General Certificate of Education



Σχετικά έγγραφα
GCE Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables

GCE Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables

PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Το άτομο του Υδρογόνου

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

(b) (c) (d) When, where

Exam Statistics 6 th September 2017 Solution

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ ΕΤΟΣ ΙΔΡΥΣΗΣ 1884

ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ Φ , ,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,800 Φ 250 1,800 Υ: 1.75 B:0.59 Π: 0.

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΤΜΗΜΑ ΔΙΑΚΟΠΗΣ ΕΡΓΑΣΙΩΝ ΤΗΣ ΒΟΥΛΗΣ ΘΕΡΟΣ 2014 ΣΥΝΕΔΡΙΑΣΗ ΛΒ Πέµπτη 4 Σεπτεµβρίου 2014

ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Αρχιτεκτόνων Μηχανικών Κρήτης

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Η γεωργία στην ΕΕ απαντώντας στην πρόκληση των κλιματικών αλλαγών

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

ΦΥΛΛΑΔΙΟ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ Ο ρ ι σ μ ό ς

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ ΕΤΟΣ ΙΔΡΥΣΗΣ 1884

ΣΥΝΑΡΤΗΣΕΙΣ. 1. Γενικά. 2. Πεδία Ορισµού

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ

ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π... ΑΘΗΝΑ ΕΤΟΣ Ι ΡΥΣΗΣ 1884

ΑΓΩΝΑΣ ΓΕΩΓΡΑΦΙΚΟΥ ΔΙΑΜΕΡΙΣΜΑΤΟΣ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΛΕΙΣΤΟΥ ΧΩΡΟΥ 18μ Α/Γ/Ε/Ν/Π/Κ ΒΟΗΘΗΤΙΚΟ ΓΥΜΝΑΣΤΗΡΙΟ "Δ. ΤΟΦΑΛΟΣ" 21 ΔΕΚΕΜΒΡΙΟΥ 2008 ΠΑΠΑΔΟΠΟΥΛΟΣ ΜΑΡΙΟΣ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ο. Τετάρτη 8 Ιουλίου 2015

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

IV. Π Ι Ν Α Κ Ε Σ. 1. Πίνακες. Κάθε διανυσματικός χώρος U(F), με dimu = n, έχει και έναν χώρο συντεταγμένων

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π... ΑΘΗΝΑ ΕΤΟΣ Ι ΡΥΣΗΣ 1884

Αξιολόγηση των Επιδράσεων του Σχεδίου Τοποθέτησης Άνεργων Νέων Αποφοίτων Γυμνασίων, Λυκείων, Τεχνικών Σχολών και Μεταλυκειακής Εκπαίδευσης μέχρι και

ΑΓΟΡΕΣ ΛΑΪΚΕΣ. Συζήτηση επίκαιρης ερώτησης προς τον Υπουργό Ανάπτυξης σχετικά µε τη λειτουργία των λαϊκών αγορών. τόµ. Β, σ

Αναλυτικός υπολογισµός των πεδίων τάσεων και παραµορφώσεων γύρω από τυπικές πεταλοειδείς διατοµές ΝΑΤΜ

1. DIATMHMATIKA/2012:1. DIATMHMATIKA 8/7/12 2:33 PM Page 11 ΙΑΤΜΗΜΑΤΙΚΑ ΣΕΜΙΝΑΡΙΑ

ΠΕΛΟΠΟΝΝΗΣΟΣ ΚΡΗΤΗ AMAΛΙΑ Α ΑΡΓΟΣ ΤΡΙΠΟΛΙΤΣΙΩΤΗΣ Ι. ΑΝΑΣΤ. 1 Ο ΧΛΜ ΑΡΓΟΥΣ ΝΑΥΠΛΙΟΥ ΚΥΠΑΡΙΣΣΙΑ ΜΕΣΣΗΝΗ

Ε' ΕΣΑΚΕ, ΠΡΟΕΤΟΙΜΑΣΙΑΣ, Ο.Α.ΜΑΓΝΗΣΙΑΣ,

ΠΡΟΣΛΗΨΗ ΕΠΟΧΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ ΠΙΝΑΚΑΣ ΠΡΟΣΟΝΤΩΝ ΚΑΙ ΒΑΘΜΟΛΟΓΙΑΣ ΥΠΟΨΗΦΙΩΝ YΕ ΕΙ ΙΚΟΤΗΤΑ ΥΕ ΕΡΓΑΤΩΝ ΚΑΘΑΡΙΟΤΗΤΑΣ (1) (2) (3) (4) (6) (7)

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕ ΡΙΑΣΗ Ν. Πέµπτη 28 Ιανουαρίου 2010

Μ Ε Λ Ε Τ Η. Προμήθεια υλικών και φυτοφαρμάκων για τη συντήρηση υφιστάμενων και δημιουργία νέων χώρων πρασίνου Δ.Ε. Γουβών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΕΥΒΟΙΑΣ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΜΟΝΑΔΩΝ Α ΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΡΓΑΣΙΑ:

Ξ Ο Ο Α Α , , Ο Ο Α Α 1.621,20 ΠΑΝΑΓΙΩΤΑ ΑΘΑΝΑΣΙΟΣ 3

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο

Ο13. Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1

ΔΕΛΤΙΟ ΤΥΠΟΥ ΠΑΙΔΙΚΟ ΠΟΔΟΣΦΑΙΡΟ ΔΟΠΑΦΜΑΗ

Σχηματισμός Υποτακτικής Παρακειμένου Ενεργητικής Φωνής. Ο Παρακείμενος σχηματίζει την Υποτακτική έγκλιση με δύο τρόπους:

Inverse trigonometric functions & General Solution of Trigonometric Equations

Μ Ε Λ Ε Τ Η. Προμήθεια υλικών και φυτοφαρμάκων για τη συντήρηση υφιστάμενων και δημιουργία νέων χώρων πρασίνου Δ.Ε. Χερσονήσου

Α Π Ο Σ Π Α Σ Μ Α από το πρακτικό της υπ' αριθµ. 32ης/2015 Συνεδρίασης του ηµοτικού Συµβουλίου

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΥΜΕΤΑΒΛΗΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΝΑΥΤΙΛΙΑΣ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ Α Π Ο Φ Α Σ Η

Θέμα Υγιεινή & Ασφάλεια στην Εργασία - φ Α^ρισ/

ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ Εκλογικών

Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩN ΤΜΗΜΑ ΙΑΚΟΠΗΣ ΕΡΓΑΣΙΩΝ ΤΗΣ ΒΟΥΛΗΣ ΘΕΡΟΥΣ 2009 ΣΥΝΕ ΡΙΑΣΗ ΣΤ Τρίτη 23 Ιουνίου 2009

ΝΕΟ ΛΥΚΕΙΟ 2014 ΕΦΑΡΜΟΓΗ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Α ΤΑΞΗΣ ΛΥΚΕΙΟΥ (ΣΧΟΛΙΚΟ ΈΤΟΣ: )

Το όργανο είναι σχεδιασμένο με γνώμονα την πρακτικότητα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Πειραιάς 16/05/2013 ΩΡΕΣ ΑΙΘΟΥΣΕΣ ΕΞ.-ΤΥΠΟΣ ΜΑΘΗΜΑ ΒΑΡΔΙΑ ΚΩΔΙΚΟΣ ΕΞΕΤΑΣΤΕΣ. Δευτέρα, 10/06/2013

Καθηγητής τεχνικών µαθηµάτων Παιδαγωγικής Ακαδηµίας Αθηνών 1054 Φαµηλιάρης Παντελής - Έγγραφο Βιογραφικά στοιχεία. (σ. 1)

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α

Η ΚΟΙΝΩΝΙΚΗ ΔΙΑΣΤΑΣΗ ΤΟΥ ΔΗΜΟΣΙΟΥ ΧΩΡΟΥ: ΜΕΛΕΤΩΝΤΑΣ ΤΙΣ ΠΛΑΤΕΙΕΣ ΤΟΥ ΜΕΤΑΞΟΥΡΓΕΙΟΥ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ρ. Τετάρτη 7 Μαρτίου 2012

Σ Υ Ν Ο Λ Ι Κ Ο Σ Π Ρ Ο Ϋ Π Ο Λ Ο Γ Ι Σ Μ Ο Σ Μ Ε Λ Ε Τ Η Σ

ΕΚΛΟΓΙΚΑ ΤΜΗΜΑΤΑ ΚΑΙ ΚΑΤΑΣΤΗΜΑΤΑ ΨΗΦΟΦΟΡΙΑΣ ΒΟΥΛΕΥΤΙΚΩΝ ΕΚΛΟΓΩΝ ΤΗΣ 6 ης ΜΑΪΟΥ 2012

Ο ΜΑΚΡΟΧΡΟΝΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΠΡΟΠΟΝΗΤΙΚΗΣ ΕΠΙΒΑΡΥΝΣΗΣ (αερόβια. προπόνηση) ΣΤΟΥΣ ΔΡΟΜΟΥΣ ΗΜΙΑΝΤΟΧΗΣ ΑΝΤΟΧΗΣ

τα βιβλία των επιτυχιών

17 ο Πανελλήνιο Συνέδριο Λιπιδιολογίας, Αθηροσκλήρωσης και Αγγειακής Νόσου Οκτωβρίου 2014 Ξενοδοχείο DIVANI CARAVEL ΠΡΟΓΡΑΜΜΑ

ΛΥΚΕΙΟ ΣΟΛΕΑΣ Σχολική χρονιά

ΕΥΡΩΠΑΙΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΙΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ

^, ΝΟΙΚΙΑ. ,υ, ^ήματι,^ I iCS0,1,s.' σή μας ή

Πειραιάς:17/10/2012

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΙΣΤ. Πέµπτη 31 Ιανουαρίου 2013

ΧΡΟΝΙΚΑ ΙΣΤΟ Ρ ΙΑ Σ & Π Ο Λ ΙΤ ΙΣ Μ Ο Υ Ν Ο Μ Ο Υ Η Μ Α Θ Ι Α Σ ^

θ) Ο αριθμός των εγκύρων ψηφοδελτίων που έλαβε κάθε ένας συνδυασμός ή μεμονωμένος υποψήφιος ανέρχεται:

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

FORMULAE SHEET for STATISTICS II

ΠΡΟΧΕΙΡΟΣ ΔΙΑΓΩΝΙΣΜΟΣ

Άρρενες Ομάδες ηλικιών

Nεανικά Ἀγκυροβολήματα

ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΗΜΟΣ ΝΕΑΣ ΙΩΝΙΑΣ ΓΡΑΦΕΙΟ ΗΜ. ΣΥΜΒΟΥΛΙΟΥ ΑΠΟΣΠΑΣΜΑ ΑΠΟ ΤΑ ΠΡΑΚΤΙΚΑ ΤΗΣ ΣΥΝΕ ΡΙΑΣΗΣ ΤΟΥ ΗΜΟΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ Π Α Ρ Ο Ν Τ Ε Σ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΜΘ. Τρίτη 7 Ιουνίου 2011

hm3 (1981, 1986,1996).

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ]Β. Πέµπτη 20 Φεβρουαρίου 2014

ΕΘΝΙΚΗ ΣΥΝΟΜΟΣΠΟΝΔΙΑ ΕΛΛΗΝΙΚΟΥ ΕΜΠΟΡΙΟΥ ΜΗΤΡΟΠΟΛΕΩΣ 42, ΑΘΗΝΑ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΜ. Πέµπτη 7 Μαρτίου 2013

Σταυροαναστάσιμα. Σειρά: «Χριστολογικά» ἀριθμ. 37

3 ΠΡΟΟΔΟΙ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

Προβολές και Μετασχηματισμοί Παρατήρησης

Προς: Πίνακες Αποδεκτών Ταχ. Κώδικας: Α, Β, Γ & Τηλέφωνο: / 266 Fax: Πληροφορίες: Μαρία Χαρβαλιά

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ Σ.Δ.Ο. ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ

Η ΠΑΓΚΟΣΜΙΑ ΗΘΙΚΗ ΤΟΥ ΕΣΩΤΕΡΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ

ΓΓ: XΜ() ΓνfJ1 I κ ί J ε: κ 1ΛX. >:χί)/λΐτ: /\rf)tkhx:ifx: I I > III ιχ γιις;: λ /\μ υ ρ λ κ ι ι ε ι ' χ:ί.2 ρ ι ' χ ο ε.

