FORMULAE SHEET for STATISTICS II
|
|
- Νικόλαος Ιωαννίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS UNIFOM (DISCETE where b coss - Cse... : f ( ( E Vr( m m( m - Cse... m : f ( E ( Vr( m BENOULLI ~ B( θ f ( θ θ ( θ BINOMIAL ~ B( θ ( < θ < E ( θ Vr( θ ( θ f ( θ θ ( θ... ( < θ < E ( θ Vr( θ ( θ I( θ ow θ ( θ Properes: - ~ B( θ ( ~ B( θ - ~ B( θ depede (... ~ B( θ POISSON ~ Po( e f (...! ( > E ( ( Propreres: - Po( Vr I ( ~ depede (... ~ Po( - ~ B( θ wh lrge d smll θ he ~ Po( θ UNIFOM (CONTINUOUS ~ U( f ( < < ( E( Vr( NOMAL ~ N( µ f ( µ ep ( π < < < µ < < < E ( µ Vr( I ( µ ( ow I ( 4 (µ ow Properes: - Sdrd Norml Z ~ N( φ( z φ( z Φ( z Φ( z - ~ N( depede (... ( ~ N µ ~ N µ - ~ N( depede (... ~ N( µ µ µ µ
2 EPONENTIAL ~ E( ~ E( ~ G( f ( e > > F( e Properes: E ( Vr( I ( - ~ E( depede (... ~ G( d m ~ E( GAMMA ~ G( Gmm fuco: Γ( e d ( > where Γ( ( Γ( > Γ( (! e f ( Γ( Properes: > > E ( Vr( - ~ G( (... depede ~ G( I ( ow - ~ G( c ~ G c > cos c CHI-SQUAE ~ χ ( e f ( > > (eger Γ Properes: - ~ χ ( ~ G - χ ( ~ N( - ~ G( ~ χ ( E ( Vr ( - ~ ( depede (... ~ χ ( χ - ~ N( depede (... ~ ( χ ~ N( ~ χ ( STUDENT - T ~ ( Γ( π U T ~ ( where U ~ N( d V ~ χ ( (depede E ( T Vr ( T ( > V F-SNEDCO ~ F( m U / m F ~ F( m where U ~ χ ( m V ~ χ ( (depede V ( m E ( ( > Vr( ( > 4 m( ( 4 Properes: - ~ F( m ~ F( m - T ~ ( T ~ F( CENTAL LIMIT THEOEM AND COOLLAIES d wh E ( µ d Vr( ~ N( θ Corollry: ~ B( θ depede he ~ N( θ ( θ Couy correco: b θ θ P( b Φ Φ wh eger d b θ ( θ θ ( θ
3 Corollry: ~ Po( ~ N( whe Couy correco: P ( b b Φ Φ SAMPLING THEO. SAMPLING DISTIBUTIONS SAMPLE MEAN (AVEAGE AND VAIANCE S S S µ E ( Vr( E( S E ( SAMPLING DISTIBUTIONS NOMAL POPULATIONS ~ N( Me Mes dfferece ~ ( Kow vrces ( ( µ ~ N( m Uow bu equl vrces T ( µ ~ ( m ( m ( S m m Vrce S ( ~ χ ( Vrce ro ~ F( m or ~ F( m Z Pred smples ~ ( Z ( - pred smple Z Z LAGE SAMPLES: GENEAL CASE Me ~ N( Mes dfferece ( ( µ ~ m N ( ~ N( / ( ( µ ~ ' ' S S m N ( LAGE SAMPLES: BENOULLI POPULATIONS Proporo Dfferece of proporos Equly of proporos θ ~ N( θ ( θ θ ~ N ( ( ( θ θ ( θ θ ~ N( ~ N( θ( θ θ ( θ ( ( m m ~ N ( where θ( θ m θ m m 3
4 LAGE SAMPLES: POISSON POPULATIONS Me Mes dfferece Equly of mes ~ N( ~ N( ( ( ~ N( ~ N( m m ~ N( where m m m χ TEST-STATISTIC GOODNESS-OF-FIT TEST m ( N fe Q ~ χ ( m fe po fe Whe prmeers re esmed o ob INDEPENDENCE TEST: r s ( N fe Q ~ χ (( r ( s fe - epeced frequecy for clss he: Q~ χ ( m p o fe NoNo - epeced frequecy for clss LINEA EGESSION MODEL (LM u... y u y... OLS (ordry les sqes esmor Geerl cse Specl cse: y u T T ( y y y... u y y u ( V r( T ( Vr( SST ( Noe: - Vr ( (... y u ( y ( Vr ( from he regresso of u ( o ll remg regressors SST (. 4
5 Properes:. u (model wh ercep. u ( y u 4. y y (model wh ercep u coeffce: ( ( y y( y y r y y ( y ( y y y where ry y coeffce he model wh ercep: SST SSE SS SST SSE SST SS SST ( y y SSE s he correlo coeffce bewee y d ŷ ( y y SS u SS /( (. SST /( STATISTICAL INFEENCE IN THE LM: y ~ N( u ~ N( ~ ( ( N Vr u ( ~ χ ( ( ~ ( or F ~ F( ( se Specl cses: H : H ~ ( : ~ ( Tes of q ler resrcos o he regresso coeffces H : r Noe: SSr SS F ~ F( q SS q r SS sum of sqed resduls for he resrced model (mposg he q ler resrcos SS sum of sqed resduls for he esrced model. Specl cses Oe resrco (q H r H : θ where θ r r ~ ( Vr ( Tes of zero slopes : F ~ F( θ or ~ ( where θ r θ 5
