ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΘΕΜΑ Α (25 µον αδες) ΘΕΜΑ Β (25 µον αδες) η µοναδικ ΘΕΜΑ Γ (25 µον αδες) κοιν



Σχετικά έγγραφα
[ S Θ εµα Γ: Ενα σ υστηµα F σωµατιδ ιων, το καθ ενα µε µ αζα HG (I KJ!!LLLM! F ), κινο υνται π ανω σε µια κυκλικ η στεφ ανη ακτ ινας N. Η γωνιακ η θ ε

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΘΕΜΑ Α ΘΕΜΑ Β

Θ εµα Α : Θ εµα Β : Θ εµα Γ :

& N. Εστω µια ακολουθ ια απ ο οµ οκεντρους πολ υ λεπτο υς σφαιρικο υς φλοιο υς µε αντ ιστοιχες ακτ ινες "M " 6 "ONP Q Q Q RS"MTU και µ αζες " Q Q Q RV


υσεισ Θ εµα Α : Θ εµα Β :

V eff. (r) r = L z. Veff( )=λ 2 /2

Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΦΟΡΙΚΗΣ ΙΑΤΟΜΗΣ ΣΚΕ ΑΣΗΣ Η εννοια της διαφορικ ης διατοµ ης σκ εδασης Εστω οτι µ ια παρ αλληλη δ εσµη σωµατιδ ιων βοµ αρ

12:00 12:05 12:00 12:03

Κεφ αλαιο οτε ενα συναρτησοειδ εσ καθ ισταται στ ασιµο

7.2 Κ ινηση φορτισµ ενου σωµατιδ ιου σε οµογεν εσ ηλεκτρικ ο και µαγνητικ ο πεδ ιο

Προσεγγιστικ οσ προσδιορισµ οσ τησ θεµελει ωδουσ ταλ αντωσησ µι ασ αλυσ ιδασ

Κεφ αλαιο Η Λαγκρανζιαν η και το φυσικ ο τησ περιε- οµενο

Gottfried Wilhelm Leibniz

Κεφ αλαιο Απειροστ ες στροφ ες διαν υσµατος

[ ` + = [ + + q τροχι ας ε ιναι: \ / : : 98< D "!$# ) + 3.W/X 1G &% ' & 98 + &Z W /0 98< \> /0 98< [ & 98 W + / : : 98 + \ / : : 98 / : : 98 $]^ ε αφο

που δεν περιγρ αφεται οµως οπως προηγουµ ενως ως ενα απλ ο ηµ ιτονο, αλλ α ως ενα αθροισµα ηµιτονοειδ ων ορων. Παρ αδειγµα: Εστω:


Albert Einstein. Lagrange

Κεφ αλαιο Απ ο τη δυναµικ η στη στατικ

1 Πολυπολικ η αν απτυξη του βαρυτικο υ δυναµικο υ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

JEAN-CHARLES BLATZ 02XD RE52755

Κεφ αλαιο 3. Αν αλυση µετρ ησεων και αποτελ εσµατα. 3.1 Μ εθοδος αν αλυσης δεδοµ ενων

613/97 ( 2 ) 2078/92,

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ

Επ ισηµη Εφηµερ ιδα των Ευρωπα ικ ων Κοινοτ ητων L 14/9

ΠΟΛΛΑΠΛΗ ΠΡΟΣΒΑΣΗ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗΣ ΤΟΠΟΛΟΓΙΑΣ. Χρ ηστος Παπαχρ ηστου Επι λ επουσα καθηγ ητρια: Φωτειν η-νι ο η Παυλ ιδου

FAX : spudonpe@ypepth.gr) Φ. 12 / 600 / /Γ1

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ

, σ. 11).»

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

20/5/ /5/ /5/ /5/2005

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ


ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς.

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Φυσική για Μηχανικούς

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

των δύο σφαιρών είναι. γ.

Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η. ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου τηλ:210/ /

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ.