εξαρτάται από το θ και για αυτό γράφουμε την σ.π.π. στην εξής μορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

Ε Π Ι Λ Α Χ Ο Ν Τ Ε Σ

Κρυπτογραφία ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΩΣ ΣΗΜΕΡΑ ΝΙΚΟΣ ΚΥΡΛΟΓΛΟΥ ( NIKOKY@GMAIL.COM)

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ε. Παρασκευή 10 Οκτωβρίου 2014

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ

ΠΙΝΑΚΑΣ ΑΠΟΡΡΙΠΤΕΩΝ ΚΑΤΗΓΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΑΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΝΙΑΙΟΣ

1998 ἔτος 61 ο. ΚΟΝΤΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ, «Σύγχρονες κοσμολογικὲς θεωρίες», Μέρος Β,

Transcript:

Fomule ttstcl Tbles fo GCE Mthemtcs GCE ttstcs Fst Issue eptembe 004 Fo the ew specfctos fo fst techg fom eptembe 004 GCE Mthemtcs ADVANCED UBIDIARY MATHEMATIC (56) ADVANCED UBIDIARY PURE MATHEMATIC (566) ADVANCED UBIDIARY FURTHER MATHEMATIC (57) ADVANCED MATHEMATIC (66) ADVANCED PURE MATHEMATIC (666) ADVANCED FURTHER MATHEMATIC (67) GCE ttstcs ADVANCED UBIDIARY TATITIC (58) ADVANCED TATITIC (68) Geel Cetfcte of Eucto 9MPM

Futhe copes of ths booklet e vlble fom: AQA Logstcs Cete (Gulfo), Deco Fel Offce, tg Hll House, Gulfo, ue, GU 7XJ Telephoe: 0870 40 06 F: 048 4589 o owlo fom the AQA webste www.q.og.uk Copght 00 AQA ts lcesos. All ghts eseve. COPYRIGHT AQA ets the copght o ll ts publctos, clug the specme uts mk schemes/ teches gues. Howeve, egstee cetes of AQA e pemtte to cop mtel fom ths booklet fo the ow tel use, wth the followg mpott ecepto: AQA cot gve pemsso to cetes to photocop mtel tht s ckowlege to th pt eve fo tel use wth the cete. et publshe b the Assessmet Qulfctos Allce. The Assessmet Qulfctos Allce (AQA) s comp lmte b gutee egstee Egl Wles 6447 egstee cht umbe 074. Regstee ess AQA, Devs teet, Mcheste, M5 6EX.

Cotets Pge 4 Pue Mthemtcs 9 Mechcs 0 Pobblt ttstcs ttstcl Tbles 5 Tble Cumultve Boml Dstbuto Fucto Tble Cumultve Posso Dstbuto Fucto 4 Tble Noml Dstbuto Fucto 5 Tble 4 Pecetge Pots of the Noml Dstbuto 6 Tble 5 Pecetge Pots of the tuet s t-dstbuto 7 Tble 6 Pecetge Pots of the χ Dstbuto 8 Tble 7 Pecetge Pots of the F-Dstbuto 0 Tble 8 Ctcl Vlues of the Pouct Momet Coelto Coeffcet Tble 9 Ctcl Vlues of pem s Rk Coelto Coeffcet Tble 0 Ctcl Vlues of the Wlcoo ge Rk ttstc Tble Ctcl Vlues of the M-Whte ttstc 4 Tble Cotol Chts fo Vblt 5 Tble Rom Numbes klj

klm 4 PURE MATHEMATIC Mesuto ufce e of sphee π 4 Ae of cuve sufce of coe heght slt π Athmetc sees [ ] l u ) ( ) ( ) ( Geometc sees fo ) ( < u ummtos ( ) ) )( ( 6 4 ( ) Tgoomet the Cose ule A bc c b cos Boml ees b b b b b ( ) ( ) whee )!!(! C <, (. ) ( ) (. ) ( ) ( ) Logthms epoetls l e Comple umbes ) s (cos )} s (cos { θ θ θ θ θ θ θ s cos e The oots of z e gve b k z π e, fo,,,, 0 k N R

Mclu s sees f( ) f(0) f (0) ( ) f (0) f (0)!! e ep( )! l( )! fo ll ( ) ( < ) 5 s ( )! 5! ( )! fo ll 4 cos ( )! 4! ()! fo ll Hpebolc fuctos cosh sh sh sh cosh cosh cosh sh cosh l{ } ( sh l{ } th l ( < ) ) Cocs Ellpse Pbol Hpebol Rectgul hpebol t fom b 4 c b Asmptotes oe oe ± 0, 0 b Tgoometc ettes s( A ± B) s Acos B ± cos As B cos( A ± B) cos Acos B s As B ( A ± B ( )π) t A ± t B t( A ± B) t At B k A B A B s A s B s cos A B A B s A s B cos s A B A B cos A cos B cos cos A B A B cos A cos B s s klj 5

Vectos The esolve pt of the ecto of b s.b b The posto vecto of the pot vg AB the to λ : μ s μ λb λ μ Vecto pouct: b b sθ ˆ j k b b b b b b b b b If A s the pot wth posto vecto j k the ecto vecto b s gve b b b b j bk, the the stght le though A wth ecto vecto b hs ctes equto z λ b b b The ple though A wth oml vecto z whee. j k hs ctes equto The ple though o-colle pots A, B C hs vecto equto λ ( b ) μ( c ) ( λ μ) λb μc The ple though the pot wth posto vecto pllel to b c hs equto s b tc Mt tsfomtos cosθ sθ Atclockwse otto though θ bout O: sθ cosθ cos θ s θ Reflecto the le (tθ ) : s θ cos θ The mtces fo ottos ( thee mesos) though gle θ bout oe of the es e 0 0 cosθ 0 sθ 0 sθ fo the -s cosθ cosθ 0 sθ 0 0 fo the -s sθ 0 cosθ cosθ sθ 0 sθ cosθ 0 0 0 fo the z-s 6 klm

Dffeetto f( ) f ( ) s cos t t k k sec k cosec cosec cot sec sec t cot cosec sh cosh cosh sh th sech sh cosh th f ( ) g( ) f ( ) g( ) f( ) g ( ) (g( )) Itegto ( costt; > 0 whee elevt) f( ) f( ) t l sec cot l s cosec l cosec cot l t( ) sec sec t l t( π) sec k k k t sh cosh cosh sh th l cosh l 4 INTEGRATION FORMULAE CONTINUE OVER THE PAGE klj 7

klm 8 ) ( s < t ) ( l o cosh } { > } { l o sh ) ( th l < l u v uv v u Ae of secto θ A (pol cootes) Ac legth s (ctes cootes) t t s t (pmetc fom) ufce e of evoluto π (ctes cootes) t t t π (pmetc fom) Numecl tegto The tpezum ule: b h 0 )} ( ) {(, whee b h The m-ote ule: b h ) (, whee b h mpso s ule: ( ) ( ) ( ) { } b h 4 0...... 4 whee b h s eve

Numecl soluto of ffeetl equtos Fo f ( ) smll h, ecuece eltos e: Eule s metho: hf ( ); Fo f(, ) : h Eule s metho: h f(, ) Impove Eule metho: k k ), whee k h f(, ), k h f( h, ) Numecl soluto of equtos ( k The Newto-Rphso teto fo solvg f( ) 0 : f( ) f ( ) MECHANIC Moto ccle Tsvese veloct: v θ Tsvese cceleto: v θ Rl cceleto: θ v Cetes of mss Fo ufom boes Tgul lm: log me fom vete ol hemsphee, us : 8 fom cete Hemsphecl shell, us : fom cete Ccul c, us, gle t cete α : ecto of ccle, us, gle t cete α : sα fom cete α sα fom cete α ol coe o pm of heght h: 4 h bove the bse o the le fom cete of bse to vete Cocl shell of heght h: h bove the bse o the le fom cete of bse to vete Momets of et Fo ufom boes of mss m Th o, legth l, bout pepecul s though cete: ml Rectgul lm bout s ple bsectg eges of legth l: Th o, legth l, bout pepecul s though e: 4 ml Rectgul lm bout ege pepecul to eges of legth l: Rectgul lm, ses b, bout pepecul s though cete: m ( b ) ml 4 ml MOMENT OF INERTIA FORMULAE CONTINUE OVER THE PAGE klj 9

Hoop o clcl shell of us bout s: Hoop of us bout mete: m Dsc o sol cle of us bout s: Dsc of us bout mete: 4 m ol sphee, us, bout mete: 5 m phecl shell of us bout mete: m m m Pllel es theoem: I A I G m(ag) Pepecul es theoem: I I I (fo lm the - ple) Geel moto two mesos Rl veloct Tsvese veloct θ Rl cceleto θ Tsvese cceleto θ θ ( θ ) t Momets s vectos z The momet bout O of F ctg though the pot wth posto vecto s Uvesl lw of gvtto Gmm Foce F PROBABILITY TATITIC Pobblt P( A B) P( A) P( B) P( A B) P( A B) P( A) P( B A) P ( A B) j P ( A ) P( B A ) P Epectto lgeb j ( A ) P( B A ) j Covce: Cov( X, Y ) E(( X μ )( Y μ )) E( XY) μ μ V( X ± by ) V( X ) b V( Y ) ± b Cov( X, Y ) X Y X Y Pouct momet coelto coeffcet: Cov( X, Y ) ρ σ σ X Y Fo epeet om vbles X Y E( XY ) E( X ) E( Y ) V( X ± by ) V( X ) b V( Y ) 0 klm

Dscete stbutos Fo scete om vble X tkg vlues wth pobbltes p Epectto (me): E( X ) μ p Vce: V( X ) σ ( μ) p Fo fucto g(x ) : E(g( X )) g( ) p t scete stbutos: p μ E( X ) μ Dstbuto of X P( X ) Me Vce Boml B(, p) Posso ) Po(λ Geometc Geo( p ) o,, p ( p) p p( p) λ λ e λ λ! p ( p) p p p Cotuous stbutos Fo cotuous om vble X hvg pobblt est fucto f() Epectto (me): E( X ) μ f( ) Vce: V( X ) σ ( μ) f( ) f( ) Fo fucto g(x ) : E(g( X )) g( ) f( ) μ E( X ) μ Cumultve stbuto fucto: F( ) P( X ) f( t) t t cotuous stbutos: Dstbuto of X Ufom (Rectgul) o [, b] Noml N(, σ ) Epoetl Pobblt est fucto b μ σ ( ) μ e σ π Me ( b ) λ e λ λ Vce ( b ) μ σ λ klj

mplg stbutos Fo om smple X, X,, X of epeet obsevtos fom stbuto hvg me μ vce σ X s ubse estmto of μ, wth V( X ) σ s ubse estmto of σ, whee ( X X ) Fo om smple of obsevtos fom N( μ, σ ) X μ ~ N(0,) σ ( ) σ ~ χ X μ ~ t (lso vl mtche-ps stutos) If X s the obseve umbe of successes epeet Beoull tls ech of whch the pobblt of success s p, Y X, the E( Y ) p V( Y ) p( p) Fo om smple of obsevtos fom N( μ, σ ), epeetl, om smple of obsevtos fom N( μ, σ ) ( X Y ) ( μ μ ) ~ N(0,) σ σ / σ / σ ~ F, If σ σ σ (ukow), ( X Y ) ( μ μ ) the ~ t p whee p ( ) ( ) klm

Coelto egesso Fo set of ps of vlues, ) ( ( ) ) ( ( )( ) ( ) ( ) ( )( ) The pouct momet coelto coeffcet s ( )( ) { ( ) }{ ( ) } ( )( ) ( ) ( ) pem s k coelto coeffcet s the pouct momet coelto coeffcet betwee ks 6 Whe thee e o te ks t m be clculte usg s ( ) The egesso coeffcet of o s b ( )( ( ) ) Lest sques egesso le of o s b, whee b Alss of vce Oe-fcto moel: j μ α ε, whee ~ N(0, σ ) j ε j T Totl sum of sques T j j Betwee goups sum of sques B T T Two-fcto moel (wth m ows colums): μ α β ε, whee ~ N(0, σ ) Totl sum of sques, Betwee ows sum of sques, T j Betwee colums sum of sques, R j T m R C j T m C j T j m m j j ε j klj

