V-BELTS. Rubber V-belts



Σχετικά έγγραφα
V-BELTS Rubber V-belts

Aluminum Electrolytic Capacitors (Large Can Type)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Aluminum Electrolytic Capacitors

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Homework 3 Solutions

[1] P Q. Fig. 3.1

index Megadyne PV-belts 2 Belt features and structure 3 Belt cross sections and dimensions 4 Pulleys 5 Standard belt range 6 Symbols, units, terms 8

Approximation of distance between locations on earth given by latitude and longitude

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Multilayer Ceramic Chip Capacitors

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

the total number of electrons passing through the lamp.

2 Composition. Invertible Mappings

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Surface Mount Aluminum Electrolytic Capacitors

Specification. code ±1.0 ±1.0 ±1.0 ±1.0 ±0.5 approx (g)

Thin Film Chip Resistors

1) Formulation of the Problem as a Linear Programming Model

Multilayer Ceramic Chip Capacitors

Lowara APPLICATIONS MATERIALS. General Catalogue

Design Manual for Power Transmission Belts

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Metal Oxide Varistors (MOV) Data Sheet

Lowara SPECIFICATIONS

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Strain gauge and rosettes

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

Other Test Constructions: Likelihood Ratio & Bayes Tests

EE512: Error Control Coding

Applications Water distribution

ALUMINUM ELECTROLYTIC CAPACITORS LKG

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

Homework 8 Model Solution Section

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

Instruction Execution Times

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Creative TEchnology Provider

Multilayer Chip Inductor

RC series Thick Film Chip Resistor

Operating Temperature Range ( C) ±1% (F) ± ~ 1M E-24 NRC /20 (0.05) W 25V 50V ±5% (J) Resistance Tolerance (Code)

Type selection. Type selection for pressure series from 100 dapa to 3150 dapa

Precision Metal Film Fixed Resistor Axial Leaded

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Sunlord Specifications subject to change without notice. Please check our website for latest information. Revised 2018/04/15

DATA SHEET Surface mount NTC thermistors. BCcomponents

C.S. 430 Assignment 6, Sample Solutions

Capacitors - Capacitance, Charge and Potential Difference

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

CRASH COURSE IN PRECALCULUS

5.4 The Poisson Distribution.

Metal thin film chip resistor networks

ECOL Motors In Aluminum Housing

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Concrete Mathematics Exercises from 30 September 2016

Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series. official distributor of

ST5224: Advanced Statistical Theory II

Section 8.3 Trigonometric Equations

Chilisin Electronics Singapore Pte Ltd

Areas and Lengths in Polar Coordinates

Ceramic PTC Thermistor Overload Protection

NMBTC.COM /

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

SMD Power Inductor-VLH

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

Group 30. Contents.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Calculating the propagation delay of coaxial cable

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Second Order RLC Filters

SMD Transient Voltage Suppressors

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

Matrices and Determinants

Inverse trigonometric functions & General Solution of Trigonometric Equations

Numerical Analysis FMN011

Anti-Corrosive Thin Film Precision Chip Resistor (PR Series)

1 Alumina Substrate 4 Edge Electrode (NiCr) 7 Resistor Layer (NiCr) 2 Bottom Electrode (Ag) 5 Barrier Layer (Ni) 8 Overcoat (Epoxy)

PRODUCT IDENTIFICATION SWPA 3012 S 1R0 N T

Math221: HW# 1 solutions

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

LR Series Metal Alloy Low-Resistance Resistor

Bulletin 1489 UL489 Circuit Breakers

DLG Series. Lowara SPECIFICATIONS APPLICATIONS ACCESSORIES MATERIALS. General Catalogue

2013 REV 01 ELECTRONICS CAPACITORS. DC Applications Metallized Polypropylene Film Self Healing

Second Order Partial Differential Equations

LR(-A) Series Metal Alloy Low-Resistance Resistor

DULUX L LUMILUX IMPROVED LIFETIME & SYSTEM GUARANTEE. DULUX L LUMILUX & QUICKTRONIC TECHNICAL INFORMATION

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Monolithic Crystal Filters (M.C.F.)

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Transcript:

V-BELTS Rubber V-belts

INDEX Introduction to V-belts 2 Product range 3 Technical calculation 4 Belt selection charts 7 Calculation example 8 Belt tensioning 9 Length measuring and groove pulleys 10 Storage maintenance and useful advices 12 Belt installation 13 Oleostatic 14 Gold Label COG Belt SP 22 Linea-X 26 Kompattex 30 Power Wedge 34 Varisect 38 Esaflex 42 XDV2 44 Pluriband 46 Extra 48 Useful formulas and conversion table 52