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Ενδεικτικές Λύσεις. Θέµα Α

Α Α Α Α Α Α Α Α Α Α Α Ο

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - Γ ΛΥΚΕΙΟΥ

συντονισµός δ. όταν η συχνότητα της διεγείρουσας δύναµης συµπέσει µε την ιδιοσυχνότητα του συστήµατος, το πλάτος γίνεται ελάχιστο 4. Κατά τη σκέδαση 2

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η. ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου τηλ:210/ /

Θέµατα Πανελληνίων Φυσικής Κατ ο Κεφάλαιο (µέχρι και Στάσιµα)

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Β έκδοση Θέµα Α

ι λ γεται τετραγωνικη ρ ζα εν Θετικ αριθμ α και πι υμβ λ ζεται αυτη και τραιτεζι με ΔΓ Δ ην πλευρ ΔΓ

Φυσική για Μηχανικούς

vi) Η δύναµη που δέχεται το σώµα στο σηµείο Ν έχει µέτρο 4Ν και

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φυσική. Ενότητα # 6: Βαρυτικό Πεδίο

Θέμα 1 ο (Μονάδες 25)

Κρούσεις. 1 ο ΘΕΜΑ.

15SYMV

Φυσική για Μηχανικούς

Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ÄÉÁÍüÇÓÇ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις

Βαρύτητα Βαρύτητα Κεφ. 12

αναλυτικός απλός 1 Ο αναλυτικός βλέπει τον κόσμο σαν να αποτελείται από πολλά μικρά κομμάτια.

Πτερυγιοφόροι σωλήνες

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ. Εξέταση στη Μηχανική Ι 2Σεπτεµ ρρίου2008

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΘΕΜΑΤΑ Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι δεκτή

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 2011

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003

3. Εγκάρσιο γραμμικό κύμα που διαδίδεται σε ένα ομογενές ελαστικό μέσον και κατά την

Προτ υπου (Minimal Supersymmetric Standard Model, MSSM).

d u d dt u e u d dt e u d u 1 u dt e 0 2 e

Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

Η ούσια εκ των οτέ ων ιαφά ια.

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α

ΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ

Πειραµατικ ες διατ αξεις και µετρ ησεις

ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ

Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό των ερωτήσεων και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Μονάδες 5 2. Στο διπλανό σχήµα φαίνεται το