Dstbuto-fee (o-pmetc) tests ( O E Gooess-of-ft tests cotgec tbles: ) E s ppomtel stbute s χ Wlcoo sge k test T s the sum of the ks of obsevtos wth the sme sg M-Whte test ( ) U T whee T s the sum of the ks of the smple of sze Kuskl-Wlls test T H ( ) ( ) N N N whee T s the sum of the ks of smple of sze H s ppomtel stbute s χ wth k egees of feeom whee k s the umbe of smples N 4 klm

TABLE CUMULATIVE BINOMIAL DITRIBUTION FUNCTION The tbulte vlue s P(X ), whee X hs boml stbuto wth pmetes p. p 0.0 0.0 0.0 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5 0.0 0.5 0.0 0.5 0.40 0.45 0.50 p 0 0.980 0.9604 0.9409 0.96 0.905 0.886 0.8649 0.8464 0.88 0.800 0.75 0.6400 0.565 0.4900 0.45 0.600 0.05 0.500 0 0.9999 0.9996 0.999 0.9984 0.9975 0.9964 0.995 0.996 0.999 0.9900 0.9775 0.9600 0.975 0.900 0.8775 0.8400 0.7975 0.7500.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0 0.970 0.94 0.97 0.8847 0.8574 0.806 0.8044 0.7787 0.756 0.790 0.64 0.50 0.49 0.40 0.746 0.60 0.664 0.50 0 0.9997 0.9988 0.9974 0.995 0.998 0.9896 0.9860 0.988 0.977 0.970 0.99 0.8960 0.848 0.7840 0.78 0.6480 0.5748 0.5000.0000.0000.0000 0.9999 0.9999 0.9998 0.9997 0.9995 0.999 0.9990 0.9966 0.990 0.9844 0.970 0.957 0.960 0.9089 0.8750.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 4 0 0.9606 0.94 0.885 0.849 0.845 0.7807 0.748 0.764 0.6857 0.656 0.50 0.4096 0.64 0.40 0.785 0.96 0.095 0.065 0 0.9994 0.9977 0.9948 0.9909 0.9860 0.980 0.97 0.9656 0.9570 0.9477 0.8905 0.89 0.78 0.657 0.560 0.475 0.90 0.5.0000.0000 0.9999 0.9998 0.9995 0.999 0.9987 0.998 0.997 0.996 0.9880 0.978 0.949 0.96 0.875 0.808 0.7585 0.6875.0000.0000.0000.0000.0000.0000 0.9999 0.9999 0.9995 0.9984 0.996 0.999 0.9850 0.9744 0.9590 0.975 4.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 4 5 0 0.950 0.909 0.8587 0.854 0.778 0.79 0.6957 0.659 0.640 0.5905 0.447 0.77 0.7 0.68 0.60 0.0778 0.050 0.0 0 0.9990 0.996 0.995 0.985 0.9774 0.968 0.9575 0.9456 0.96 0.985 0.85 0.77 0.68 0.58 0.484 0.70 0.56 0.875.0000 0.9999 0.9997 0.9994 0.9988 0.9980 0.9969 0.9955 0.997 0.994 0.974 0.94 0.8965 0.869 0.7648 0.686 0.59 0.5000.0000.0000.0000.0000 0.9999 0.9999 0.9998 0.9997 0.9995 0.9978 0.99 0.9844 0.969 0.9460 0.90 0.8688 0.85 4.0000.0000.0000.0000.0000 0.9999 0.9997 0.9990 0.9976 0.9947 0.9898 0.985 0.9688 4 5.0000.0000.0000.0000.0000.0000.0000.0000 5 6 0 0.945 0.8858 0.80 0.788 0.75 0.6899 0.6470 0.6064 0.5679 0.54 0.77 0.6 0.780 0.76 0.0754 0.0467 0.077 0.056 0 0.9985 0.994 0.9875 0.9784 0.967 0.954 0.99 0.97 0.9048 0.8857 0.7765 0.6554 0.59 0.40 0.9 0. 0.66 0.094.0000 0.9998 0.9995 0.9988 0.9978 0.996 0.994 0.995 0.988 0.984 0.957 0.90 0.806 0.744 0.647 0.544 0.445 0.48.0000.0000.0000 0.9999 0.9998 0.9997 0.9995 0.999 0.9987 0.994 0.980 0.964 0.995 0.886 0.808 0.7447 0.656 4.0000.0000.0000.0000.0000 0.9999 0.9996 0.9984 0.9954 0.989 0.9777 0.9590 0.908 0.8906 4 5.0000.0000 0.9999 0.9998 0.999 0.998 0.9959 0.997 0.9844 5 6.0000.0000.0000.0000.0000.0000.0000 6 7 0 0.9 0.868 0.8080 0.754 0.698 0.6485 0.607 0.5578 0.568 0.478 0.06 0.097 0.5 0.084 0.0490 0.080 0.05 0.0078 0 0.9980 0.99 0.989 0.9706 0.9556 0.98 0.987 0.8974 0.8745 0.850 0.766 0.5767 0.4449 0.94 0.8 0.586 0.04 0.065.0000 0.9997 0.999 0.9980 0.996 0.997 0.990 0.9860 0.9807 0.974 0.96 0.850 0.7564 0.647 0.5 0.499 0.64 0.66.0000.0000 0.9999 0.9998 0.9996 0.999 0.9988 0.998 0.997 0.9879 0.9667 0.994 0.8740 0.800 0.70 0.608 0.5000 4.0000.0000.0000.0000 0.9999 0.9999 0.9998 0.9988 0.995 0.987 0.97 0.9444 0.907 0.847 0.774 4 5.0000.0000.0000 0.9999 0.9996 0.9987 0.996 0.990 0.98 0.964 0.975 5 6.0000.0000 0.9999 0.9998 0.9994 0.9984 0.996 0.99 6 7.0000.0000.0000.0000.0000.0000 7 8 0 0.97 0.8508 0.787 0.74 0.664 0.6096 0.5596 0.5 0.470 0.405 0.75 0.678 0.00 0.0576 0.09 0.068 0.0084 0.009 0 0.997 0.9897 0.9777 0.969 0.948 0.908 0.8965 0.870 0.84 0.8 0.657 0.50 0.67 0.55 0.69 0.064 0.06 0.05 0.9999 0.9996 0.9987 0.9969 0.994 0.9904 0.985 0.9789 0.97 0.969 0.8948 0.7969 0.6785 0.558 0.478 0.54 0.0 0.445.0000.0000 0.9999 0.9998 0.9996 0.999 0.9987 0.9978 0.9966 0.9950 0.9786 0.947 0.886 0.8059 0.7064 0.594 0.4770 0.6 4.0000.0000.0000.0000 0.9999 0.9999 0.9997 0.9996 0.997 0.9896 0.977 0.940 0.899 0.86 0.796 0.667 4 5.0000.0000.0000.0000 0.9998 0.9988 0.9958 0.9887 0.9747 0.950 0.95 0.8555 5 6.0000 0.9999 0.9996 0.9987 0.9964 0.995 0.989 0.9648 6 7.0000.0000 0.9999 0.9998 0.999 0.998 0.996 7 8.0000.0000.0000.0000.0000 8 klj 5

p 0.0 0.0 0.0 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5 0.0 0.5 0.0 0.5 0.40 0.45 0.50 p 9 0 0.95 0.87 0.760 0.695 0.60 0.570 0.504 0.47 0.479 0.874 0.6 0.4 0.075 0.0404 0.007 0.00 0.0046 0.000 0 0.9966 0.9869 0.978 0.95 0.988 0.90 0.879 0.847 0.8088 0.7748 0.5995 0.46 0.00 0.960 0. 0.0705 0.085 0.095 0.9999 0.9994 0.9980 0.9955 0.996 0.986 0.979 0.970 0.9595 0.9470 0.859 0.78 0.6007 0.468 0.7 0.8 0.495 0.0898.0000.0000 0.9999 0.9997 0.9994 0.9987 0.9977 0.996 0.994 0.997 0.966 0.944 0.84 0.797 0.6089 0.486 0.64 0.59 4.0000.0000.0000 0.9999 0.9998 0.9997 0.9995 0.999 0.9944 0.9804 0.95 0.90 0.88 0.74 0.64 0.5000 4 5.0000.0000.0000.0000 0.9999 0.9994 0.9969 0.9900 0.9747 0.9464 0.9006 0.84 0.746 5 6.0000.0000 0.9997 0.9987 0.9957 0.9888 0.9750 0.950 0.90 6 7.0000 0.9999 0.9996 0.9986 0.996 0.9909 0.9805 7 8.0000.0000 0.9999 0.9997 0.999 0.9980 8 9.0000.0000.0000.0000 9 0 0 0.9044 0.87 0.774 0.6648 0.5987 0.586 0.4840 0.444 0.894 0.487 0.969 0.074 0.056 0.08 0.05 0.0060 0.005 0.000 0 0.9957 0.988 0.9655 0.948 0.99 0.884 0.848 0.8 0.7746 0.76 0.544 0.758 0.440 0.49 0.0860 0.0464 0.0 0.007 0.9999 0.999 0.997 0.998 0.9885 0.98 0.977 0.9599 0.9460 0.998 0.80 0.6778 0.556 0.88 0.66 0.67 0.0996 0.0547.0000.0000 0.9999 0.9996 0.9990 0.9980 0.9964 0.994 0.99 0.987 0.9500 0.879 0.7759 0.6496 0.58 0.8 0.660 0.79 4.0000.0000 0.9999 0.9998 0.9997 0.9994 0.9990 0.9984 0.990 0.967 0.99 0.8497 0.755 0.6 0.5044 0.770 4 5.0000.0000.0000.0000 0.9999 0.9999 0.9986 0.996 0.980 0.957 0.905 0.88 0.784 0.60 5 6.0000.0000 0.9999 0.999 0.9965 0.9894 0.9740 0.945 0.8980 0.88 6 7.0000 0.9999 0.9996 0.9984 0.995 0.9877 0.976 0.945 7 8.0000.0000 0.9999 0.9995 0.998 0.9955 0.989 8 9.0000.0000 0.9999 0.9997 0.9990 9 0.0000.0000.0000 0 0 0.895 0.8007 0.75 0.68 0.5688 0.506 0.450 0.996 0.544 0.8 0.67 0.0859 0.04 0.098 0.0088 0.006 0.004 0.0005 0 0.9948 0.9805 0.9587 0.908 0.898 0.868 0.88 0.789 0.799 0.6974 0.49 0. 0.97 0.0 0.0606 0.00 0.09 0.0059 0.9998 0.9988 0.996 0.997 0.9848 0.975 0.960 0.948 0.905 0.904 0.7788 0.674 0.455 0.7 0.00 0.89 0.065 0.07.0000.0000 0.9998 0.999 0.9984 0.9970 0.9947 0.995 0.987 0.985 0.906 0.889 0.7 0.5696 0.456 0.96 0.9 0. 4.0000.0000 0.9999 0.9997 0.9995 0.9990 0.998 0.997 0.984 0.9496 0.8854 0.7897 0.668 0.58 0.97 0.744 4 5.0000.0000.0000 0.9999 0.9998 0.9997 0.997 0.988 0.9657 0.98 0.85 0.755 0.6 0.5000 5 6.0000.0000.0000 0.9997 0.9980 0.994 0.9784 0.9499 0.9006 0.86 0.756 6 7.0000 0.9998 0.9988 0.9957 0.9878 0.9707 0.990 0.8867 7 8.0000 0.9999 0.9994 0.9980 0.994 0.985 0.967 8 9.0000.0000 0.9998 0.999 0.9978 0.994 9 0.0000.0000 0.9998 0.9995 0.0000 0 0.8864 0.7847 0.698 0.67 0.5404 0.4759 0.486 0.677 0.5 0.84 0.4 0.0687 0.07 0.08 0.0057 0.00 0.0008 0.000 0 0.998 0.9769 0.954 0.99 0.886 0.8405 0.7967 0.75 0.705 0.6590 0.445 0.749 0.584 0.0850 0.044 0.096 0.008 0.00 0.9998 0.9985 0.995 0.989 0.9804 0.9684 0.95 0.948 0.94 0.889 0.758 0.558 0.907 0.58 0.5 0.084 0.04 0.09.0000 0.9999 0.9997 0.9990 0.9978 0.9957 0.995 0.9880 0.980 0.9744 0.9078 0.7946 0.6488 0.495 0.467 0.5 0.45 0.070 4.0000.0000 0.9999 0.9998 0.9996 0.999 0.9984 0.997 0.9957 0.976 0.974 0.844 0.77 0.58 0.48 0.044 0.98 4 5.0000.0000.0000 0.9999 0.9998 0.9997 0.9995 0.9954 0.9806 0.9456 0.88 0.787 0.665 0.569 0.87 5 6.0000.0000.0000 0.9999 0.999 0.996 0.9857 0.964 0.954 0.848 0.79 0.68 6 7.0000 0.9999 0.9994 0.997 0.9905 0.9745 0.947 0.888 0.806 7 8.0000 0.9999 0.9996 0.998 0.9944 0.9847 0.9644 0.970 8 9.0000.0000 0.9998 0.999 0.997 0.99 0.9807 9 0.0000 0.9999 0.9997 0.9989 0.9968 0.0000.0000 0.9999 0.9998.0000.0000 0 0.8775 0.7690 0.670 0.588 0.5 0.4474 0.89 0.8 0.95 0.54 0.09 0.0550 0.08 0.0097 0.007 0.00 0.0004 0.000 0 0.998 0.970 0.946 0.9068 0.8646 0.886 0.770 0.706 0.6707 0.6 0.98 0.6 0.67 0.067 0.096 0.06 0.0049 0.007 0.9997 0.9980 0.998 0.9865 0.9755 0.9608 0.94 0.90 0.8946 0.866 0.690 0.507 0.6 0.05 0. 0.0579 0.069 0.0.0000 0.9999 0.9995 0.9986 0.9969 0.9940 0.9897 0.987 0.9758 0.9658 0.880 0.747 0.584 0.406 0.78 0.686 0.099 0.046 4.0000.0000 0.9999 0.9997 0.999 0.9987 0.9976 0.9959 0.995 0.9658 0.9009 0.7940 0.654 0.5005 0.50 0.79 0.4 4 5.0000.0000 0.9999 0.9999 0.9997 0.9995 0.999 0.995 0.9700 0.998 0.846 0.759 0.5744 0.468 0.905 5 6.0000.0000.0000 0.9999 0.9999 0.9987 0.990 0.9757 0.976 0.8705 0.77 0.647 0.5000 6 7.0000.0000 0.9998 0.9988 0.9944 0.988 0.958 0.90 0.8 0.7095 7 8.0000 0.9998 0.9990 0.9960 0.9874 0.9679 0.90 0.8666 8 9.0000 0.9999 0.999 0.9975 0.99 0.9797 0.959 9 0.0000 0.9999 0.9997 0.9987 0.9959 0.9888 0.0000.0000 0.9999 0.9995 0.998.0000.0000 0.9999.0000 6 klm