INTRODUCTION TO V-BELTS INTRODUCTION TO V-BELTS Megadyne V-belts have been used for decades in the most different industries and applications, giving drive solution to customers all over the world. Applied technology allows to reach so good dimensional precision in V-belts to make them suitable for multiple transmissions. This dimensional stability continues also during belt use. High variety of belt sizes available permits the application of Megadyne V-belt in a wide range of drive applications, such as: machine tools industrial washing machines textile machines continuous paper machines high power mills stone crushers 3 2 1 The main V-belt components are: 1) Belt body made of a special rubber compound which provides, due to its excellent mechanical characteristics, high transmission efficiency and assures a minimum rubber wear off; 2) Tensile member consisting in high-strength lowstretch cords, which grant stability over the belt life time; 3) Fabric jacket or cover made of fabric, protecting the tensile member and permitting the use of back side idler. MECHANICAL AND CHEMICAL FEATURES smooth starting and running wide range of driven speed low maintenance high efficiency extremely wide horsepower ranges dampen vibration between driver and driven pulleys silent operations long life service easy installation reduction in drive dimension working temperature range from -30 C to +80/90 C (see details in family pages) oil and heat resistance antistatic properties IDENTIFICATION CODE The code is composed of letters and numbers as follows: OLEOSTATIC A 52 1) OLEOSTATIC family name 2) A belt section code 3) 52 in inches 2

PRODUCT RANGE SECTIONS Z E A B C 45 D SECTIONS AX BX CX OLEOSTATIC Classical V-belts GOLD LABEL COG-BELT Raw-Edge classical V-belts SECTIONS SPZ SPA SPB SPC 19 SECTIONS XPZ XPA XPB XPC SP Wedge V-belts DIN LINEA-X Raw-Edge narrow V-belts DIN SECTIONS 3V 5V 8V SECTIONS 3VX 5VX 8VX KOMPATTEX Wedge V-belts RMA POWER WEDGE Raw-Edge narrow V-belts RMA VARISECT Variable speed V-belts SECTIONS 13x6 36x12 17x5 37x10 21x6,5 42x13 22x8 47x13 26x8 52x16 28x8 55x16 30x10 65x 33x10 70x XDV2 Xtra Duty V-belts SECTIONS XDV2-38 XDV2-48 XDV2-58 ESAFLEX Double V-belts SECTIONS AA BB CC PLURIBAND Banded V-belts SECTIONS A SPC B 3V C 5V SPZ 8V SPA 3VX SPB 5VX 3

TECHNICAL CALCULATION Symbol Unit Definition Symbol Unit Definition C γ correction factor C γ L p pitch (effective) C L correction factor C L n 1 speed of smaller pulley (faster) C c correction factor C c n 2 speed of bigger pulley (slower) d pitch diameter of smaller pulley P kw power to be transmitted D pitch diameter of bigger pulley P a kw actual power of the transmission I theoretical center distance P b kw basic performance of a single belt I e effective center distance P c kw corrected power i transmission ratio P d kw difference to P b due to K 1 L calculated pitch Q number of belts L e external (L p + e ) T s N static belt tension L i internal (L p - i ) v m/s peripheral belt speed γ arc of contact BELT SECTION Necessary data for selection of the belt section: P = power to be transmitted in kw n 1 = speed in of the smaller pulley n 2 = speed in of the bigger pulley It is necessary to correct the power P by a coefficient C c actual operating conditions. Corrected power P c is given by: (see table 1 page 6) which considers into account the P c = P C c The graphs gives a guiding criterion for the section of the belt. TRANSMISSION RATIO Transmission ratio is calculated as follows: n i = 1 D = n 2 d where D is the pitch diameter of larger pulley and d is the pitch diameter of the smaller pulley. 4

TECHNICAL CALCULATION Peripheral speed of the belts is determined by v = d n 1 19 If the drive being calculated is of the V/flat type (one V pulley and one flat pulley) it is necessary to find the corresponding pitch diameter of the flat pulley. The pitch diameter of the flat faced pulley is obtained by increasing its external diameter by the amount in millimetres shown in the following table: FLAT FACED PULLEYS - PITCH DIAMETER CALCULATION Z A B C D E 19 8 10 14 24 33 16 15 19 The face width of the flat pulley should be increased by twice the top width of the V-Belt selected. PITCH LENGTH OF THE BELT AND CORRECT CENTER DISTANCE Whenever the shaft center distance I is not predetermined by the layout of the drive, the optimum distance may be chosen as follows: (i+1) d 1<i<3 I +d³ 2 i>3 I D The pitch is determined by: L ~ =2 I+1,57 (D+d)+ (D-d)2 4I From the list of belt sizes, should be selected the belt pitch lenght Lp nearest to the value of L above calculated. Since L L p the center distance I may be varied by subtracting half L - L p. Therefore the effective center distance of the drive will be: I e = I- L -L p 2 NUMBER OF BELTS The basic performance P b is the power which a single belt transmits under the following conditions: i = 1 This configuration corresponds to 180 arc of contact belt on both pulleys; i 1 The difference of kw-rating P d is the power which the belt transmits in excess of P b because i 1 in service conditions. The actual kw-rating P a is the power which the belt transmits in operating conditions and is obtain ed by means of: P a = (P b + P d ) x Cg x C L Table 4 (see belt family pages) gives the values of P b according to and d (smaller diameter) and the values of P d according to and i. 5