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξ εταση στη Μηχανικ η Ι 6 Σεπτεµ ρ ιου 2005 Τµ ηµα Π Ιω αννου & Θ Αποστολ ατου Απαντ ηστε και στα 4 Θ εµατα µε σαφ ηνεια και απλ οτητα Οι ολοκληρωµ ενες απαντ ησεις εκτιµ ωνται ιδιαιτ ερως Καλ η σας επιτυχ ια ΘΕΜΑ Α (25 µον αδες) 1 Γρ αψτε το ενεργ ο δυναµικ ο για ενα κεντρικ ο πεδ ιο που δι επεται απ ο δυναµικ ο της µορφ ης 2 Υπολογ ιστε τη συχν οτητα της κυκλικ ης κ ινησης, ακτ ινας, εν ος σωµατιδ ιου σε ενα τ ετοιο δυναµικ ο Υπολογ ιστε ακ οµη τη στροφορµ η του σωµατιδ ιου στην τροχι α αυτ η 3 Αναπτ υσσοντας το ενεργ ο δυναµικ ο γ υρω απ ο την ακτ ινα και κρατ ωντας την ιδια τιµ η της στροφορµ ης του σωµατιδ ιου υπολογ ιστε τη συχν οτητα µικρ ων ακτινικ ων ταλαντ ωσεων του σω- µατιδ ιου 4 Για ποι ες τιµ ες της παραµ ετρου οι δ υο συχν οτητες των ερωτηµ ατων (2) και (3) εχουν ρητ ο λ ογο ; Εξηγ ηστε ποια ε ιναι η συν επεια εν ος τ ετοιου αποτελ εσµατος στο σχ ηµα της τροχι ας ΘΕΜΑ Β (25 µον αδες) υο αστεροειδε ις περιφ ερονται γ υρω απ ο τον Ηλιο σε κλειστ ες τροχι ες που διαγρ αφονται στο ιδιο επ ιπεδο Κ αποια στιγµ η και οι δ υο αστεροειδε ις βρ ισκονται σε ιδια απ οσταση,, απ ο τον Ηλιο και οι αντ ιστοιχες επι ατικ ες ακτ ινες σχηµατ ιζουν µεταξ υ τους γων ια Τη στιγµ η αυτ η οι ταχ υτητες των δ υο αστεροειδ ων ε ιναι και οι δ υο και ε ιναι κ αθετες στις αντ ιστοιχες επι ατικ ες ακτ ινες ( ε ιναι η µ αζα του Ηλιου και κ αποιος πραγµατικ ος θετικ ος αριθµ ος) 1 Τι τροχι α διαγρ αφει ο καθ ενας απ ο τους δ υο αστεροειδε ις ως συν αρτηση της τιµ ης της παρα- µ ετρου ; Εξαρτ αται το σχ ηµα της τροχι ας απ ο τη µ αζα του κ αθε αστεροειδ η ; (Θεωρ ηστε οτι η µοναδικ η δ υναµη που ασκε ιται στους αστεροειδε ις ε ιναι η βαρυτικ η ελξη του Ηλιου εν ω η µεταξ υ τους ελξη καθ ως και η ελξη απ ο τους αλλους πλαν ητες θεωρε ιται αµελητ εα) 2 Σχεδι αστε ποιοτικ α την εξ ελιξη της απ οστασης µεταξ υ των αστεροειδ ων ως συν αρτηση του χρ ονου δε ιχνοντας µε ενα σχ ηµα σε ποιες θ εσεις της τροχι ας τους βρ ισκονται οι αστεροειδε ις στο µ εγιστο και στο ελ αχιστο της µεταξ υ τους απ οστασης 3 Υπολογ ιστε το λ ογο της µ εγιστης προς την ελ αχιστη απ οσταση µεταξ υ των αστεροειδ ων ως συν αρτηση της τιµ ης της παραµ ετρου 4 Εξηγ ηστε γιατ ι οι ακρα ιες τιµ ες της ε ιναι αυτ ες που βρ ηκατε, γιατ ι στις τιµ ες αυτ ες ο λ ογος των αποστ ασεων τε ινει στο απειρο και γιατ ι οταν η ε ιναι µον αδα ο λ ογος πα ιρνει την ελ αχιστη τιµ η του Ποια ε ιναι αυτ η ; ΘΕΜΑ Γ (25 µον αδες) υο γραµµικο ι αρµονικο ι ταλαντωτ ες µπορο υν να κινο υνται επ ι της ιδιας ευθε ιας δ ιχως τρι ες εχοντας κοιν ο κ εντρο ταλ αντωσης Οι δ υο ταλαντωτ ες εχουν µ αζες #" % και σταθερ ες ελατηρ ιων &" αντ ιστοιχα, διαφορετικ ες µεταξ υ τους αλλ α µε κοιν ο λ ογο % Αρχικ α ο αριστερ ος ταλαντωτ ης (ο 2) βρ ισκεται ακ ινητος στη θ εση ισορροπ ιας του, εν ω ο δεξι ος ταλαντωτ ης (ο 1) αφ ηνεται ακ ινητος απ ο τη θ εση ' 1