p 0.0 0.0 0.0 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5 0.0 0.5 0.0 0.5 0.40 0.45 0.50 p 4 0 0.8687 0.756 0.658 0.5647 0.4877 0.405 0.60 0. 0.670 0.88 0.08 0.0440 0.078 0.0068 0.004 0.0008 0.000 0.000 0 0.996 0.9690 0.955 0.894 0.8470 0.796 0.746 0.6900 0.668 0.5846 0.567 0.979 0.00 0.0475 0.005 0.008 0.009 0.0009 0.9997 0.9975 0.99 0.98 0.9699 0.95 0.90 0.904 0.8745 0.846 0.6479 0.448 0.8 0.608 0.089 0.098 0.070 0.0065.0000 0.9999 0.9994 0.998 0.9958 0.990 0.9864 0.9786 0.9685 0.9559 0.855 0.698 0.5 0.55 0.05 0.4 0.06 0.087 4.0000.0000 0.9998 0.9996 0.9990 0.9980 0.9965 0.994 0.9908 0.95 0.870 0.745 0.584 0.47 0.79 0.67 0.0898 4 5.0000.0000 0.9999 0.9998 0.9996 0.999 0.9985 0.9885 0.956 0.888 0.7805 0.6405 0.4859 0.7 0.0 5 6.0000.0000.0000 0.9999 0.9998 0.9978 0.9884 0.967 0.9067 0.864 0.695 0.546 0.95 6 7.0000.0000 0.9997 0.9976 0.9897 0.9685 0.947 0.8499 0.744 0.6047 7 8.0000 0.9996 0.9978 0.997 0.9757 0.947 0.88 0.7880 8 9.0000 0.9997 0.998 0.9940 0.985 0.9574 0.90 9 0.0000 0.9998 0.9989 0.996 0.9886 0.97 0.0000 0.9999 0.9994 0.9978 0.995.0000 0.9999 0.9997 0.999.0000.0000 0.9999 4.0000 4 5 0 0.860 0.786 0.6 0.54 0.46 0.95 0.67 0.86 0.40 0.059 0.0874 0.05 0.04 0.0047 0.006 0.0005 0.000 0.0000 0 0.9904 0.9647 0.970 0.8809 0.890 0.778 0.768 0.6597 0.605 0.5490 0.86 0.67 0.080 0.05 0.04 0.005 0.007 0.0005 0.9996 0.9970 0.9906 0.9797 0.968 0.949 0.97 0.8870 0.85 0.859 0.604 0.980 0.6 0.68 0.067 0.07 0.007 0.007.0000 0.9998 0.999 0.9976 0.9945 0.9896 0.985 0.977 0.960 0.9444 0.87 0.648 0.46 0.969 0.77 0.0905 0.044 0.076 4.0000 0.9999 0.9998 0.9994 0.9986 0.997 0.9950 0.998 0.987 0.98 0.858 0.6865 0.555 0.59 0.7 0.04 0.059 4 5.0000.0000 0.9999 0.9999 0.9997 0.999 0.9987 0.9978 0.98 0.989 0.856 0.76 0.564 0.40 0.608 0.509 5 6.0000.0000.0000 0.9999 0.9998 0.9997 0.9964 0.989 0.944 0.8689 0.7548 0.6098 0.45 0.06 6 7.0000.0000.0000 0.9994 0.9958 0.987 0.9500 0.8868 0.7869 0.655 0.5000 7 8 0.9999 0.999 0.9958 0.9848 0.9578 0.9050 0.88 0.6964 8 9.0000 0.9999 0.999 0.996 0.9876 0.966 0.9 0.849 9 0.0000 0.9999 0.999 0.997 0.9907 0.9745 0.9408 0.0000 0.9999 0.9995 0.998 0.997 0.984.0000 0.9999 0.9997 0.9989 0.996.0000.0000 0.9999 0.9995 4.0000.0000 4 0 0 0.879 0.6676 0.548 0.440 0.585 0.90 0.4 0.887 0.56 0.6 0.088 0.05 0.00 0.0008 0.000 0.0000 0.0000 0.0000 0 0.98 0.940 0.880 0.80 0.758 0.6605 0.5869 0.569 0.456 0.97 0.756 0.069 0.04 0.0076 0.00 0.0005 0.000 0.0000 0.9990 0.999 0.9790 0.956 0.945 0.8850 0.890 0.7879 0.74 0.6769 0.4049 0.06 0.09 0.055 0.0 0.006 0.0009 0.000.0000 0.9994 0.997 0.996 0.984 0.970 0.959 0.994 0.9007 0.8670 0.6477 0.44 0.5 0.07 0.0444 0.060 0.0049 0.00 4.0000 0.9997 0.9990 0.9974 0.9944 0.989 0.987 0.970 0.9568 0.898 0.696 0.448 0.75 0.8 0.050 0.089 0.0059 4 5.0000 0.9999 0.9997 0.999 0.998 0.996 0.99 0.9887 0.97 0.804 0.67 0.464 0.454 0.56 0.055 0.007 5 6.0000.0000 0.9999 0.9997 0.9994 0.9987 0.9976 0.978 0.9 0.7858 0.6080 0.466 0.500 0.99 0.0577 6 7.0000.0000 0.9999 0.9998 0.9996 0.994 0.9679 0.898 0.77 0.600 0.459 0.50 0.6 7 8.0000.0000 0.9999 0.9987 0.9900 0.959 0.8867 0.764 0.5956 0.44 0.57 8 9.0000 0.9998 0.9974 0.986 0.950 0.878 0.755 0.594 0.49 9 0.0000 0.9994 0.996 0.989 0.9468 0.875 0.7507 0.588 0 0.9999 0.999 0.9949 0.9804 0.945 0.869 0.748.0000 0.9998 0.9987 0.9940 0.9790 0.940 0.8684.0000 0.9997 0.9985 0.995 0.9786 0.94 4.0000 0.9997 0.9984 0.996 0.979 4 5.0000 0.9997 0.9985 0.994 5 6.0000 0.9997 0.9987 6 7.0000 0.9998 7 8.0000 8 klj 7

p 0.0 0.0 0.0 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5 0.0 0.5 0.0 0.5 0.40 0.45 0.50 p 5 0 0.7778 0.605 0.4670 0.604 0.774 0.9 0.60 0.44 0.0946 0.078 0.07 0.008 0.0008 0.000 0.0000 0.0000 0.0000 0.0000 0 0.974 0.94 0.880 0.758 0.644 0.557 0.4696 0.947 0.86 0.7 0.09 0.074 0.0070 0.006 0.000 0.000 0.0000 0.0000 0.9980 0.9868 0.960 0.95 0.879 0.89 0.7466 0.6768 0.606 0.57 0.57 0.098 0.0 0.0090 0.00 0.0004 0.000 0.0000 0.9999 0.9986 0.998 0.985 0.9659 0.940 0.9064 0.8649 0.869 0.766 0.47 0.40 0.096 0.0 0.0097 0.004 0.0005 0.000 4.0000 0.9999 0.999 0.997 0.998 0.9850 0.976 0.9549 0.94 0.900 0.68 0.407 0.7 0.0905 0.00 0.0095 0.00 0.0005 4 5.0000 0.9999 0.9996 0.9988 0.9969 0.995 0.9877 0.9790 0.9666 0.885 0.667 0.78 0.95 0.086 0.094 0.0086 0.000 5 6.0000.0000 0.9998 0.9995 0.9987 0.997 0.9946 0.9905 0.905 0.7800 0.56 0.407 0.74 0.076 0.058 0.007 6 7.0000 0.9999 0.9998 0.9995 0.9989 0.9977 0.9745 0.8909 0.765 0.58 0.06 0.56 0.069 0.06 7 8.0000.0000 0.9999 0.9998 0.9995 0.990 0.95 0.8506 0.6769 0.4668 0.75 0.40 0.059 8 9.0000.0000 0.9999 0.9979 0.987 0.987 0.806 0.60 0.446 0.44 0.48 9 0.0000 0.9995 0.9944 0.970 0.90 0.77 0.5858 0.84 0. 0 0.9999 0.9985 0.989 0.9558 0.8746 0.7 0.546 0.450.0000 0.9996 0.9966 0.985 0.996 0.846 0.697 0.5000 0.9999 0.999 0.9940 0.9745 0.9 0.87 0.6550 4.0000 0.9998 0.998 0.9907 0.9656 0.9040 0.7878 4 5.0000 0.9995 0.997 0.9868 0.9560 0.885 5 6 0.9999 0.999 0.9957 0.986 0.946 6 7.0000 0.9998 0.9988 0.994 0.9784 7 8.0000 0.9997 0.9984 0.997 8 9 0.9999 0.9996 0.9980 9 0.0000 0.9999 0.9995 0.0000 0.9999.0000 0 0 0.797 0.5455 0.400 0.99 0.46 0.56 0.4 0.080 0.059 0.044 0.0076 0.00 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.969 0.8795 0.77 0.66 0.555 0.4555 0.694 0.958 0.4 0.87 0.0480 0.005 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.9967 0.978 0.999 0.88 0.8 0.74 0.6487 0.5654 0.4855 0.44 0.54 0.044 0.006 0.00 0.000 0.0000 0.0000 0.0000 0.9998 0.997 0.988 0.9694 0.99 0.8974 0.8450 0.784 0.775 0.6474 0.7 0.7 0.074 0.009 0.009 0.000 0.0000 0.0000 4.0000 0.9997 0.998 0.997 0.9844 0.9685 0.9447 0.96 0.87 0.845 0.545 0.55 0.0979 0.00 0.0075 0.005 0.000 0.0000 4 5.0000 0.9998 0.9989 0.9967 0.99 0.988 0.9707 0.959 0.968 0.706 0.475 0.06 0.0766 0.0 0.0057 0.00 0.000 5 6.0000 0.9999 0.9994 0.998 0.9960 0.998 0.9848 0.974 0.8474 0.6070 0.48 0.595 0.0586 0.07 0.0040 0.0007 6 7.0000 0.9999 0.9997 0.999 0.9980 0.9959 0.99 0.90 0.7608 0.54 0.84 0.8 0.045 0.0 0.006 7 8.0000.0000 0.9999 0.9996 0.9990 0.9980 0.97 0.87 0.676 0.45 0.47 0.0940 0.0 0.008 8 9.0000 0.9999 0.9998 0.9995 0.990 0.989 0.804 0.5888 0.575 0.76 0.0694 0.04 9 0.0000.0000 0.9999 0.997 0.9744 0.894 0.704 0.5078 0.95 0.50 0.0494 0.0000 0.999 0.9905 0.949 0.8407 0.6548 0.4 0.7 0.00 0.9998 0.9969 0.9784 0.955 0.780 0.5785 0.59 0.808.0000 0.999 0.998 0.9599 0.877 0.745 0.505 0.9 4 0.9998 0.997 0.98 0.948 0.846 0.6448 0.478 4 5 0.9999 0.999 0.996 0.9699 0.909 0.769 0.57 5 6.0000 0.9998 0.9979 0.9876 0.959 0.8644 0.7077 6 7 0.9999 0.9994 0.9955 0.9788 0.986 0.89 7 8.0000 0.9998 0.9986 0.997 0.9666 0.8998 8 9.0000 0.9996 0.997 0.986 0.9506 9 0 0.9999 0.999 0.9950 0.9786 0.0000 0.9998 0.9984 0.999.0000 0.9996 0.9974 0.9999 0.999 4.0000 0.9998 4 5.0000 5 8 klm