TECHNICAL CALCULATION Table 2 (bottom of this page) and 3 (see belt family pages) give values of the coefficients Cγ and C L taking into account the operating conditions. The arc of contact g of the belt on the smaller pulley is determined by: γ = 180-57 D-d I e The number of belts Q necessary for the transmission of the power Pc is determined by: Q = P c P a The number of belts actually is obtained in general by rounding up Q to the next highest whole number. TABLE 1 - Type of motor Drivers (1) AC electric motors: high slip, squirrel cage, synchronous: DC electric motors: parallel excitation; multi-cylinder internal combustion engines; gas or steam turbines. Light use Applications Daily operating hours 0-8 (1) 8-16 (1) 16-24 (1) 0-8 (2) 8-16 (2) 16-24 (2) Centrifugal pumps and compressors, belt conveyors, (light materials) fans 1,1 1,1 1,2 1,1 1,2 1,3 and pumps up to 7,5 kw. Normal use Shears for steel sheet presses, belt and chain conveyors, (heavy material) sifters, generator sets, machine tools, kneading machines, 1,1 1,2 1,3 1,2 1,3 1,4 industrial washing machines, printing presses, fans and pumps over 7,5 kw. Heavy use Haer mills, piston compressors, belt conveyors for heavy loads, lifters, 1,2 1,3 1,4 1,4 1,5 1,6 textile machines, continuous paper machines, piston and dredging pumps, ripping saws. Extra heavy use (2) AC electric motors: high torque, high slip, single phase, wound rotor, coutator; DC electric motors: series and compound excitation; single-cylinder internal combustion engines with direct coupling or with countershaft; steam engines. High power mills, stone crushers, calendars, 1,3 1,4 1,5 1,5 1,6 1,8 mixer, cranes, diggers, dredgers. TABLE 2 - Correction factor Cg (T/T=V/V drives; T/P=V/Flat drives; g=arc of contact on the smaller pulley) g 180 175 170 165 160 155 1 145 140 135 130 1 1 115 110 105 90 Cg T/T 1 0,99 0,98 0,96 0,95 0,93 0,92 0,90 0,89 0,87 0,86 0,84 0,82 0,80 0,78 0,76 0,74 0,69 T/P 0,75 0,76 0,77 0,79 0,80 0,81 0,82 0,83 0,84 0,85 0,86 0,84 0,82 0,80 0,78 0,76 0,74 0,69 6

BELT SELECTION CHARTS OLEOSTATIC E// kw SP KOMPATTEX kw LINEA-X and POWER WEDGE kw XPZ/3VX XPA XPB/5VX XPC 8VX kw 7

CALCULATION EXAMPLE EXAMPLE P = 22 kw n 1 = 1 n 2 = 660 Textile machine operating 12 hours a day Type of motor: AC electric motor, normal torque The correction coefficient is 1,3 (see table 1) The corrected power is: P c = 22 1,3 = 28,6 kw BELT SELECTION From selection charts, for P c = 28,6 and n 1 = 1 it is appropriate to choose section B. TRANSMISSION RATIO The transmission ratio can be calculated as follows: n i = 1 1 = = 1,82 n 2 660 Considering diameter d = 0 for the smaller pulley, the pitch diameter of the larger pulley is: D = i d = 1,82 0 = 455 Peripheral speed of the belts is determined by d v = n 1 2 ; v = 0 1 = 15,7 m/s 19 19 BELT PITCH LENGTH AND CORRECT CENTER DISTANCE For i = 1,82 (i.e. 1<i<3) the center distance is given by: (i+1) I d +d so I = 610 4 The pitch of the belt is determined by: (D-d) L = 2 I+1,57 (D+d)+ 2 ; 4 I (455-0) 2 L = 2 610+1,57 (455+0)+ = 2344 4 610 From the list of belt sizes (see table on belt family pages), should be selected the belt pitch lenght L p nearest to the value of L previously calculated. The center distance I may be varied by subtracting half L -L p. Therefore the effective centre distance of the drive will be: L -L I e = I- p 2 Having selected B 91 (L p = 2355 ), the actual shaft center distance is calculated by: I e = 610-2344-2355 2 = 615,5 8

BELT TENSIONING From table 4 of B section (d=0 ; 1 ; K=1,82): P b = 9,89 kw P d = 0,48 kw The arc oc contact γ of the belt on the smaller pulley is determined by: D-d 455-0 γ = 180-57 = 180-57 ~ = 161 I e 616 From table 2 for γ = 161 C γ = 0,95 From table 3 for B 91 belt C L = 1,00 Therefore: P a = (9,89+0,48) 0,95 1,00 = 9,85 kw The number of belts Q necessary for transmission of the power P c is established by: Q = P c = 28,6 = 2,9 P a 9,85 Round up to 3 belts B 91. BELT TENSIONING RECOMMENDATION The correct belt assembling tension is given by: 2,5-C α P T s = c +m v 2 Q v C α t Symbol Unit Definition arc correction factor C α m kg/m belt linear mass (see belt family page) P c kw corrected power Q T s number of belts N/strand static belt tension v m/s peripheral belt speed α arc of contact Arc corretcion factor: α [ ] 180 174 169 163 157 151 145 139 133 127 1 113 106 99 91 83 C α 1,00 0,98 0,97 0,96 0,94 0,93 0,91 0,89 0,87 0,85 0,82 0,80 0,77 0,73 0,70 0,65 9