1 Εξηγ ηστε γιατ ι οι ταλαντωτ ες θα συνατιο υνται και θα συγκρο υονται π αντα στο κοιν ο σηµε ιο ισορροπ ιας τους (Η σ υγκρουση θεωρε ιται ελαστικ η) 2 Υπολογ ιστε τα πλ ατη της ταλ αντωσ ης τους µετ α την πρ ωτη ελαστικ η κρο υση 3 Υπολογ ιστε τα πλ ατη της ταλ αντωσ ης τους µετ α και τη δε υτερη κρο υση Εξηγ ηστε απ ο µαθη- µατικ ης αποψης γιατ ι τα πλ ατη αυτ α ε ιναι ιδια µε τα αρχικ α (' και 0 αντ ιστοιχα) [Υποδ Τι ε ιδους σ υστηµα εξισ ωσεων λ υνει κανε ις για να υπολογ ισει τις ταχ υτητες µετ α απ ο κ αθε κρο υση ;] 4 Σχεδι αστε τα διαγρ αµµατα φ ασης των δ υο ταλαντωτ ων 5 Ο αριστερ ος ταλαντωτ ης, και γενικ α το δι αστηµα αριστερ α απ ο το σηµε ιο ισορροπ ιας, ε ιναι κρυµ- µ ενος π ισω απ ο ενα π ετασµα Για ποιο υς λ ογους µαζ ων αυτ ο που βλ επουµε δεν µπορο υµε να το ξεχωρ ισουµε απ ο την κ ινηση εν ος µ ονο απλο υ αρµονικο υ ταλαντωτ η του οπο ιου δεν φα ινεται το αριστερ ο µ ερος ; () θα εξακολουθ ησουµε (στην περ ιπτωση που ισχ υει το ερ ωτηµα (5)) να νοµ ιζουµε πως παρακολουθο υµε το ηµισυ της ταλ αντωσης εν ος απλο υ αποσ υν οµενου ταλαντωτ η ; 6 Αν οι δ υο ταλαντωτ ες εχουν απ οσ εση µε κοιν ο συντελεστ η απ οσ εσης ( m 0 x ΘΕΜΑ (25 µον αδες) *,+- 1 Υπολογ ιστε το δυναµικ ο κατ α µ ηκος του αξονα συµµετρ ιας εν ος ηµισφαιρικο υ φλοιο υ συνολικ ης µ αζας + και ακτ ινας, ως συν αρτηση της απ οστασης απ ο το κ εντρο της σφα ιρας 2 Στη συν εχεια υπολογ ιστε τη δ υναµη που ασκε ιται απ ο το φλοι ο σε µια σηµειακ η µ αζα Ποι α η τιµ η του ορ ιου αυτ ης της δ υναµης οταν η σηµειακ η µ αζα πλησι αζει την επιφ ανεια του φλοιο υ ; 3 Με γεωµετρικ α επιχειρ ηµατα δε ιξτε οτι η βαρυτικ η δ υναµη που ασκε ιται στην, οταν αυτ η βρ ισκεται στο εσωτερικ ο του φλοιο υ, οφε ιλεται µ ονο στην πλησι εστερη µ αζα του ηµισφαιρ ιου (παχι α γραµµ η στο σχ ηµα), που περικλε ιεται στον κ ωνο που αποκ οπτουν οι χορδ ες οι οπο ιες δι ερχονται απ ο την περιφ ερεια του ηµισφαιρ ιου και απ ο τη θ εση της 4 ε ιξτε οτι στο οριο που η προσεγγ ιζει το φλοι ο, αποµ ενει να ασκε ι βαρυτικ η ελξη µ ονο ο απειροστ ος, σχεδ ον επ ιπεδος κυκλικ ος δ ισκος, ο οπο ιος εχει ακτ ινα οση και η σχεδ ον µηδενικ η απ οσταση της απ ο το φλοι ο 5 Υπολογ ιστε το δυναµικ ο απ ο εναν επ ιπεδο κυκλικ ο δ ισκο σταθερ ης επιφανειακ ης πυκν οτητας κατ α µ ηκος του αξονα αυτο υ και σε απ οσταση τ οση οση και η ακτ ινα του κ υκλου και στη συν εχεια υπολογ ιστε την αντ ιστοιχη δ υναµη σε µια µ αζα ε ιξτε οτι στο οριο της µηδενικ ης απ οστασης πα ιρνετε ακρι ως το αποτ ελεσµα του ερωτ ηµατος (3) 2