p 0.0 0.0 0.0 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5 0.0 0.5 0.0 0.5 0.40 0.45 0.50 p 40 0 0.6690 0.4457 0.957 0.954 0.85 0.084 0.0549 0.056 0.00 0.048 0.005 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.99 0.8095 0.665 0.50 0.99 0.990 0.0 0.594 0.40 0.0805 0.0 0.005 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.995 0.954 0.88 0.7855 0.6767 0.5665 0.465 0.694 0.894 0.8 0.0486 0.0079 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.999 0.998 0.9686 0.95 0.869 0.787 0.697 0.6007 0.509 0.4 0.0 0.085 0.0047 0.0006 0.000 0.0000 0.0000 0.0000 4.0000 0.9988 0.99 0.9790 0.950 0.904 0.8546 0.7868 0.70 0.690 0.6 0.0759 0.060 0.006 0.000 0.0000 0.0000 0.0000 4 5 0.9999 0.9988 0.995 0.986 0.969 0.949 0.90 0.855 0.797 0.45 0.6 0.04 0.0086 0.00 0.000 0.0000 0.0000 5 6.0000 0.9998 0.9990 0.9966 0.9909 0.980 0.964 0.96 0.9005 0.6067 0.859 0.096 0.08 0.0044 0.0006 0.000 0.0000 6 7.0000 0.9998 0.999 0.9977 0.994 0.987 0.9758 0.958 0.7559 0.47 0.80 0.055 0.04 0.00 0.000 0.0000 7 8.0000 0.9999 0.9995 0.9985 0.996 0.999 0.9845 0.8646 0.59 0.998 0.0 0.00 0.006 0.0009 0.000 8 9.0000 0.9999 0.9997 0.9990 0.9976 0.9949 0.98 0.78 0.495 0.959 0.0644 0.056 0.007 0.000 9 0.0000 0.9999 0.9998 0.9994 0.9985 0.970 0.89 0.589 0.087 0.5 0.05 0.0074 0.00 0.0000.0000 0.9999 0.9996 0.9880 0.95 0.75 0.4406 0.05 0.0709 0.079 0.00.0000 0.9999 0.9957 0.9568 0.809 0.577 0.4 0.85 0.086 0.008.0000 0.9986 0.9806 0.8968 0.70 0.4408 0. 0.075 0.09 4 0.9996 0.99 0.9456 0.8074 0.57 0.74 0.6 0.040 4 5 0.9999 0.997 0.978 0.8849 0.6946 0.440 0.4 0.0769 5 6.0000 0.9990 0.9884 0.967 0.7978 0.568 0.85 0.4 6 7 0.9997 0.995 0.9680 0.876 0.6885 0.49 0.48 7 8 0.9999 0.998 0.985 0.90 0.79 0.565 0.79 8 9.0000 0.9994 0.997 0.967 0.870 0.6844 0.47 9 0 0.9998 0.9976 0.987 0.956 0.7870 0.567 0.0000 0.999 0.995 0.9608 0.8669 0.68 0.9997 0.9970 0.98 0.9 0.785 0.9999 0.9989 0.997 0.9595 0.8659 4.0000 0.9996 0.9966 0.9804 0.9 4 5 0.9999 0.9988 0.994 0.9597 5 6.0000 0.9996 0.9966 0.9808 6 7 0.9999 0.9988 0.997 7 8.0000 0.9996 0.9968 8 9 0.9999 0.9989 9 0.0000 0.9997 0 0.9999.0000 klj 9

p 0.0 0.0 0.0 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5 0.0 0.5 0.0 0.5 0.40 0.45 0.50 p 50 0 0.6050 0.64 0.8 0.99 0.0769 0.045 0.066 0.055 0.0090 0.005 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.906 0.758 0.555 0.4005 0.794 0.900 0.65 0.087 0.05 0.08 0.009 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.986 0.96 0.808 0.6767 0.5405 0.46 0.08 0.60 0.605 0.7 0.04 0.00 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9984 0.98 0.97 0.8609 0.7604 0.647 0.57 0.45 0.0 0.50 0.0460 0.0057 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.9999 0.9968 0.98 0.950 0.8964 0.806 0.790 0.690 0.577 0.4 0. 0.085 0.00 0.000 0.0000 0.0000 0.0000 0.0000 4 5.0000 0.9995 0.996 0.9856 0.96 0.94 0.8650 0.799 0.707 0.66 0.94 0.0480 0.0070 0.0007 0.000 0.0000 0.0000 0.0000 5 6 0.9999 0.999 0.9964 0.988 0.97 0.947 0.898 0.8404 0.770 0.6 0.04 0.094 0.005 0.000 0.0000 0.0000 0.0000 6 7.0000 0.9999 0.999 0.9968 0.9906 0.9780 0.956 0.9 0.8779 0.588 0.904 0.045 0.007 0.0008 0.000 0.0000 0.0000 7 8.0000 0.9999 0.999 0.997 0.997 0.98 0.967 0.94 0.668 0.07 0.096 0.08 0.005 0.000 0.0000 0.0000 8 9.0000 0.9998 0.999 0.9978 0.9944 0.9875 0.9755 0.79 0.447 0.67 0.040 0.0067 0.0008 0.000 0.0000 9 0.0000 0.9998 0.9994 0.998 0.9957 0.9906 0.880 0.586 0.6 0.0789 0.060 0.00 0.000 0.0000 0.0000 0.9999 0.9995 0.9987 0.9968 0.97 0.707 0.86 0.90 0.04 0.0057 0.0006 0.0000.0000 0.9999 0.9996 0.9990 0.9699 0.89 0.50 0.9 0.066 0.0 0.008 0.000.0000 0.9999 0.9997 0.9868 0.8894 0.670 0.79 0.6 0.080 0.0045 0.0005 4.0000 0.9999 0.9947 0.99 0.748 0.4468 0.878 0.0540 0.004 0.00 4 5.0000 0.998 0.969 0.869 0.569 0.80 0.0955 0.00 0.00 5 6 0.999 0.9856 0.907 0.689 0.889 0.56 0.047 0.0077 6 7 0.9998 0.997 0.9449 0.78 0.5060 0.69 0.0765 0.064 7 8 0.9999 0.9975 0.97 0.8594 0.66 0.56 0.7 0.05 8 9.0000 0.999 0.986 0.95 0.764 0.4465 0.974 0.0595 9 0 0.9997 0.997 0.95 0.89 0.560 0.86 0.0 0 0.9999 0.9974 0.9749 0.88 0.670 0.900 0.6.0000 0.9990 0.9877 0.990 0.7660 0.509 0.99 0.9996 0.9944 0.9604 0.848 0.64 0.59 4 0.9999 0.9976 0.979 0.90 0.760 0.449 4 5.0000 0.999 0.9900 0.947 0.804 0.556 5 6 0.9997 0.9955 0.9686 0.87 0.664 6 7 0.9999 0.998 0.9840 0.90 0.760 7 8.0000 0.999 0.994 0.9556 0.889 8 9 0.9997 0.9966 0.9765 0.8987 9 0 0.9999 0.9986 0.9884 0.9405 0.0000 0.9995 0.9947 0.9675 0.9998 0.9978 0.986 0.9999 0.999 0.99 4.0000 0.9997 0.9967 4 5 0.9999 0.9987 5 6.0000 0.9995 6 7 0.9998 7 8.0000 8 0 klm

THERE I NO TEXT PRINTED ON THI PAGE klj

TABLE CUMULATIVE POION DITRIBUTION FUNCTION The tbulte vlue s P(X ), whee X hs Posso stbuto wth me λ. λ 0.0 0.0 0.0 0.40 0.50 0.60 0.70 0.80 0.90.0..4.6.8 λ 0 0.9048 0.887 0.7408 0.670 0.6065 0.5488 0.4966 0.449 0.4066 0.679 0.0 0.466 0.09 0.65 0 0.995 0.985 0.96 0.984 0.9098 0.878 0.844 0.8088 0.775 0.758 0.666 0.598 0.549 0.468 0.9998 0.9989 0.9964 0.99 0.9856 0.9769 0.9659 0.956 0.97 0.997 0.8795 0.85 0.784 0.706.0000 0.9999 0.9997 0.999 0.998 0.9966 0.994 0.9909 0.9865 0.980 0.966 0.946 0.9 0.89 4.0000.0000 0.9999 0.9998 0.9996 0.999 0.9986 0.9977 0.996 0.99 0.9857 0.976 0.966 4 5.0000.0000.0000 0.9999 0.9998 0.9997 0.9994 0.9985 0.9968 0.9940 0.9896 5 6.0000.0000.0000 0.9999 0.9997 0.9994 0.9987 0.9974 6 7.0000.0000 0.9999 0.9997 0.9994 7 8.0000.0000 0.9999 8 9.0000 9 λ.0..4.6.8.0..4.6.8 4.0 4.5 5.0 5.5 λ 0 0.5 0.08 0.0907 0.074 0.0608 0.0498 0.0408 0.04 0.07 0.04 0.08 0.0 0.0067 0.004 0 0.4060 0.546 0.084 0.674 0. 0.99 0.7 0.468 0.57 0.074 0.096 0.06 0.0404 0.066 0.6767 0.67 0.5697 0.584 0.4695 0.4 0.799 0.97 0.07 0.689 0.8 0.76 0.47 0.0884 0.857 0.894 0.7787 0.760 0.699 0.647 0.605 0.5584 0.55 0.475 0.45 0.4 0.650 0.07 4 0.947 0.975 0.904 0.8774 0.8477 0.85 0.7806 0.744 0.7064 0.6678 0.688 0.5 0.4405 0.575 4 5 0.984 0.975 0.964 0.950 0.949 0.96 0.8946 0.8705 0.844 0.856 0.785 0.709 0.660 0.589 5 6 0.9955 0.995 0.9884 0.988 0.9756 0.9665 0.9554 0.94 0.967 0.909 0.889 0.8 0.76 0.6860 6 7 0.9989 0.9980 0.9967 0.9947 0.999 0.988 0.98 0.9769 0.969 0.9599 0.9489 0.94 0.8666 0.8095 7 8 0.9998 0.9995 0.999 0.9985 0.9976 0.996 0.994 0.997 0.988 0.9840 0.9786 0.9597 0.99 0.8944 8 9.0000 0.9999 0.9998 0.9996 0.999 0.9989 0.998 0.997 0.9960 0.994 0.999 0.989 0.968 0.946 9 0.0000.0000 0.9999 0.9998 0.9997 0.9995 0.999 0.9987 0.998 0.997 0.99 0.986 0.9747 0.0000.0000 0.9999 0.9999 0.9998 0.9996 0.9994 0.999 0.9976 0.9945 0.9890.0000.0000 0.9999 0.9999 0.9998 0.9997 0.999 0.9980 0.9955.0000.0000.0000 0.9999 0.9997 0.999 0.998 4.0000 0.9999 0.9998 0.9994 4 5.0000 0.9999 0.9998 5 6.0000 0.9999 6 7.0000 7 klm