6 Tes for o sgfcce of q regressors SSr SS F ~ F( q SS q or r F ~ F( q q Noe: r coeffce for he resrced model coeffce for he esrced model HETEOSKEDASTICIT: T T T T T T Vr( ( Vr( u ( ( ( Whe robus esmor (heerosedscy-cosse vrce esmor T T T V r( ( u (. Iferece o : ~ ( * se ( * where se ( heerosedscy-cosse sdrd error Heerosedscy es: u LM es-ssc: LM ~ χ ( p where d p re respecvely he coeffce d he umber of regressors of he ddol regresso for he es. u PEVISION (FOECAST Averge forecs: E ( y θ θ... θ θ ~ ( θ θ Po forecs: y y ~ ( ( se θ y... u y... θ Depede vrble he logrhmc scle - log(y : l og y... - f u ~ N ( y ep( / ep(log y - oher cses y ep(log y where s esmed ddol regresso ESET TEST (FUNCTIONAL FOM SPECIFICATION y... δ y u - es H : δ 3 y... δ y δ y u - es H δ δ : 6
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
On mixing generalized poison with Generalized Gamma distribution
34 WALFORD I.E. CHUKWU(*) and DEVENDRA GUPTA (**) On mixing genealized poison with Genealized Gamma distibution CONTENTS: Intoduction Mixtue. Refeences. Summay. Riassunto. Key wods (*) Walfod I.E. Chukwu
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Chapter 15 Identifying Failure & Repair Distributions
Chape 5 Idefyg Falue & Repa Dsbuos Paamee Esmao maxmum lkelhood esmao C. Ebelg, Io o Relably & Maaably Chape 5 Egeeg, d ed. Wavelad Pess, Ic. Copygh 00 Maxmum Lkelhood Esmao (MLE) Fd esmaes fo he dsbuo
α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η
# η &, ε ε 007, ιη Pearson r "η η ι ι ι η ι!ι ι ι η ι η!ηη ι ι!ηη. η ι ιηη ι" η ι!"ι 0 ι η ( α ι ι α η 9 ( ι ι / + -predctor varable). * ι ι ι ι η ι ι ι!ηη η "ι ι ι ι!ηη η ι ι η η ι 'ι ι ι (η ) ι η ( "
List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)
List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS
χ 2 test ανεξαρτησίας
χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall
64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum
Probability and random variables: Bernoulli trials; Poisson Stochastic Processes: independent increments; Wiener & Poisson
ΠΜΣ 54 Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων Ιωάννης Σταυρακάκης Αντώνης Παναγάκης Bc o Sochc rocee clug Mrov Bc Newor Moelg erormce vluo Deg Μοντελοποίηση και Αναλυση Απόδοσης Δικτύων - Ιωάννης Σταυρακάκης
x y max(x))
ΚΕΦΑΛΑΙΟ 0 Απλή Γραµµική Παλινδρόµηση Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Ένα Πρόβληµα εδοµένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 y 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Έχει σχέση το yµε το ; Ειδικότερα
Probabilistic Image Processing by Extended Gauss-Markov Random Fields
Pobablsc mage Pocessng b Eended Gauss-Makov Random Felds Kauuk anaka Munek asuda Ncolas Mon Gaduae School of nfomaon Scences ohoku Unves Japan and D. M. engon Depamen of Sascs Unves of Glasgow UK 3 Sepembe
ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ,
ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ, --0 Άσκηση. Τα παρακάτω δεδομένα προέρχονται από μετρήσεις του δείκτη του σακχάρου στο αίμα 0 ποντικών που εξετάσθηκαν: ) υπό κανονικές συνθήκες, ) μετά από ένεση ptre, ) μετά από ένεση
ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.
ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται
Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science
Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
TL-Moments and L-Moments Estimation for the Generalized Pareto Distribution
Applied Mathematical Sciences, Vol. 3, 2009, no. 1, 43-52 TL-Moments L-Moments Estimation fo the Genealized Paeto Distibution Ibahim B. Abdul-Moniem Madina Highe Institute fo Management Technology Madina
A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION
TAIWANESE JOURNAL OF MATHEMATICS Vol 8, No 5, pp 65-66, Ocober 04 DOI: 0650/m804665 Th paper avalable ole a hp://ouralawamahocorw A NOTE ON ENNOLA RELATION Jae Moo Km ad Jado Ryu* Abrac Eola ve a example
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης
Chapter 3 Diode and Thyristor Rectifiers
Cher Doe Thyror Recfer Dewe(D) Xu De. of Elecrcl & Comuer Egeerg Ryero Uery Coe Sgle-he hree-he oe recfer Hrmoc oro New efo of ower fcor Dlceme fcor oro fcor Sgle-he hree-he SCR recfer Mcroroceor corol
Chapter 7a. Elements of Elasticity, Thermal Stresses
Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess;
S 5 S 1 S 2 S 6 S 9 S 7 S 3 S 4 S 8
4.9.. HM-..,,.... :, HM-,,,,.... " " - ",.. " ".,,,,,,.,,.,,..,.,. Byfy, Zaa..,,.. W-F-,, (W-F -. :,,, -,,,,,.,, :, (, W-F, (Byfy, Zaa, GSM,..,.,, (...,,,. HM(Howad-Maays- [5, 6, 9, ],. S S 5 S 9 S S 6
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Poisson Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +
Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie
ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
ο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x
η &, ε ε 007!# # # ι, ι, η ιι ι ι ι ι η (.. ι, η ι η, ι & ι!ι η 50, ι ηιη 000 ι, ι, ',!,! )!η. (, ηι, ι ι ι ι "!η. #, ι "ι!η ι, ηι, ι ι ι η. ι, ι ι, ' ι ι ι η ι ι ι ι # ι ι ι ι ι 7. ο),,),--,ο< $ι ιι!η
RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:
G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.
t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120
t-ditribution t X x μ = where x = ν FD ν FD t a (ν) 0 t-ditribution normal ditribution for ν>0 a/ a/ -ta ta ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ (freedom degree) Βαθμοί ελευθερίας (ν): ο αριθμός των ανεξάρτητων μετρήσεων
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B
Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c &&
Statistical Inference
Statistical Inference ANOVA - Nonparametric Statistics Sonia Malefaki Department of Mechanical Engineering & Aeronautics University of Patras, Greece. : 2610 997673, : smalefaki@upatras.gr March 14, 2017
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ
Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ5 1 4 3 3 4 4 5 4 5 4 2 5 5 4 5 4 4 3 5 4 3 2 1 3 2 3 3 4 3 3 4 2 3 3 2 4 4 4 3 4 5 2 3 2 2 3 3 3 3 3 6 3 3 3 3 4 4 4 5 4 7 4 3 3 4 3 3
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)
Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ Ή ΔΙΑΚΥΜΑΝΣΗΣ (ANALYSIS OF VARIANCE VARIANCE ANALYSIS ANOVA ANOVA
ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ Ή ΔΙΑΚΥΜΑΝΣΗΣ (ANALYSIS OF VARIANCE VARIANCE ANALYSIS ANOVA ANOVA Αγλαΐα Καλαματιανού ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΑΛΙΑΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΙΙ: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ ΔΙΜΕΤΑΒΛΗΤΗΣ ΚΑΙ ΠΟΛΥΜΕΤΑΒΛΗΤΗΣ
Gaussian related distributions
Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π
Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1
Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s
Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.
Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
BarChart y 1, y 2, makes a bar chart with bar lengths y 1, y 2,.
In[]:= In[]:= In[3]:= In[4]:= In[5]:= Out[5]= r : Random ri : Random Integer rdice : Random Integer,, 6 disp : Export "t.ps",, "EPS" & list Table rdice, 0 5,, 4, 6,, 3,, 3, 4,, 6, 4, 6,,, 6, 6,, 3, In[6]:=
Θέματα Στατιστικής στη γλώσσα R
Θέματα Στατιστικής στη γλώσσα R Ποσότητες οδηγοί και τα ποσοστιαία σημεία των αντίστοιχων κατανομών Ν(0,1) Student s t X 2, F Διαστήματα εμπιστοσύνης-έλεγχοι Υποθέσεων ένα δείγμα για τη μέση τιμή κανονικής
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
7. Ανάλυση Διασποράς-ANOVA
7. Ανάλυση Διασποράς-ANOVA Παράδειγμα Μετρήσεις της συγκέντρωσης του strodum (mg/ml) σε πέντε υδάτινες περιοχές (Α,Β,C,D,Ε). Α Β C D Ε 8, 39,6 46,3 4,0 56,3 33, 40,8 4, 44, 54, 36,4 37,9 43,5 46,4 59,4
Δεδομένα (data) και Στατιστική (Statistics)
Δεδομένα (data) και Στατιστική (Statistics) Η Στατιστική (Statistics) ασχολείται με την ανάλυση δεδομένων (data analysis): Πρόσφατες παιδαγωγικές εξελίξεις υποδεικνύουν ότι η Στατιστική πρέπει και να διδάσκεται
Μοντζλα ςταθερών και τυχαίων επιδράςεων. Κατςιλζροσ Αναςτάςιοσ
Μοντζλα ταθρών και τυχαίων πιδράων Κατιλζροσ Ανατάιοσ 08 Ανάλυη μοντζλου ταθρών πιδράων μ ζνα παράγοντα Αν ο ρυνθτισ πιλζγι να χρθιμοποιιι το πίραμα του κάποια υγκκριμζνα πίπδα νόσ παράγοντα και τα υμπράματα
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
Perturbation Series in Light-Cone Diagrams of Green Function of String Field
Petuto Sees ht-coe Dms of ee Fucto of St Fel Am-l Te-So Km Chol-M So- m Detmet of Eey Scece Km l Su Uvesty Pyoy DPR Koe E-y Km l Su Uvesty Pyoy DPR Koe Detmet of Physcs Km l Su Uvesty Pyoy DPR Koe Astct
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενική μορφή g( E[ Y X ]) Xb Κατανομή της Υ στην εκθετική οικογένεια Ανεξάρτητες παρατηρήσεις Ενας όρος για το σφάλμα g(.) Συνδετική συνάρτηση (link function)
Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC
Pulrik A. D. Diribui, Del Fuci The Hbk f Frmul Tble fr Sigl Prceig. E. Aleer D. Pulrik Bc R: CRC Pre LLC, 999 5 Diribui, Del Fuci 5. Te Fuci 5. Diribui 5.3 Oe-Dimeil Del Fuci 5.4 Emple 5.5 Tw-Dimeil Del
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution
L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)
SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12
SHORT REVISION Trigoometric Rtios & Idetities BASIC TRIGONOMETRIC IDENTITIES : ()si θ + cos θ ; si θ ; cos θ θ R (b)sec θ t θ ; sec θ θ R (c)cosec θ cot θ ; cosec θ θ R IMPORTANT T RATIOS: ()si π 0 ; cos
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL3 1 5 5 4 4 4 3 4 3 4 3 4 5 2 4 4 3 5 4 4 4 4 5 4 3 4 3 2 2 3 2 3 3 3 3 4 2 3 2 4 4 4 5 3 4 4 4 3 4 4 5 4 5 5 5 4 2 3 3 3 4 3