W = s C D c ΘΕΜΑ Α 1 0/&/ 21 3547698<; = 0> 3 0/&/ # BA 2 Απ ο @ και C D βρ ισκουµε FE Απαντ ησεις H FN H PO M H LK)M 3 Αναπτ υσσοντας µ εχρι 2η τ αξη αφο υ η πρ ωτη παρ αγωγος ε ιναι 0 πα ιρνουµε 0/&/Q @RB# S0/&/Q & VUW Αντικαθιστ ωντας την τιµ η της C 0/&/Q @RB# S0/&/Q & C YX ^U Z H PO M [ H I PO M [ & & και συνεπ ως η συχ- Ο συντελεστ ης σκληρ οτητας του αρµονικο υ ταλαντωτ η ε ιναι λοιπ ον ` ν οτητα ακτινικ ων ταλαντ ωσεων ε ιναι 4 Ο λ ογος των δ υο συχνοτ ητων ε ιναι A " ΘΕΜΑ Β D 3 dn H I " e " κλπ) η τροχι α ε ιναι κλειστ η H I O M ]\ _\ &HO LK)M 3Lb 698 =Ha 1 &HO Οταν αυτ ος ο λ ογος ε ιναι ρητ ος (πχ για I 1 Και οι δ υο διαγρ αφουν ελλλειψη και µ αλιστα ιδιου σχ ηµατος Για να ε ιναι κλειστ η η τροχι α θα ( =ταχ υτητα διαφυγ ης) Η µ αζα του αστεροειδ η δεν πα ιζει καν ενα ρ ολο Οι 2 ιδιες ελλε ιψεις σχηµατ ιζουν γων ια (οι µεγ αλοι τους ηµι αξονες) πρ επει gf e 2 Αφο υ θα κινο υνται επ ι ιδιων ελλειπτικ ων τροχι ων κ αθε στιγµ η θα σχηµατ ιζουν (µε τον Ηλιο) ενα ισοσκελ ες τρ ιγωνο γων ιας και πλευρ ας οση η επι ατικ η ακτ ινα του καθεν ος i,j5,j5lk5m7n@ Αφο υ η,j5 ακολουθε ι µια ταλαντωτικ η κ ινηση µε ελ αχιστο στο περι ηλιο και µ εγιστο στο αφ ηλιο αντ ιστοιχη ταλ αντωση θα εκτελε ι και η απ οσταση των αστεροειδ ων 3 Σ υµφωνα µε τα προηγο υµενα ε ιναι ο λ ογος αφηλ ιου περι ηλιο Για να τον υπολογ ισουµε χρησιµοποιο υµε διατ ηρηση εν εργειας και στροφορµ ης για τις δ υο αυτ ες θ εσεις (επειδ η δεν γνωρ ιζουµε αν η αρχικ η θ εση ε ιναι περι ηλιο η αφ ηλιο -επι ατικ η θ εση κ αθετη στην ακτ ινα- τις δ υο θ εσεις ασχετα τι ε ιναι η καθεµ ια τις ονοµ αζουµε " ) Λ υνοντας βρ ισκουµε opb " ps 9 ο λ ογος ε ιναι µικρ οτερος του 1 ( = περι ηλιο) εν ω αν rf Ετσι αν rq ο λ ογος ε ιναι µεγαλ υτερος 9 του 1 ( = αφ ηλιο) Συνεπ ως ο λ ογος µ εγιστης προς ελ αχιστη απ οσταση αστεροειδ ων ε ιναι και s αν tf K s αν tq 3