LENGTH MEASURING AND GROOVE PULLEYS BELT LENGTH MEASURING The first and easiest way for measuring the V-belt is by placing the belt on a flat surface, giving the belt a circular shape and finally measuring the internal L i by means of a measuring tape. Adding i and after e (see belt families pages) to this, it s possible to calculate respectively L p and L e. This measuring way is not very precise, even if practically easy and feasible with a tape only. The correct way for measuring the V-belt is by means of pulleys and dynamometer. The belt is put on 2 pulleys, specific for the family and size of the belt and having the same pitch diameter. One is fixed while the second can move on a linear graduated scale. Depending on the belt, a certain force is applied to the second pulley in order to put the complete system under tension. The correct force is tabled the relevant standards referring to the belt family. To stabilize the system, at least 3 rotations of the pulleys are required. The pitch L p is given by the pulleys pitch diameter D and center distance a in the formula: Lp = 2 a * D Subtracting i and adding e (see belt families pages) it s possible to calculate respectively L i and L e. GROOVE PULLEYS Groove pulleys for V-belts must be manufactured with care and be made of good quality steel or engineering cast iron. It is most important that the flanks of the grooves shall be perfectly smooth and show no visible sign of machining, that all sharp corners of the grooves shall be rounded off and chamfered and that the external diameter of the face shall be constant overall. All pulleys must also be statically balanced. Dynamic balancing is required for speeds over 30 m/second. Profile and dimension of pulley should be in accordance to DIN 2211, BS 3790, ISO, RMA depending on the belt relevant standard. In tha drawing are shown the main characteristics and dimensions of groove pulleys for V-belts (example referring to Oleostatic belts). lp k h α d e f = pitch width = minimum height of groove above the pitch line = minimum depth of groove below the pitch line = groove angle = pitch diameter = distance between the axes of the sections of two grooves = distance between the axis of the section of the outer groove and the rim of the pulley 10

LENGTH MEASURING AND GROOVE PULLEYS The use of idlers in V-belt drives is not recoended. However, due to particular drive requirements and limitations, use of idlers may be absolutely necessary. For using idlers, requirements are as follows: 1. Providing take-up for fixed center drives. 2. Turning corners (as in mule pulley drives). 3. Breaking up long spans where belt whip may be a problem. 4. Maintaining tension, when idler is spring-loaded or weighted. A power corretcion (see below) is required. OUTSIDE IDLER 1. An outside idler should be at least one and one-third times as large as the smallest pulley on the drive, unless drive has unusually large pulleys. 2. An outside idler must be flat and without any crown. 3. To find the face width of a flat idler (between flanges if flanged) add 1 ½ times the nominal belt top width to the face width of the grooved pulley used. 4. An outside idler pulley should be located as close as possible to the preceding pulley. This is because V-belts move back and forth slightly on a flat pulley and locating it as far away from the next pulley minimizes the possibility of the belt entering that pulley in a misaligned condition. 5. Idler pulleys should be located only on the slack side of a drive. Increased arc of cont. RECOMMENDED NOT RECOMMENDED INSIDE IDLER 1. An inside idler will decrease the arc of contact. 2. An inside idler should be at least as large as the smallest pulley on the drive, unless the drive has unusually large pulleys. 3. An inside idler should better be a grooved pulley. In alternative, flat pulleys can be used. 4. A grooved inside idler pulley may be located anywhere along the span, preferably so that it gives nearly equal arcs of contact on the two adjacent pulleys. 5. Idler pulleys should be located only on the slack side of a drive. Decreased arc of cont. RECOMMENDED NOT RECOMMENDED RATED POWER CORRECTION Because idlers impose an additional bending stress point on the V-belt, the transmittable power is reduced. The smaller the idler diameter, the greater the bending stress, which results in a greater reduction in rated power and belt life. To compensate this loss, the design power of the drive must be increased. The following table gives the approximate correction factors according to the number of pulleys in the drive. The normal power rating should be multiplied by this factor. No. of pulleys in drive 2 3 (one idler) 4 (two idlers) Rating Correction Factor 1,00 0,90 0,80 Note: As stated, the above listed factors are only approximate values and apply only when idler diameters and their location is in accordance with the above recoendations. 11