λ 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 0.0.0.0.0 4.0 5.0 λ 0 0.005 0.005 0.0009 0.0006 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.074 0.0 0.007 0.0047 0.000 0.009 0.00 0.0008 0.0005 0.000 0.000 0.0000 0.0000 0.0000 0.060 0.040 0.096 0.00 0.08 0.009 0.006 0.004 0.008 0.00 0.0005 0.000 0.000 0.0000 0.5 0.8 0.088 0.059 0.044 0.00 0.0 0.049 0.00 0.0049 0.00 0.00 0.0005 0.000 4 0.85 0.7 0.70 0. 0.0996 0.0744 0.0550 0.040 0.09 0.05 0.0076 0.007 0.008 0.0009 4 5 0.4457 0.690 0.007 0.44 0.9 0.496 0.57 0.0885 0.067 0.075 0.00 0.007 0.0055 0.008 5 6 0.606 0.565 0.4497 0.78 0.4 0.56 0.068 0.649 0.0 0.0786 0.0458 0.059 0.04 0.0076 6 7 0.7440 0.678 0.5987 0.546 0.450 0.856 0.9 0.687 0.0 0.4 0.0895 0.0540 0.06 0.080 7 8 0.847 0.796 0.79 0.660 0.595 0.5 0.4557 0.98 0.8 0.0 0.550 0.0998 0.06 0.074 8 9 0.96 0.8774 0.805 0.7764 0.766 0.650 0.5874 0.58 0.4579 0.405 0.44 0.658 0.094 0.0699 9 0 0.9574 0.9 0.905 0.86 0.859 0.764 0.7060 0.645 0.580 0.4599 0.47 0.57 0.757 0.85 0 0.9799 0.966 0.9467 0.908 0.888 0.8487 0.800 0.750 0.6968 0.579 0.466 0.5 0.600 0.848 0.99 0.9840 0.970 0.957 0.96 0.909 0.8758 0.864 0.796 0.6887 0.5760 0.46 0.585 0.676 0.9964 0.999 0.987 0.9784 0.9658 0.9486 0.96 0.898 0.8645 0.78 0.685 0.570 0.4644 0.6 4 0.9986 0.9970 0.994 0.9897 0.987 0.976 0.9585 0.9400 0.965 0.8540 0.770 0.675 0.5704 0.4657 4 5 0.9995 0.9988 0.9976 0.9954 0.998 0.986 0.9780 0.9665 0.95 0.9074 0.8444 0.766 0.6694 0.568 5 6 0.9998 0.9996 0.9990 0.9980 0.996 0.994 0.9889 0.98 0.970 0.944 0.8987 0.855 0.7559 0.664 6 7 0.9999 0.9998 0.9996 0.999 0.9984 0.9970 0.9947 0.99 0.9857 0.9678 0.970 0.8905 0.87 0.7489 7 8.0000 0.9999 0.9999 0.9997 0.999 0.9987 0.9976 0.9957 0.998 0.98 0.966 0.90 0.886 0.895 8 9.0000.0000 0.9999 0.9997 0.9995 0.9989 0.9980 0.9965 0.9907 0.9787 0.957 0.95 0.875 9 0.0000 0.9999 0.9998 0.9996 0.999 0.9984 0.995 0.9884 0.9750 0.95 0.970 0.0000 0.9999 0.9998 0.9996 0.999 0.9977 0.999 0.9859 0.97 0.9469.0000 0.9999 0.9999 0.9997 0.9990 0.9970 0.994 0.98 0.967.0000 0.9999 0.9999 0.9995 0.9985 0.9960 0.9907 0.9805 4.0000.0000 0.9998 0.999 0.9980 0.9950 0.9888 4 5 0.9999 0.9997 0.9990 0.9974 0.998 5 6.0000 0.9999 0.9995 0.9987 0.9967 6 7 0.9999 0.9998 0.9994 0.998 7 8.0000 0.9999 0.9997 0.999 8 9.0000 0.9999 0.9996 9 0 0.9999 0.9998 0.0000 0.9999.0000 klj

TABLE NORMAL DITRIBUTION FUNCTION The tble gves the pobblt, p, tht omll stbute om vble Z, wth me 0 vce, s less th o equl to z. z 0.00 0.0 0.0 0.0 0.04 0.05 0.06 0.07 0.08 0.09 z 0.0 0.50000 0.5099 0.50798 0.597 0.5595 0.5994 0.59 0.5790 0.588 0.5586 0.0 0. 0.598 0.5480 0.54776 0.557 0.55567 0.5596 0.5656 0.56749 0.574 0.5755 0. 0. 0.5796 0.587 0.58706 0.59095 0.5948 0.5987 0.6057 0.6064 0.606 0.6409 0. 0. 0.679 0.67 0.655 0.690 0.607 0.668 0.64058 0.644 0.6480 0.657 0. 0.4 0.6554 0.6590 0.6676 0.66640 0.6700 0.6764 0.6774 0.6808 0.6849 0.6879 0.4 0.5 0.6946 0.69497 0.69847 0.7094 0.70540 0.70884 0.76 0.7566 0.7904 0.740 0.5 0.6 0.7575 0.7907 0.77 0.7565 0.789 0.745 0.7457 0.74857 0.7575 0.75490 0.6 0.7 0.75804 0.765 0.7644 0.7670 0.7705 0.777 0.7767 0.7795 0.780 0.7854 0.7 0.8 0.7884 0.790 0.7989 0.7967 0.79955 0.804 0.805 0.80785 0.8057 0.87 0.8 0.9 0.8594 0.8859 0.8 0.88 0.869 0.8894 0.847 0.898 0.8646 0.889 0.9.0 0.844 0.8475 0.8464 0.84849 0.8508 0.854 0.8554 0.85769 0.8599 0.864.0. 0.864 0.86650 0.86864 0.87076 0.8786 0.8749 0.87698 0.87900 0.8800 0.8898.. 0.8849 0.88686 0.88877 0.89065 0.895 0.8945 0.8967 0.89796 0.8997 0.9047.. 0.900 0.90490 0.90658 0.9084 0.90988 0.949 0.909 0.9466 0.96 0.9774..4 0.994 0.907 0.90 0.964 0.9507 0.9647 0.9785 0.99 0.9056 0.989.4.5 0.99 0.9448 0.9574 0.9699 0.98 0.994 0.9406 0.9479 0.9495 0.94408.5.6 0.9450 0.9460 0.9478 0.94845 0.94950 0.9505 0.9554 0.9554 0.955 0.95449.6.7 0.9554 0.9567 0.9578 0.9588 0.95907 0.95994 0.96080 0.9664 0.9646 0.967.7.8 0.96407 0.96485 0.9656 0.9668 0.967 0.96784 0.96856 0.9696 0.96995 0.9706.8.9 0.978 0.979 0.9757 0.970 0.978 0.9744 0.97500 0.97558 0.9765 0.97670.9.0 0.9775 0.97778 0.978 0.9788 0.979 0.9798 0.9800 0.98077 0.984 0.9869.0. 0.984 0.9857 0.9800 0.984 0.988 0.984 0.9846 0.98500 0.9857 0.98574.. 0.9860 0.98645 0.98679 0.987 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899.. 0.9898 0.98956 0.9898 0.9900 0.9906 0.9906 0.99086 0.99 0.994 0.9958..4 0.9980 0.990 0.994 0.9945 0.9966 0.9986 0.9905 0.994 0.994 0.996.4.5 0.9979 0.9996 0.994 0.9940 0.99446 0.9946 0.99477 0.9949 0.99506 0.9950.5.6 0.9954 0.99547 0.99560 0.9957 0.99585 0.99598 0.99609 0.996 0.996 0.9964.6.7 0.9965 0.99664 0.99674 0.9968 0.9969 0.9970 0.997 0.9970 0.9978 0.9976.7.8 0.99744 0.9975 0.99760 0.99767 0.99774 0.9978 0.99788 0.99795 0.9980 0.99807.8.9 0.998 0.9989 0.9985 0.998 0.9986 0.9984 0.99846 0.9985 0.99856 0.9986.9.0 0.99865 0.99869 0.99874 0.99878 0.9988 0.99886 0.99889 0.9989 0.99896 0.99900.0. 0.9990 0.99906 0.9990 0.999 0.9996 0.9998 0.999 0.9994 0.9996 0.9999.. 0.999 0.9994 0.9996 0.9998 0.99940 0.9994 0.99944 0.99946 0.99948 0.99950.. 0.9995 0.9995 0.99955 0.99957 0.99958 0.99960 0.9996 0.9996 0.99964 0.99965..4 0.99966 0.99968 0.99969 0.99970 0.9997 0.9997 0.9997 0.99974 0.99975 0.99976.4.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.9998 0.9998 0.9998 0.9998 0.9998.5.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989.6.7 0.99989 0.99990 0.99990 0.99990 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999.7.8 0.9999 0.9999 0.9999 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995.8.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997.9 4 klm

TABLE 4 PERCENTAGE POINT OF THE NORMAL DITRIBUTION The tble gves the vlues of z stsfg P(Z z) p, whee Z s the omll stbute om vble wth me 0 vce. p 0.00 0.0 0.0 0.0 0.04 0.05 0.06 0.07 0.08 0.09 p 0.5 0.0000 0.05 0.050 0.075 0.004 0.57 0.50 0.764 0.09 0.75 0.5 0.6 0.5 0.79 0.055 0.9 0.585 0.85 0.45 0.499 0.4677 0.4958 0.6 0.7 0.544 0.554 0.588 0.68 0.64 0.6745 0.706 0.788 0.77 0.8064 0.7 0.8 0.846 0.8779 0.954 0.954 0.9945.064.080.64.750.65 0.8 0.9.86.408.405.4758.5548.6449.7507.8808.057.6 0.9 p 0.000 0.00 0.00 0.00 0.004 0.005 0.006 0.007 0.008 0.009 p 0.95.6449.6546.6646.6747.6849.6954.7060.769.779.79 0.95 0.96.7507.764.7744.7866.799.89.850.884.85.866 0.96 0.97.8808.8957.90.968.94.9600.9774.9954.04.05 0.97 0.98.057.0749.0969.0.444.70.97.6.57.904 0.98 0.99.6.656.4089.457.5.5758.65.7478.878.090 0.99 klj 5

