2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI Xing2mei, QI Jian2xun (School of Business Administration, North China Electric Power University, Beijing 102206,China) Abstract : As the minimal dummy activities and dummy nodes problem is NP2Hard problem, for a given project, there may be several correct AOA networks which differ in their number of dummy activities and number of nodes. The purpose of this paper is to research the influence of dummy activity on float in an AOA network and its amendments. As different drawing methods of dummy activities result in AOA networks of varied dummy nodes, therefore, the research method is based on the nodes. Firstly, Nodes are classified into three types : the normal node, out2dummy node and in2dummy node. On basis of the analysis to the influence of the node type on the activity float algorithms, the node type algorithms for activity safety float and free float are found to have error for out2dummy node and in2 dummy node separately. Finally, amendments are made and an example is presented to test the effectiveness of the algorithms. Key words : AOA networks ; time parameters ; total float ; safety float ; free float 1 (AOA ),. AOA,,.,.,.,.,,,.,, [1 ]. :2007201207 : (70671040) ; (20050079008) : (1973 - ),,,, ; (1971 - ), ( ),,, ; (1946 - ),,,,.
6 107. 1956 CPM, CPM [2 ],.,, Battersby(1967) Thomas (1969),,,. Elmaghraby(1977) [3 ]., :, [4 ], CPM..,,. ; ;,.,,,,,,.,.,, [5 7 ]. Krishnamoorty Deo (1979) NP2hard [8 ].,., [9 11 ].,.,,,.., ( ),.,,. 2,. ; ;, ;.,. 1 2,. 1 e,f, i, j, n, o..,,. 2 j..,,. 2 i..,,
108 2008 6 [12 ].. 3 ( ), ( ) ;,. 311 : ; :, [13 ].., [4,13 ],.,,,.,,. [13 ],. 1 i, ( ij) ES ij ET i. i, ET i, CPM [13 ] : ET 1 = 0 ES ij = ET i (1. 1) for i = 2 to n do (1. 2) ET i = max h P i { ET h + d hi } P i i, d hi ( hi),, ( hi), d hi = 0. 1 : 2,. 312 :..., [4,13 ],.,,,. [13 ],, : 3 j, ( ij) L F ij L T j. j, L T j, CPM : L T n L F ij = L T j (1. 3) = ET n for j = n - 1 to 1 do (1. 4) L T j = min k S j {L T k - d jk } S j j, d jk ( jk),, ( jk), d jk = 0. 3 : 4,
6 109. 313 (111), (112), (113), (114),,,,,. 4 313,,.. 411,, TF ij. ( ij), [4,13] : TF ij = LS ij - ES ij = L F ij - EF ij = L F ij - ES ij - d ij (1. 5) LS ij, ES ij ; L F ij, EF ij, d ij., [4,13 ] : TF ij = L T j - ET i - d ij (116) (116) (115), (117), (116). L T j = L F ij ET i = ES ij (117) 1 3,, (117),,,. 412 ( ij),, FF ij., : FF ij = ET 3 j - EF ij ET 3 j = min ( xy) S ij { ES xy } S ij ( ij), ( xy), ET 3 j ; EF ij ( ij) [4,13 ]. (1. 8) j ET j ; ES ij. 1 : ET i = ES ij, : (118),, [4,13 ] : (1111) (1110), (1111) : EF ij = ES ij + d ij = ET i + d ij (1. 9) FF ij = ET 3 j - ET i - d ij (1110) FF ij = ET j - ET i - d ij (1111) ET j = ET 3 j (1. 12) ( ij),,. 41211 ( ij), 1 j, ( ij). j, 1 ( jk), TS ij