STORAGE MAINTENANCE AND USEFUL ADVICES HOW TO STORE BELTS In order to store V-Belts correctly, it is advisable to hang them on "saddles" or on large-diameter tubular brackets. This diameter should be at least ten times the height of belts cross section. Long belts can be stacked to save space, provided that they are correctly coiled (see figures). Short belts can be stored on shelves, but be aware that stacks should not be more than 300 high, as the bottom belts may be otherwise deformed. Finally, hooks and nails are unsuitable for suspending the belts. CONDITIONS OF STORAGE Rubber V-belts can be stored for several years without causing any performance or reliability loss. For a correct storage, some prescription have to be taken into account. - Environment The storage premises should be cool, dry and well ventilated but not draughty. - Temperature Storage temperature should be within +5 and +30 C. Lower temperatures causes stiffening in the belt but are accepted in the storage. In order to avoid damages in the startup, it becomes necessary to heat the belt up to around before making it run on the machine. Higher temperatures due to heating are to be avoided. Distance from heating sources should be at least 1 meter. - Light Belts should be protected from light, especially direct sunlight and artificial light with high ultraviolet rays (neon light). - Ozone Equipments generating ozone, like high voltage electrical machines or fluorescent light sources, should not be installed in the storage. Also combustion gases and vapours, that can cause ozone, should be avoided. - Chemicals Flaable materials, lubricants, acids and any other aggressive material should not be kept in the storage. Belts elastomers may be affected or even irreparably damaged by such agents. CLEANING Never clean V-belts. If you need, for any reason, to clean belts use a dry towel or one soaked with a glycerine/alcohol mixture in the ratio 1:10. Other solvents such as petrol or benzene must not be used. Sharp-edged objects must not be used for cleaning V-belts. 12

BELT INSTALLATION To ensure a long service life and high performances, it is important to design correctly the application and to take care of correct installation, maintenance and storage of the belt. A drive must be designed in such a way to make proper provision for both installation and tensioning of the V-belts. For this purpose a take-up device is necessary; a slide adjuster on the motor is recoended to simplify installation and permit optimum tensioning. Table 5 (see belt family pages) provides minimum variation of center distance permitted for installation and tensioning of the belts. X = Take up allowance y = Installation allowance I = Center distance Furthermore, the following rules must always be observed: Y 1) check the alignment of the drive pulleys; 2) make sure that the flanks of the grooves are clean; 3) adjust the tensioner to stretch the belts sufficiently; 4) check the tension (see following section); 5) check correct diameter for tensioning pulley; 6) protect belt from oil and other chemicals; 7) when installing belts, slack off tensioner and avoid using tools or implements which may damage the belts. X Pulleys with large diameters increase belt life. They must be statically balanced up to the speed of 30 m/s and dynamically balanced over this value. TENSIONING SYSTEM The satisfactory performance of a transmission equipped with V-belts depends on the correct fitting tension. It is therefore necessary to proceed in the following way, using the slide adjuster: Belt tension control by deflection method The approximate relation among deflection force, belt deflection and belt tension is given by: F T s _~ t 4 f Imposing a belt deflection f= t 64 the deflection force should be in the range F min _~F = T s 16 F max _~F = 1,5 T s 16 where: Symbol Unit Definition F N perpendicular deflection force f belt deflection t free span T s N/strand static belt tension (see page 9) t Belt tension control by vibration method Belt vibration frequency: F r = T s 4 m t 2 Symbol Unit Definition F r Hz natural frequency of belt m kg/m specific belt mass t m free span T s N/strand static belt tension (see page 9) 13

OLEOSTATIC BELT CHARACTERISTICS section Z A B C D E 45 a () 10 13 17 22 32 40 45 s () 6 8 11 14 19 12,5 16 pitch - internal = i () external - pitch = e () 33 43 62 76 105 48 61 91 85 13 17 26 26 43 52 31 39 35 41 weigth (gr/m) 60 175 300 610 930 240 400 1 1365 min. pulley diam. () 60 90 1 300 160 0 3 3 working temperature -30 C +80 C relevant standards RMA/MPTA IP - DIN 2215 - ISO 4184 relevant antistatic standard materials ISO 1813 CR blend - polyester cord - cotton/polyester fabric s 40 a TABLE 3 - CORRECTION FACTOR C L according to type and of the belt inches 9½ 16 22 24 28 32 35 48 53 75 81 90 128 144 180 210 285 330 4 540 7 780 Z 0,69 0,77 0,82 0,84 0,87 0,89 0,91 0,98 1,00 A 0,73 0,79 0,80 0,83 0,85 0,87 0,93 0,95 1,03 1,05 1,07 1,16 1,19 1, 1,29 B 0,73 0,75 0,77 0,80 0,81 0,87 0,89 0,96 0,98 1,00 1,08 1,11 1,16 1, 1,29 1,33 1,40 C 0,72 0,73 0,79 0,80 0,87 0,88 0,90 0,97 1,00 1,05 1,09 1,16 1, 1,27 D 0,80 0,87 0,89 0,94 0,97 1,04 1,07 1,13 1, 1,27 E 0,90 0,94 1,00 1,03 1,09 1,15 1,23 1, 0,91 0,93 0,95 1,02 1,05 1,10 1,14 1,22 0,82 0,83 0,85 0,92 0,95 1,00 1,03 1,10 1,13 TABLE 5 - INSTALLATION AND TAKE UP ALLOWANCE Y () L () Z A B C D E X () 15 19 1 15 19 38 38 38 11 19 19 32 38 38 51 01 32 38 38 63 3001 38 38 51 38 51 75 4001 0 51 51 63 51 51 90 1 6000 51 51 63 51 51 101 6001 0 51 63 63 51 63 113 1 8 51 63 76 51 63 127 81 10 51 63 76 51 63 152 > 101 76 90 76 1,5% L 14