TABLE 5 PERCENTAGE POINT OF THE TUDENT' t-ditribution The tble gves the vlues of stsfg P(X ) p, whee X s om vble hvg the tuet's t-stbuto wth ν egees of feeom. p 0.9 0.95 0.975 0.99 0.995 p 0.9 0.95 0.975 0.99 0.995 ν ν.078 6.4.706.8 6.657 9..699.045.46.756.886.90 4.0 6.965 9.95 0.0.697.04.457.750.68.5.8 4.54 5.84.09.696.040.45.744 4.5..776.747 4.604.09.694.07.449.78 5.476.05.57.65 4.0.08.69.05.445.7 6.440.94.447.4.707 4.07.69.0.44.78 7.45.895.65.998.499 5.06.690.00.48.74 8.97.860.06.896.55 6.06.688.08.44.79 9.8.8.6.8.50 7.05.687.06.4.75 0.7.8.8.764.69 8.04.686.04.49.7.6.796.0.78.06 9.04.685.0.46.708.56.78.79.68.055 40.0.684.0.4.704.50.77.60.650.0 45.0.679.04.4.690 4.45.76.45.64.977 50.99.676.009.40.678 5.4.75..60.947 55.97.67.004.96.668 6.7.746..58.9 60.96.67.000.90.660 7..740.0.567.898 65.95.669.997.85.654 8.0.74.0.55.878 70.94.667.994.8.648 9.8.79.09.59.86 75.9.665.99.77.64 0.5.75.086.58.845 80.9.664.990.74.69..7.080.58.8 85.9.66.998.7.65..77.074.508.89 90.9.66.987.68.6.9.74.069.500.807 95.9.66.985.66.69 4.8.7.064.49.797 00.90.660.984.64.66 5.6.708.060.485.787 5.88.657.979.57.66 6.5.706.056.479.779 50.87.655.976.5.609 7.4.70.05.47.77 00.86.65.97.45.60 8..70.048.467.76.8.645.960.6.576 6 klm

TABLE 6 PERCENTAGE POINT OF THE χ DITRIBUTION The tble gves the vlues of stsfg P(X ) p, whee X s om vble hvg the χ stbuto wth ν egees of feeom. p 0.005 0.0 0.05 0.05 0. 0.9 0.95 0.975 0.99 0.995 p ν ν 0.00004 0.000 0.00 0.004 0.06.706.84 5.04 6.65 7.879 0.00 0.00 0.05 0.0 0. 4.605 5.99 7.78 9.0 0.597 0.07 0.5 0.6 0.5 0.584 6.5 7.85 9.48.45.88 4 0.07 0.97 0.484 0.7.064 7.779 9.488.4.77 4.860 4 5 0.4 0.554 0.8.45.60 9.6.070.8 5.086 6.750 5 6 0.676 0.87.7.65.04 0.645.59 4.449 6.8 8.548 6 7 0.989.9.690.67.8.07 4.067 6.0 8.475 0.78 7 8.44.646.80.7.490.6 5.507 7.55 0.090.955 8 9.75.088.700.5 4.68 4.684 6.99 9.0.666.589 9 0.56.558.47.940 4.865 5.987 8.07 0.48.09 5.88 0.60.05.86 4.575 5.578 7.75 9.675.90 4.75 6.757.074.57 4.404 5.6 6.04 8.549.06.7 6.7 8.00.565 4.07 5.009 5.89 7.04 9.8.6 4.76 7.688 9.89 4 4.075 4.660 5.69 6.57 7.790.064.685 6.9 9.4.9 4 5 4.60 5.9 6.6 7.6 8.547.07 4.996 7.488 0.578.80 5 6 5.4 5.8 6.908 7.96 9..54 6.96 8.845.000 4.67 6 7 5.697 6.408 7.564 8.67 0.085 4.769 7.587 0.9.409 5.78 7 8 6.65 7.05 8. 9.90 0.865 5.989 8.869.56 4.805 7.56 8 9 6.844 7.6 8.907 0.7.65 7.04 0.44.85 6.9 8.58 9 0 7.44 8.60 9.59 0.85.44 8.4.40 4.70 7.566 9.997 0 8.04 8.897 0.8.59.40 9.65.67 5.479 8.9 4.40 8.64 9.54 0.98.8 4.04 0.8.94 6.78 40.89 4.796 9.60 0.96.689.09 4.848.007 5.7 8.076 4.68 44.8 4 9.886 0.856.40.848 5.659.96 6.45 9.64 4.980 45.559 4 5 0.50.54.0 4.6 6.47 4.8 7.65 40.646 44.4 46.98 5 6.60.98.844 5.79 7.9 5.56 8.885 4.9 45.64 48.90 6 7.808.879 4.57 6.5 8.4 6.74 40. 4.95 46.96 49.645 7 8.46.565 5.08 6.98 8.99 7.96 4.7 44.46 48.78 50.99 8 9. 4.56 6.047 7.708 9.768 9.087 4.557 45.7 49.588 5.6 9 0.787 4.95 6.79 8.49 0.599 40.56 4.77 46.979 50.89 5.67 0 4.458 5.655 7.59 9.8.44 4.4 44.985 48. 5.9 55.00 5.4 6.6 8.9 0.07.7 4.585 46.94 49.480 5.486 56.8 5.85 7.074 9.047 0.867.0 4.745 47.400 50.75 54.776 57.648 4 6.50 7.789 9.806.664.95 44.90 48.60 5.996 56.06 58.964 4 5 7.9 8.509 0.569.465 4.797 46.059 49.80 5.0 57.4 60.75 5 6 7.887 9..6.69 5.64 47. 50.998 54.47 58.69 6.58 6 7 8.586 9.960.06 4.075 6.49 48.6 5.9 55.668 59.89 6.88 7 8 9.89 0.69.878 4.884 7.4 49.5 5.84 56.896 6.6 64.8 8 9 9.996.46.654 5.695 8.96 50.660 54.57 58.0 6.48 65.476 9 40 0.707.64 4.4 6.509 9.05 5.805 55.758 59.4 6.69 66.766 40 45 4. 5.90 8.66 0.6.50 57.505 6.656 65.40 69.957 7.66 45 50 7.99 9.707.57 4.764 7.689 6.67 67.505 7.40 76.54 79.490 50 55.75.570 6.98 8.958 4.060 68.796 7. 77.80 8.9 85.749 55 60 5.54 7.485 40.48 4.88 46.459 74.97 79.08 8.98 88.79 9.95 60 65 9.8 4.444 44.60 47.450 50.88 79.97 84.8 89.77 94.4 98.05 65 70 4.75 45.44 48.758 5.79 55.9 85.57 90.5 95.0 00.45 04.5 70 75 47.06 49.475 5.94 56.054 59.795 9.06 96.7 00.89 06.9 0.86 75 80 5.7 5.540 57.5 60.9 64.78 96.578 0.879 06.69.9 6. 80 85 55.70 57.64 6.89 64.749 68.777 0.079 07.5.9 8.6.5 85 90 59.96 6.754 65.647 69.6 7.9 07.565.45 8.6 4.6 8.99 90 95 6.50 65.898 69.95 7.50 77.88.08 8.75.858 9.97 4.47 95 00 67.8 70.065 74. 77.99 8.58 8.498 4.4 9.56 5.807 40.69 00 klj 7

TABLE 7 PERCENTAGE POINT OF THE F-DITRIBUTION The tbles gve the vlues of stsfg P(X ) p, whee X s om vble hvg the F-stbuto wth ν egees of feeom the umeto ν egees of feeom the eomto. F-Dstbuto (p0.995) Use fo oe-tl tests t sgfcce level 0.5% o two-tl tests t sgfcce level %. ν 4 5 6 7 8 9 0 5 0 5 0 40 50 00 ν ν ν 6 0000 65 500 056 47 75 95 409 44 44 446 460 486 4960 5044 548 5 57 5464 98.5 99.0 99. 99. 99. 99. 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 55.55 49.80 47.47 46.9 45.9 44.84 44.4 44. 4.88 4.69 4.5 4.9 4.08 4.78 4.59 4.47 4. 4. 4.0 4.8 4. 6.8 4.6.5.46.97.6.5.4 0.97 0.8 0.70 0.44 0.7 0.00 9.89 9.75 9.67 9.50 9. 4 5.78 8. 6.5 5.56 4.94 4.5 4.0.96.77.6.49.8.5.90.76.66.5.45.0.4 5 6 8.65 4.544.97.08.464.07 0.786 0.566 0.9 0.50 0. 0.04 9.84 9.589 9.45 9.58 9.4 9.70 9.06 8.879 6 7 6.6.404 0.88 0.050 9.5 9.55 8.885 8.678 8.54 8.80 8.70 8.76 7.968 7.754 7.6 7.54 7.4 7.54 7.7 7.076 7 8 4.688.04 9.596 8.805 8.0 7.95 7.694 7.496 7.9 7. 7.04 7.05 6.84 6.608 6.48 6.96 6.88 6. 6.088 5.95 8 9.64 0.07 8.77 7.956 7.47 7.4 6.885 6.69 6.54 6.47 6.4 6.7 6.0 5.8 5.708 5.65 5.59 5.454 5. 5.88 9 0.86 9.47 8.08 7.4 6.87 6.545 6.0 6.6 5.968 5.847 5.746 5.66 5.47 5.74 5.5 5.07 4.966 4.90 4.77 4.69 0.6 8.9 7.600 6.88 6.4 6.0 5.865 5.68 5.57 5.48 5.0 5.6 5.049 4.855 4.76 4.654 4.55 4.488 4.59 4.6.754 8.50 7.6 6.5 6.07 5.757 5.55 5.45 5.0 5.085 4.988 4.906 4.7 4.50 4.4 4. 4.8 4.65 4.07.904.74 8.86 6.96 6. 5.79 5.48 5.5 5.076 4.95 4.80 4.74 4.64 4.460 4.70 4.5 4.07.970.908.780.647 4.060 7.9 6.680 5.998 5.56 5.57 5.0 4.857 4.77 4.60 4.508 4.48 4.47 4.059.94.86.760.697.569.46 4 5 0.798 7.70 6.476 5.80 5.7 5.07 4.847 4.674 4.56 4.44 4.9 4.50 4.070.88.766.687.585.5.94.60 5 0 9.944 6.986 5.88 5.74 4.76 4.47 4.57 4.090.956.847.756.678.50.8.0..0.959.88.690 0 5 9.475 6.598 5.46 4.85 4.4 4.50.99.776.645.57.447.70.96.0.898.89.76.65.59.77 5 0 9.80 6.55 5.9 4.6 4.8.949.74.580.450.44.55.79.006.8.708.68.54.459..76 0 40 8.88 6.066 4.976 4.74.986.7.509.50..7.08.95.78.598.48.40.96.0.088.9 40 50 8.66 5.90 4.86 4..849.579.76.9.09.988.900.85.65.470.5.7.64.097.95.786 50 00 8.4 5.589 4.54.96.589.5.7.97.847.744.657.58.4.7.08.04.9.840.68.485 00 7.879 5.98 4.79.75.50.09.897.744.6.59.4.58.87.000.877.789.669.590.40.00 F-Dstbuto (p0.99) Use fo oe-tl tests t sgfcce level % o two-tl tests t sgfcce level %. ν 4 5 6 7 8 9 0 5 0 5 0 40 50 00 ν ν ν 405 5000 540 565 5764 5859 598 598 60 6056 608 606 657 609 640 66 687 60 64 666 98.50 99.00 99.7 99.5 99.0 99. 99.6 99.7 99.9 99.40 99.4 99.4 99.4 99.45 99.46 99.47 99.47 99.48 99.49 99.50 4. 0.8 9.46 8.7 8.4 7.9 7.67 7.49 7.5 7. 7. 7.05 6.87 6.69 6.58 6.50 6.4 6.5 6.4 6. 4.0 8.00 6.69 5.98 5.5 5. 4.98 4.80 4.66 4.55 4.45 4.7 4.0 4.0.9.84.75.69.58.46 4 5 6.6.7.06.9 0.97 0.67 0.46 0.9 0.6 0.05 9.96 9.89 9.7 9.55 9.45 9.8 9.9 9.4 9. 9.0 5 6.745 0.95 9.780 9.48 8.746 8.466 8.60 8.0 7.976 7.874 7.790 7.78 7.559 7.96 7.96 7.9 7.4 7.09 6.987 6.880 6 7.46 9.547 8.45 7.847 7.460 7.9 6.99 6.840 6.79 6.60 6.58 6.469 6.4 6.55 6.058 5.99 5.908 5.858 5.755 5.650 7 8.59 8.649 7.59 7.006 6.6 6.7 6.78 6.09 5.9 5.84 5.74 5.667 5.55 5.59 5.6 5.98 5.6 5.065 4.96 4.859 8 9 0.56 8.0 6.99 6.4 6.057 5.80 5.6 5.467 5.5 5.57 5.78 5. 4.96 4.808 4.7 4.649 4.567 4.57 4.45 4. 9 0 0.044 7.559 6.55 5.994 5.66 5.86 5.00 5.057 4.94 4.849 4.77 4.706 4.558 4.405 4. 4.47 4.65 4.5 4.04.909 0 9.646 7.06 6.7 5.668 5.6 5.069 4.886 4.744 4.6 4.59 4.46 4.97 4.5 4.099 4.005.94.860.80.708.60 9.0 6.97 5.95 5.4 5.064 4.8 4.640 4.499 4.88 4.96 4.0 4.55 4.00.858.765.70.69.569.467.6 9.074 6.70 5.79 5.05 4.86 4.60 4.44 4.0 4.9 4.00 4.05.960.85.665.57.507.45.75.7.65 4 8.86 6.55 5.564 5.05 4.695 4.456 4.78 4.40 4.00.99.864.800.656.505.4.48.66.5..004 4 5 8.68 6.59 5.47 4.89 4.556 4.8 4.4 4.004.895.805.70.666.5.7.78.4..08.977.868 5 0 8.096 5.849 4.98 4.4 4.0.87.699.564.457.68.94..088.98.84.778.695.64.55.4 0 5 7.770 5.568 4.675 4.77.855.67.457.4.7.9.056.99.850.699.604.58.45.400.89.69 5 0 7.56 5.90 4.50 4.08.699.47.04.7.067.979.906.84.700.549.45.86.99.45..006 0 40 7.4 5.79 4..88.54.9.4.99.888.80.77.665.5.69.7.0.4.058.98.805 40 50 7.7 5.057 4.99.70.408.86.00.890.785.698.65.56.49.65.67.098.007.949.85.68 50 00 6.895 4.84.984.5.06.988.8.694.590.50.40.68..067.965.89.797.75.598.47 00 6.65 4.605.78.9.07.80.69.5.407..48.85.09.878.77.696.59.5.58.000 8 klm