110 2008 6 ; j, 1 ( np), ( oq) ( or), DS ij. : S ij = TS ij DS ij (1113) TS ij, ET t 3 j ( jk) TS ij, j, 1, ET j.. ES jk = ET j (1114) ET t 3 j = min ( jk) TS ij { ES jk } = ET j (1. 15) DS ij, ET d 3 j. j,, j. 2, j ET j. : (118), (1113), (1115) (1116) : (1112), : ET d 3 j = min ( uv) DS ij { ES uv } ET j (1116) ET 3 j = min { ES xy } = min{ ET t 3 j, ET d 3 j } = ET j (1. 17) ( xy) S ij 5 ( ij),, ET j ET 3 j 41212,. ( ij), 2 j, ( ij) j, 2 ( np), ( nk), ( oq) ( or), j,, j. ( np) ES np = ET n ET 3 j. 2, j ET j. : (1112), : ET j ET n = ES np = ET 3 j (1. 18) 6 ( ij),, ET j ET 3 j, ET j ET 3 j,. 5 6,, j, ET j = ET 3 j, ; j, ET j ET 3 j,,,.,,. 413 ( ij),. SS ij., : SS ij = LS ij - L T 3 i L T 3 i = max ( xy) P ij {L F xy } P ij ( ij), ( xy),l T 3 i ; LS ij ( ij) [4,13]. (1119) j L T j, L F ij, 3 L T j = L F ij,
6 111 : (1119),, [4,13 ] : (1122) (1121), (1122) : LS ij = L F ij - d ij = L T j - d ij (1120) SS ij = L T j - L T 3 i - d ij (1121) SS ij = L T j - L T i - d ij (1. 22) L T i = L T 3 i (1. 23) ( ij),.. 41311 ( ij), 1 i, ( ij). i, 1 ( ai), TP ij ; i, 1 ( bf ), ( ce) ( de), DP ij. : P ij = TP ij DP ij (1124) TP ij, L T t 3 i ( ai) TP ij, i, 3, L T i.. L F ai = L T i (1. 25) L T t 3 i = max ( ai) TP ij {L F ai } = L T i (1. 26) DP ij, L T d 3 i. i,, i. 3, i L T i. : (1119), (1124), (1126) (1127) : (1123), : L T d 3 i = max ( bf) DP ij {L F bf } L T i (1. 27) L T 3 j = max {L F xy } = max{l T t 3 i,l T d 3 i } = L T i (1. 28) ( xy) P ij 7 ( ij),, L T i L T 3 i, L T i = L T 3 i,. 41312 ( ij), 2 i, ( ij) i, 2 ( af ), ( bf ), ( ce) ( de), i,. i. ( af) L F af = L T f L T 3 i. 4, i L T i. : (1123), : L T i L T f = L F af = L T 3 i (1. 29) 8 ( ij),, L T i
112 2008 6 L T 3 i, L T i L T 3 i,. 7 8, i,l T i = L T 3 i, ; i, L T i L T 3 i,,,.,,. 5,,., ;,.,.. 511 1 :,., ;,.. 512 2 :, ( ),. 51211,., TFF j, ( ij) ( ), : FF 3 ij = FF ij + TFF j (1. 30) FF 3 ij ( ij) ; FF ij ( ij) ; TFF j j, : S 3 j. TFF j = min { FF 3 jk } j ( jk) S 3 j 0 j ( ) (1131) j, ( jk), FF jk 51212,,., TSS i, ( ij) ( ), : SS 3 ij = SS ij + TSS i (1. 32) SS 3 ij ( ij) ; SS ij ( ij) ; TSS i i, : P 3 i. TSS i = min { SS 3 hi } i ( hi) P 3 i 0 i ( ) (1133) i, ( hi), SS hi