OLEOSTATIC Z 16 Z 17 1/4 Z 18 Z 19 Z 19 1/2 Z Z 1/2 Z 21 1/4 Z 21 1/2 Z 21 3/4 410 440 460 480 8 5 540 545 555 Z SECTION Z 22 Z 22 1/4 Z 22 1/2 Z 23 Z 23 1/2 Z 23 3/4 Z 24 Z 24 3/4 Z Z 1/2 560 565 575 585 600 605 610 630 635 6 Z 26 Z 26 1/2 Z 27 Z 27 1/2 Z 28 Z 28 1/2 Z 29 Z 29 1/2 Z 30 Z 30 1/2 660 670 685 710 7 735 7 765 775 Z 30 3/4 Z 31 Z 31 1/2 Z 32 Z 32 1/2 Z 33 Z 33 1/2 Z 34 Z 34 1/4 Z 34 1/2 TABLE 4 - P b (kw) referred to d () 785 787 800 815 8 840 8 865 870 875 Z 35 Z 35 1/2 Z 36 Z 36 1/2 Z 36 3/4 Z 37 Z 37 1/2 Z 38 Z 38 1/4 Z 39 40 45 56 71 80 90 112 1 132 1 2 3 3600 0 6000 0,26 0,29 0,31 0,38 0,41 0,42 0,45 0,46 0,48 0,51 0,51 0, 0,36 0,38 0,41 0,43 0,55 0,60 0,62 0,68 0,69 0,73 0,80 0,83 0,30 0,36 0,48 0, 0,56 0,58 0,74 0,83 0,85 0,94 0,95 1,02 1,14 1, 0,32 0,43 0,53 0,58 0,77 0,81 0,90 0,94 1,22 1,37 1,40 1,56 1,59 1,70 1,90 2,00 0,39 0,52 0,64 0,71 0,94 1,00 1,10 1,16 1, 1,68 1,72 1,91 1,95 2,07 2,31 2,40 0,46 0,62 0,77 0,84 1,13 1,19 1,33 1,39 1,80 2,01 2,06 2,28 2,32 2,46 2,70 2,75 0,53 0,72 0,90 0,98 1,31 1,39 1,54 1,62 2,09 2,33 2,38 2,63 2,67 2,82 3,04 2,99* 0,62 0,84 1,05 1,15 1,53 1,62 1,80 1,88 2,43 2,69 2,75 3,01 3,06 3, 3,36 0,31 0,71 0,96 1, 1,32 1,76 1,87 2,07 2,16 2,77 3,06 3,12 3,38 3,43 3,56 3,58* 0,76 1,03 1,29 1,41 1,88 1,99 2,21 2,31 2,95 3,24 3,30 3,56 3,60 3,72 3,65* 0,39 0,89 1,21 1, 1,65 2,19 2,32 2,56 2,68 3,38 3,67 3,74 3,96 3,99 4,03* 890 915 9 935 945 9 965 975 Z 40 Z 40 1/2 Z 41 Z 41 1/2 Z 41 3/4 Z 42 Z 42 1/2 Z 43 Z 44 Z 45 1016 1030 1040 10 1060 1070 1080 1090 11 1145 Z 46 Z 47 Z 47 3/4 Z 48 Z 49 Z Z 1/2 Z 51 Z 52 Z 53 1180 1194 1215 12 1245 1270 1285 1300 13 1345 Z 54 Z 55 Z 56 Z 57 Z 59 Z 59 1/2 Z 61 Z 62 Z 63 Z 65 P d (kw) referred to i 1371 1422 14 1515 15 1575 1651 Z 66 Z 67 Z 68 1/2 Z 69 Z 71 1675 1740 17 1803 i 1,00 1,01 1,02 1,03 1,04 1,06 1,07 1,08 1,09 1,12 1,13 1,16 1,17 1,22 1,23 1,32 1,33 1, over 1,51 2 3 3600 0 6000 0, 0,32 0,38 0,26 0,26 0,29 0,37 0,44 0, 0,29 0,30 0,41 0,49 A 15 A 18 A 19 A A 21 A 21 3/4 A 22 A 23 A 23 1/2 A 24 A 24 1/2 A 24 3/4 A A 1/2 A 26 A 26 1/2 A 27 2 3 3600 0 6000 382 457 480 8 535 552 560 587 600 610 6 630 637 647 660 670 686 A 27 1/2 A 28 A 28 1/2 A 29 A 29 1/2 A 30 A 30 1/2 A 31 A 31 1/2 A 32 A 32 1/2 A 33 A 33 1/4 A 33 1/2 A 34 A 34 1/2 A 35 710 724 737 7 767 775 787 800 813 8 838 847 8 867 875 A 36 A 36 1/2 A 37 A 37 1/4 A 37 1/2 A 38 A 38 1/2 A 39 A 39 1/2 A 40 A 40 1/2 A 41 A 41 1/2 A 41 3/4 A 42 A 42 1/2 A 43 914 9 942 946 9 965 975 992 1016 1030 1041 10 1060 1067 1075 1 A 43 1/2 A 43 