K. Mori, D. Asakawa, S. Takeda, T. Kubota, N. Terada, Y. Hashimoto, H. Hori, and K. Hiraoka, Rapid Commun. Mass Spectrom., 22, 2366 (2008). 9) L. C. Chen, K. Nishidate, Y. Saito, K. Mori, D. Asakawa, S. Takeda, T. Kubota, H. Hori, and K. Hiraoka, J. Phys. Chem. B, 112, 11164 (2008). 10) K. Hiraoka, L. C. Chen, D. Asakawa, S. Takeda, and T. Kubota, J. Surf. Anal., 15, 279 (2009). 11) L. C. Chen, K. Yoshimura, Z. Yu, R. Iwata, H. Itoh, H. Suzuki, K. Mori, O. Ariyada, S. Takeda, T. Kubota, and K. Hiraoka, J. Mass. Spectrom., 44, 1469 (2009). 12) S. N. Jackson, M. Ugarov, T. Egan, J. D. Post, D. Langlais, J. A. Schultz, and A. S. Woods, J. Mass Spectrom., 42, 1093 (2007). 13) S. Taira, Y. Sugiura, S. Moritake, S. Shimma, Y. Ichiyanagi, and M. Setou, Anal. Chem., 80, 4761 (2008). 14) E. W. Müller, Ergebnisse der exakten Naturwissenschaften, 27, 290 (1953). 15) S. S. Wong, U. Giessmann, M. Karas, and F. W. Röllgen, Int. J. Mass Spectrom. Ion Process., 56, 139 (1984). 16) M. Karas, M. Glückmann, and J. Schäfer, J. Mass Spectrom., 35, 1 (2000). 17) T. L. Constantopoulos, G. S. Jackson, and C. G. Enke, J. Am. Soc. Mass Spectrom., 10, 625 (1999). 18) K. Hiraoka, H. Fukasawa, and K. Aizawa, Rapid Commun. Mass Spectrom., 9, 1349 (1995). 19) M. A. Niessen, J. Chromatogr. A, 794, 407 (1998). 20) K. Hiraoka, Anal. Chem., 68, 81A (1996). 21) J. H. (2009). 22) A. Takamizawa, S. Fujimaki, J. Sunner, and K. Hiraoka, J. Am. Soc. Mass Spectrom., 16, 860 (2005). 23) A. Takamizawa, H. Maeda, S. Kambara, H. Furuya, and K. Hiraoka, Rapid Commun. Mass Spectrom., 22, 2453 (2008). 24) X. Shi, A. Takamizawa, Y. Nishimura, K. Hiraoka, and S. Akashi, Rapid Commun. Mass Spectrom., 22, 1430 (2008). 25) X. Shi, Y. Nishimura, S. Akashi, A. Takamizawa, and K. Hiraoka, J. Am. Soc. Mass Spectrom., 17, 611 (2006). 26) X. Shi, A. Takamizawa, Y. Nishimura, K. Hiraoka, and S. Akashi, J. Mass Spectrom., 41, 1086 (2006). 27) J. Mass Spectrom. Soc. Jpn., 56, 155 (2008). 28) L. P. Benesch, F. Sobott, and C. V. Robinson, Anal. Chem., 75, 2208 (2003). 29) H. Chen, A. Wortman, and R. Zenobi, J. Mass Spectrom., 42, 1123 (2007). 30) J. Shiea, M. Z. Huang, H. J. Hsu, C. Y. Lee, C. H. Yuan, I. Beech, and J. Sunner, Rapid Commun. Mass Spectrom., 19, 3701 (2005). 31) Z. Takáts, J. M. Wiseman, B. Gologan, and R. G. Cooks, Science, 306, 471 (2004). 32) D. R. Ifa, N. E. Manicke, A. L. Dill, and R. G. Cooks, Science, 321, 805 (2008). 33) G. J. Van Berkel, S. P. Pasilis, and O. Ovchinnikova, J. Mass Spectrom., 43, 1161 (2008). 34) J. Aerosol Res., 21, 233 (2006). Keywords: Electrospray, Probe electrospray, Laser spray, Field desorption, Field ionization 154