F-Dstbuto (p0.975) Use fo oe-tl tests t sgfcce level.5% o two-tl tests t sgfcce level 5%. ν 4 5 6 7 8 9 0 5 0 5 0 40 50 00 ν ν ν 647.8 799.5 864. 899.6 9.8 97. 948. 956.7 96. 968.6 97.0 976.7 984.9 99. 998. 00.4 005.6 008. 0. 08. 8.5 9.00 9.7 9.5 9.0 9. 9.6 9.7 9.9 9.40 9.4 9.4 9.4 9.45 9.46 9.46 9.47 9.48 9.49 9.50 7.44 6.04 5.44 5.0 4.88 4.7 4.6 4.54 4.47 4.4 4.7 4.4 4.5 4.7 4. 4.08 4.04 4.0.96.90 4. 0.65 9.98 9.60 9.6 9.0 9.07 8.98 8.90 8.84 8.79 8.75 8.66 8.56 8.50 8.46 8.4 8.8 8. 8.6 4 5 0.0 8.4 7.76 7.9 7.5 6.98 6.85 6.76 6.68 6.6 6.57 6.5 6.4 6. 6.7 6. 6.8 6.4 6.08 6.0 5 6 8.8 7.60 6.599 6.7 5.988 5.80 5.695 5.600 5.5 5.46 5.40 5.66 5.69 5.68 5.07 5.065 5.0 4.980 4.95 4.849 6 7 8.07 6.54 5.890 5.5 5.85 5.9 4.995 4.899 4.8 4.76 4.709 4.666 4.568 4.467 4.405 4.6 4.09 4.76 4.0 4.4 7 8 7.57 6.059 5.46 5.05 4.87 4.65 4.59 4.4 4.57 4.95 4.4 4.00 4.0.999.97.894.840.807.79.670 8 9 7.09 5.75 5.078 4.78 4.484 4.0 4.97 4.0 4.06.964.9.868.769.667.604.560.505.47.40. 9 0 6.97 5.456 4.86 4.468 4.6 4.07.950.855.779.77.665.6.5.49.55..55..5.080 0 6.74 5.56 4.60 4.75 4.044.88.759.664.588.56.474.40.0.6.6.8.06.07.956.88 6.554 5.096 4.474 4..89.78.607.5.46.74..77.77.07.008.96.906.87.800.75 6.44 4.965 4.47.996.767.604.48.88..50.97.5.05.948.88.87.780.744.67.595 4 6.98 4.857 4.4.89.66.50.80.85.09.47.095.050.949.844.778.7.674.68.565.487 4 5 6.00 4.765 4.5.804.576.45.9.99..060.008.96.86.756.689.644.585.549.474.95 5 0 5.87 4.46.859.55.89.8.007.9.87.774.7.676.57.464.96.49.87.49.70.085 0 5 5.686 4.9.694.5.9.969.848.75.677.6.560.55.4.00.0.8.8.079.996.906 5 0 5.568 4.8.589.50.06.867.746.65.575.5.458.4.07.95.4.074.009.968.88.787 0 40 5.44 4.05.46.6.904.744.64.59.45.88.4.88.8.068.994.94.875.8.74.67 40 50 5.40.975.90.054.8.674.55.458.8.7.6.6.09.99.99.866.796.75.656.545 50 00 5.79.88.50.97.696.57.47..44.79.5.077.968.849.770.75.640.59.48.47 00 5.04.689.6.786.567.408.88.9.4.048.99.945.8.708.66.566.484.48.96.000 F-Dstbuto (p0.95) Use fo oe-tl tests t sgfcce level 5% o two-tl tests t sgfcce level 0%. ν 4 5 6 7 8 9 0 5 0 5 0 40 50 00 ν ν ν 6.4 99.5 5.7 4.6 0. 4.0 6.8 8.9 40.5 4.9 4.0 4.9 45.9 48.0 49. 50. 5. 5.8 5.0 54. 8.5 9.00 9.6 9.5 9.0 9. 9.5 9.7 9.8 9.40 9.40 9.4 9.4 9.45 9.46 9.46 9.47 9.48 9.49 9.50 0. 9.55 9.8 9. 9.0 8.94 8.89 8.85 8.8 8.79 8.76 8.74 8.70 8.66 8.6 8.6 8.59 8.58 8.55 8.5 4 7.7 6.94 6.59 6.9 6.6 6.6 6.09 6.04 6.00 5.96 5.94 5.9 5.86 5.80 5.77 5.75 5.7 5.70 5.66 5.6 4 5 6.6 5.79 5.4 5.9 5.05 4.95 4.88 4.8 4.77 4.74 4.70 4.68 4.6 4.56 4.5 4.50 4.46 4.44 4.4 4.6 5 6 5.987 5.4 4.757 4.54 4.87 4.84 4.07 4.47 4.099 4.060 4.07 4.000.98.874.85.808.774.754.7.669 6 7 5.59 4.77 4.47 4.0.97.866.787.76.677.67.60.575.5.445.404.76.40.9.75.0 7 8 5.8 4.459 4.066.88.688.58.500.48.88.47..84.8.50.08.079.04.00.975.98 8 9 5.7 4.56.86.6.48.74.9.0.79.7.0.07.006.96.89.864.86.80.756.707 9 0 4.965 4.0.708.478.6.7.5.07.00.978.94.9.845.774.70.700.66.67.588.58 0 4.844.98.587.57.04.095.0.948.896.854.88.788.79.646.60.570.5.507.457.404 4.747.885.490.59.06.996.9.849.796.75.77.687.67.544.498.466.46.40.50.96 4.667.806.4.79.05.95.8.767.74.67.65.604.5.459.4.80.9.4.6.06 4 4.600.79.44..958.848.764.699.646.60.565.54.46.88.4.08.66.4.87. 4 5 4.54.68.87.056.90.790.707.64.588.544.507.475.40.8.80.47.04.78..066 5 0 4.5.49.098.866.7.599.54.447.9.48.0.78.0.4.074.09.994.966.907.84 0 5 4.4.85.99.759.60.490.405.7.8.6.98.65.089.007.955.99.87.84.779.7 5 0 4.7.6.9.690.54.4.4.66..65.6.09.05.9.878.84.79.76.695.6 0 40 4.085..89.606.449.6.49.80.4.077.08.00.94.89.78.744.69.660.589.509 40 50 4.04.8.790.557.400.86.99.0.07.06.986.95.87.784.77.687.64.599.55.48 50 00.96.087.696.46.05.9.0.0.975.97.886.850.768.676.66.57.55.477.9.8 00.84.996.605.7.4.099.00.98.880.8.789.75.666.57.506.459.94.50.4.000 klj 9

TABLE 8 CRITICAL VALUE OF THE PRODUCT MOMENT CORRELATION COEFFICIENT The tble gves the ctcl vlues, fo ffeet sgfcce levels, of the pouct momet coelto coeffcet,, fo vg smple szes,. Oe tl 0% 5%.5% % 0.5% Oe tl Two tl 0% 0% 5% % % Two tl 4 0.8000 0.9000 0.9500 0.9800 0.9900 4 5 0.6870 0.8054 0.878 0.94 0.9587 5 6 0.6084 0.79 0.84 0.88 0.97 6 7 0.5509 0.6694 0.7545 0.89 0.8745 7 8 0.5067 0.65 0.7067 0.7887 0.84 8 9 0.476 0.58 0.6664 0.7498 0.7977 9 0 0.448 0.5494 0.69 0.755 0.7646 0 0.487 0.54 0.60 0.685 0.748 0.98 0.497 0.5760 0.658 0.7079 0.80 0.476 0.559 0.69 0.685 4 0.646 0.4575 0.54 0.60 0.664 4 5 0.507 0.4409 0.540 0.59 0.64 5 6 0.8 0.459 0.497 0.574 0.66 6 7 0.7 0.44 0.48 0.5577 0.6055 7 8 0.70 0.4000 0.468 0.545 0.5897 8 9 0.077 0.887 0.4555 0.585 0.575 9 0 0.99 0.78 0.448 0.555 0.564 0 0.94 0.687 0.49 0.504 0.5487 0.84 0.598 0.47 0.49 0.568 0.774 0.55 0.4 0.485 0.556 4 0.7 0.48 0.4044 0.476 0.55 4 5 0.65 0.65 0.96 0.46 0.505 5 6 0.598 0.97 0.88 0.454 0.4958 6 7 0.546 0. 0.809 0.445 0.4869 7 8 0.497 0.7 0.79 0.47 0.4785 8 9 0.45 0.5 0.67 0.497 0.4705 9 0 0.407 0.06 0.60 0.46 0.469 0 0.66 0.009 0.550 0.458 0.4556 0.7 0.960 0.494 0.409 0.4487 0.89 0.9 0.440 0.40 0.44 4 0.54 0.869 0.88 0.97 0.457 4 5 0.0 0.86 0.8 0.96 0.496 5 6 0.87 0.785 0.9 0.86 0.48 6 7 0.56 0.746 0.46 0.80 0.48 7 8 0.6 0.709 0.0 0.760 0.48 8 9 0.097 0.67 0.60 0.7 0.4076 9 40 0.070 0.68 0.0 0.665 0.406 40 4 0.04 0.605 0.08 0.6 0.978 4 4 0.08 0.57 0.044 0.578 0.9 4 4 0.99 0.54 0.008 0.56 0.887 4 44 0.970 0.5 0.97 0.496 0.84 44 45 0.947 0.48 0.940 0.457 0.80 45 46 0.95 0.455 0.907 0.40 0.76 46 47 0.90 0.49 0.876 0.84 0.7 47 48 0.88 0.40 0.845 0.48 0.68 48 49 0.86 0.77 0.86 0.4 0.646 49 50 0.84 0.5 0.787 0.8 0.60 50 60 0.678 0.44 0.54 0.997 0.0 60 70 0.550 0.98 0.5 0.776 0.060 70 80 0.448 0.85 0.99 0.597 0.864 80 90 0.64 0.745 0.07 0.449 0.70 90 00 0.9 0.654 0.966 0.4 0.565 00 0 klm