3/4 A 44 A 44 1/2 A 45 A 45 1/2 A 46 A 46 1/2 A 47 A 48 A 48 1/4 A 49 A A 51 A 51 1/2 A 52 A 52 1/2 1105 1111 11 1132 1143 11 1168 1180 1 12 12 10 1270 1300 1307 13 1337 A 53 A 53 1/4 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A 61 A 62 A 63 A 64 A 65 A 66 A 67 A 68 71 80 90 112 1 132 1 170 190 212 0,42 0,53 0,63 0,67 0,81 0,84 0,89 0,91 1,02 1,04 1,05 1,03 1,02 0,97 0,70 0,29 0,59 0,76 0,91 0,98 1,23 1,28 1,38 1,43 1,70 1,81 1,83 1,90 1,91 1,91 1,75 1,33 A SECTION TABLE 4 - P b (kw) referred to d () 0,37 0,78 1,01 1,22 1,32 1,69 1,77 1,93 2,00 2,44 2,63 2,67 2,82 2,85 2,90 2,82 2,38 0, 0,45 0,96 1,26 1,53 1,66 2,14 2, 2,46 2,55 3,15 3,42 3,47 3,70 3,74 3,84 3,78 3,24* 0,30 0,54 1,18 1,55 1,89 2,06 2,67 2,81 3,08 3,21 3,98 4,32 4,40 4,69 4,74 4,86 4,77 0,35 0,65 1,41 1,86 2,28 2,49 3,23 3,41 3,74 3,89 4,84 5, 5,34 5,69 5,74 5,86 5,62* 0,38 0,70 1,53 2,03 2,49 2,71 3,53 3,72 4,08 4,26 5,29 5,73 5,83 6,18 6,23 6,34 5,99* 0,46 0,84 1,85 2,45 3,02 3,29 4,29 4,52 4,96 5,16 6,38 6,88 6,98 7,33 7,37 7,40* 0,54 0,99 2,19 2,91 3,59 3,91 5,10 5,37 5,89 6,13 7, 8,02 8,12 8,38 8,38* 0,62 1,14 2,53 3,37 4,15 4,52 5,88 6,19 6,77 7,04 8,52 9,00 9,07 9,15* 0,66 1,22 2,70 3,59 4,43 4,82 6,27 6,59 7, 7,48 8,98 9,42 9,48* 1346 1355 1372 1422 14 1475 15 15 1575 16 16 1676 17 0,71 1,30 2,90 3,86 4,75 5,18 6,72 7,06 7,70 7,99 9, 9,87* 9,91* A 69 A 70 A 70 3/4 A 71 A 72 A 73 A 74 A 75 A 76 A 77 A 78 A 79 A 80 A 81 A 82 A 83 A 83 1/2 17 1775 1780 18 1854 1880 1 1930 1956 1980 0 32 60 83 2 21 A 84 A 85 A 86 A 87 A 88 A 89 A 90 A 91 A 92 A 93 A 94 A 95 A 96 A 97 A 97 1/2 A 98 A 2134 2160 2187 2212 2240 2267 2286 2311 2337 2360 2388 2413 2438 2464 2475 40 A 102 A 104 A 105 A 107 A 108 A 110 A 112 A 113 A 114 A 116 A 118 A 1 A 124 A 128 A 130 A 132 A 134 91 26 2667 27 2743 2800 2845 2870 2896 2946 3048 31 30 3302 33 3404 P d (kw) referred to i A 136 A 140 A 144 A 147 A 148 A 155 A 158 A 162 A 167 A 173 A 177 A 180 A 187 A 197 A 210 A 217 3454 35 3658 3737 37 3937 4115 40 4394 4 4572 47 0 5334 5477 i 1,00 1,01 1,02 1,03 1,04 1,06 1,07 1,08 1,09 1,12 1,13 1,16 1,17 1,22 1,23 1,32 1,33 1, over 1,51 2 3 3600 0 6000 0,30 0,36 0,29 0,32 0,48 0, 0,29 0,30 0,35 0,36 0, 0,60 0,30 0,35 0,36 0,42 0,43 0,48 0,60 0,72 0, 0,35 0,41 0,42 0,49 0, 0,56 0,70 0,84 0,29 0,46 0,48 0,56 0,64 0,80 0,96 0, 0,30 0,32 0,45 0,52 0,54 0,63 0,64 0,72 0,89 1,07 * Belt speed is greater than 30 m/s then is necessary to use dynamically balanced pulleys. A reduction in belt life can be expected. Suggested a smaller section. 15