6 113 6 3, 1. 2,., B, 0, 2 ; F, 0, 3.. 3 1 A B C D E F G H I 10 6 8 3 10 4 7 6 8 A A,B B,C C D,E E,F,G D,E E,F F,G H H,I I I 2 ES EF LS L F TF FF SS TF FF SS A 0 10 0 10 0 0 0 0 0 0 B 0 6 4 10 4 2 4 4 0 4 C 0 8 5 13 5 0 5 5 0 5 D 10 13 19 22 9 7 9 9 7 9 E 10 20 10 20 0 0 0 0 0 0 F 8 12 16 20 8 8 3 8 8 0 G 8 15 13 20 5 5 0 5 5 0 H 20 26 22 28 2 2 0 2 2 0 I 20 28 20 28 0 0 0 0 0 0 1,. 2, : : :, 7 4. : 7. ( ) : 4. 1) 4. FF 45 = E 5 - E 4 - d 45 = 10-6 - 0 = 4 ; FF 46 = E 6 - E 4 - d 46 = 8-6 - 0 = 2 2) 4. 5 6, TFF 5 = 0 ; TFF 6 = 0, : FF 3 45 = FF 45 + TFF 5 = 4 + 0 = 4 ; FF 3 46 = FF 46 + TFF 6 = 2 + 0 = 2 3) 4, : TFF 4 = 2 ; 4) 4 : FF 3 14 = FF 14 + TFF 4 = 0 + 2 = 2. : :, 5 6. : 5. ( )
114 2008 6 : 6. 1) 6 SS 46 = L T 6 - L T 4 - d 46 = 16-10 - 0 = 6 ; SS 36 = 16-13 - 0 = 3. 2) 6 3 4, TSS 3 = 0 ; TSS 4 = 0, : SS 3 46 = SS 46 + TSS 4 = 6 + 0 = 6 ; SS 3 36 = SS 36 + TSS 4 = 3 + 0 = 3. 3) 6, : TSS 6 = 3. 4) 6 : SS 3 69 = SS 69 + TSS 6 = 0 + 3 = 3. 7 NP2Hard,,,,,.,. : ( ),,, ; ;,,,.,,,. : [ 1 ]. [M]. :,1997. Qi J X. New Theory on Network Optimization and Technical Economic Decisin[M]. Beijing :The Science Press, 1997. [ 2 ] Kelly J E,Walker M R. Critical path planning and scheduling[j ]. Proc. Eastern Joint Comp Conf, 1959, 16 : 160-172. [ 3 ] Elmaghraby S E E. Activity Networks2Project Planning and Control by Network Models[M]. John Wiley & Sons Inc, New York, 1977. [ 4 ]. [M]. :,2006. Zhou J G. Engineering Project Management[M]. Beijing : China Electric Power Press, 2006. [ 5 ] Corneil D G, Gotlieb C C,Lee Y M. Minimal Event2Node Network of Project Experimental Investigation[ C]ΠΠCommunications of the ACM 1973 : 296-298. [ 6 ] Michael D J. Kamburowski and M. Stallman. On minimum dummy arc problem[j ]. RAIRO2Recherche Operationelle2operations Research, 1993, 27(2) : 153-168. [ 7 ] Syslo M M. Optimal constructions of event2node networks[j ]. RAIRO, 1981, 15(15) :241-260. [ 8 ] Krishnamoorty M S, Deo N. Complexity of the minimum2dummy2activities problem in a PERT network[j ]. Networks, 1979, 9 (9) : 189-194. [ 9 ],. [J ].,1986,6(1) :4-12. Huang P X, Cheng G P. The drawing principle of the optimal arrow diagram[j ]. Systems Engineering - Theory & Practice, 1986, 6(1) :4-12. [10 ]. [J ].,1998,18(1) :78-80. Li S C. The correct use of dummy activity in the optimal arrow diagram[j ]. Systems Engineering - Theory & Practice, 1998, 18 (1) :78-80. [11 ]. [J ].,1995,10(1) :71-80. He J S. A theorem of determining minimum dummy works in network diagram[j ]. Journal of Systems Engineering, 1995, 10(1) : 71-80. [12 ],,. [J ].,1998,18(1) :35-39. Jin Q,Qi J X,Liu H Y. The practical method of drawing a dummy activity[j ]. Systems Engineering - Theory & Practice, 1998, 18 (1) : 35-39. [13 ]. [M]. :,2005. Bai S J. Modern Project Management[M]. Beijing : China Machine Press, 2005.