' A ' A ' ua 4 Ο παραπ ανω λ ογοι απειρ ιζονται για Στην 1η περ ιπτωση η τροχι α µετατρ επεται σε παρα ολ η οπ οτε δεν κλε ινει και οι αστεροειδε ις συνεχ ως αποµακρ υνονται και στη 2η περ ιπτωση οι αστεροειδε ις π εφτουν ακτινικ α στον Ηλιο οπ οτε πλησι αζουν συνεχ ως µεταξ υ τους µ εχρι να συγκρουστο υν Για v οι τροχι ες ε ιναι κυκλικ ες και οι αστεροειδε ις κρατο υν σταθερ η απ οσταση ο ενας απ ο τον αλλο ΘΕΜΑ Γ 1 Αφο υ οι 2 συχν οτητες ε ιναι ιδιες θα ε ιναι ιδιες και οι περ ιοδοι και οι ηµιπερ ιοδοι Αν συγκρουστο υν λοιπ ον αρχικ α στο σηµε ιο ισορροπ ιας τους οτι ταχ υτητα και αν εχουν µετ α (θετικ η η αρνητικ η) θα ξανακαταλ ηξουν στο ιδιο σηµε ιο µετ α απ ο µια ηµιπερ ιοδο 2 Απ ο διατ ηρηση εν εργειας και ορµ ης βρ ισκουµε Μετ α τη σ υγκρουση θα εχουµε D % % y % % %w %o x" " ' (1) % D % 3 Αφο υ οι ιδιες εξισ ωσεις ισχ υουν και για τις διστονες ταχ υτητες (µετ α τη δε υτερη κρο υση) και το σ υστηµα ε ιναι δευτ ε ρου βαθµο υ θα εχει το πολ υ δ υο σετ λ υσεων, αυτ ες που βρ ηκαµε προηγου- µ ενως και τις αρχικ ες ταχ υτητες εποµ ενως και τα αρχικ α πλ ατη 4 Τα διαγρ αµµατα φ ασης ε ιναι ηµικ υκλια ( η ηµι ελλειψη εξαρτ αται απ ο την κλ ιµακα των αξ ονων) για τον κ αθε ταλαντωτ η για την κ αθε ηµιπερ ιοδο Αν qz% ο πρ ωτος ταλαντωτ ης διαγρ αφει ενα ηµικ υκλιο δεξι α και ενα µικρ οτερο αριστερ α Αν fd% ο πρ ωτος ταλαντωτ ης διαγρ αφει ενα ηµικ υκλιο δεξι α και ενα µικρ οτερο π αλι δεξι α Και στις 2 περιπτ ωσεις ο δε υτερος ταλαντωτ ης διαγρ αφει π αντα ενα αριστερο ηµικ υκλιο ερχεται στο σηµε ιο ισορροπ ιας (κ εντρο) και περιµ ενει εκε ι µ εχρι να τον ξαναχτυπ ησει ο 1 µετ α απ ο µια ηµιπερ ιοδο για να ξαναγρ αψει το ιδιο ηµικ υκλιο 5 Οπως ε ιπαµε για q_% ο 1 ταλαντωτ ης περν α τη µισ η περ ιοδο π ισω απ ο το π ετασµα οπ οτε φα ινεται η δεξι α πλευρ α της ταλ αντωσης η οπο ια δεν διαφ ερει απ ο το µισ ο µιας απλ ης αρµονικ ης ταλ αντωσης 6 Οι συχν οτητες θα αλλ αξουν αλλ α θα ε ιναι π αλι ισες µεταξ υ τους, οπ οτε π αλι για την ιδια σχ εση µαζ ων θα παρακολουθο υµε το µισ ο µιας απλ ης αποσ υν οµενης αρµονικ ης ταλ αντωσης ΘΕΜΑ Γ 1 *,+-{ ^ @} i)~ Y Y ^k5m7nƒ i J 9 e + + Z k οπου } η επιφανειακ η πυκν οτητα µ αζας, και + η γων ια που σχηµατ ιζει η επι ατικ η ακτ ινα του κ αθε δακτυλ ιου µε τον αρνητικ ο αξονα των Μετ α απ ο πρ αξεις καταλ ηγουµε στο αποτ ελεσµα,+-{ + ˆ + e + wš η οπο ια ε ιναι σωστ η και για + q και για + f 4

U + Œ [ Ž U [ 2 Στο οριο + Ž,,+- i i +,+% @{ = + K ^ e + e + + 3 Βλ σηµει ωσεις θεωρ ιας Οι επιφ ανειες του ηµισφαιρ ιου εκτ ος των δ υο κ ωνων που σχηµατ ιζονται ασκο υν µηδενικ ες συνολικ α βαρυτικ ες δυν αµεις Αποµ ενει µ ονο η παχι α επιφ ανεια να ασκε ι ελξη 4 Οταν η σηµειακ η µ αζα πλησι αζει τη σφαιρικ η επιφ ανεια οι χορδ ες τε ινουν να σχηµατ ισουν γων ια QỸ Οπ οτε η ελξη οφε ιλεται σε ενα απιειροστ ο δ ισκο ο οπο ιος βρ ισκεται σε απ οσταση οση η ακτ ινα του + 5 Απ ο δ ισκο ακτ ινας και σε απ οσταση απ ο το κ εντρο του *,+- @} Y i e + @} Y e + Bš+ š œ Ετσι η δ υναµη που ασκε ι ενας τ ετοιος δ ισκος στο οριο που γ ινεται µικροσκοπικ ος και αντιστο ιχως ερχεται απε ιρως κοντ α ε ιναι @} Y e Αν αντικαταστ ησει κανε ις την πυκν οτητα } του (2) ερωτ ηµατος + @} Y e Y της σαφ ιρας καταλ ηγει στο αποτ ελεσµα 5