OLEOSTATIC B 22 1/2 B 23 B 24 B B 26 B 27 B 28 B 28 1/2 B 29 B 29 1/2 B 30 B 30 1/2 B 31 B 31 1/2 B 32 B 32 1/4 B 32 1/2 B 33 B 33 1/2 B 34 B 34 1/2 B 35 B 35 1/2 2 3 3600 4 0 570 587 612 637 6 686 710 7 737 7 762 775 787 800 812 822 8 838 8 867 875 889 B 35 3/4 B 36 B 36 1/2 B 36 3/4 B 37 B 37 1/2 B 38 B 38 1/2 B 39 B 39 1/2 B 40 B 40 1/2 B 41 B 41 1/2 B 41 3/4 B 42 B 42 1/2 B 43 B 43 1/2 B 44 B 44 1/4 B 45 B 46 907 917 9 937 942 9 965 975 990 1016 1030 1040 10 1060 1067 1075 1090 1 11 1127 1142 1175 B 46 1/2 B 46 3/4 B 47 B 47 1/2 B 48 B 49 B B 51 B 52 B 53 B 53 1/2 B 54 B 55 B 55 1/2 B 56 B 57 B 58 B 59 B 60 B 61 B 62 B 63 B 64 1180 1187 1 1215 12 10 1275 1300 13 13 1360 1372 1412 1422 14 1473 15 15 1575 16 B 64 1/2 B 65 B 66 B 66 1/4 B 66 1/2 B 67 B 67 1/4 B 68 B 69 B 69 1/2 B 70 B 71 B 72 B 73 B 74 B 75 B 76 B 77 B 78 B 79 B 80 B 80 3/4 B 81 1642 16 1676 1682 1692 1712 17 17 1761 1775 1829 18 1880 1 1930 19 1981 0 32 60 B 82 B 83 B 83 1/2 B 84 B 85 B 86 B 86 1/2 B 87 B 88 B 89 B 90 B 91 B 92 B 93 B 94 B 95 B 96 B 96 1/2 B 97 B 97 1/2 B 98 B 99 B 112 118 132 140 1 160 180 224 0 265 280 0,34 0,60 1, 1,53 1,82 1,95 2,40 2,49 2,66 2,73 3,05 3,07 3,06 2,87 2,81 2,47 1,85 0,97 0,38 0,67 1,37 1,76 2,11 2,27 2,82 2,93 3,15 3,24 3,69 3,76 3,76 3,61 3,55 3,22 2,57 1,63* B SECTION TABLE 4 - P b (kw) referred to d () 0,47 0,84 1,77 2,29 2,77 2,99 3,77 3,94 4,26 4,40 5,12 5,30 5,32 5,22 5,16 4,80 4,01* 2,84* 0,52 0,94 1,99 2,59 3,14 3,40 4,31 4,51 4,88 5,05 5,91 6,13 6,16 6,06 6,00 5,58 4,68* 0,59 1,06 2,27 2,97 3,60 3,90 4,97 5,21 5,64 5,84 6,86 7,12 7,15 7,02 6,94 6,44* 0,65 1,18 2,54 3,33 4,06 4,40 5,62 5,89 6,39 6,62 7,77 8,05 8,07 7,89 7,79 7,15* 0,78 1,42 3,09 4,06 4,96 5,38 6,89 7,22 7,83 8,11 9,45 9,71 9,71 9,29* 9,12* 0,91 1,66 3,62 4,78 5,85 6,34 8,12 8,51 9,21 9,52 10,96 11,10* 11,05* 1,06 1,94 4,26 5,63 6,88 7,47 9,53 9,97 10,76 11,11 12, 12,37* 1,22 2,24 4,93 6,52 7,97 8,65 10,98 11,47 12,32 12,68 13,82* 1,31 2,41 5,32 7,03 8,59 9,31 11,78 12,29 13,16 13,52 14,40* 83 2108 21 2134 2160 2187 2 2215 2240 2261 2286 2312 2337 2360 2388 2413 2438 24 2465 2477 15 40 1,40 2,59 5,70 7,54 9, 9,96 12,55 13,07 13,95 14,29 B 101 B 102 B 103 B 104 B 105 B 106 B 107 B 108 B 110 B 112 B 112 1/2 B 114 B 115 B 116 B 118 B 1 B 124 B 126 B 127 B 128 B 130 B 131 B 132 65 2600 2616 26 2667 2 2718 27 2800 2845 2857 2 2921 29 3048 31 3 3227 30 3302 3327 33 B 133 B 134 B 135 B 136 B 140 B 144 B 147 B 148 B 151 B 152 B 154 B 155 B 157 B 158 B 161 B 162 B 163 B 165 B 167 B 168 B 173 B 175 B 177 3378 3407 3429 34 35 3658 3737 37 38 3861 3912 39 3987 4087 4115 4142 4 40 4267 4394 44 4 B 180 B 186 B 187 B 188 B 192 B 195 B 197 B 4 B 8 B 210 B 217 B 221 B 223 B 224 B 2 B 228 B 229 B 237 B 240 B 248 B 249 B 3 B 5 4572 4727 47 4777 4877 4953 0 5182 5300 5334 57 5577 5632 5657 5682 5757 5782 6000 6062 6267 6287 6392 6442 P d (kw) referred to i B 6 B 9 B 265 B 269 B 270 B 276 B 285 B 300 B 315 B 330 B 345 B 360 B 361 B 364 B 366 B 394 B 433 B 472 B 512 B 551 B 553 B 669 62 6542 6 6800 68 0 77 7587 7967 8347 8727 9107 9132 9282 9262 9972 10957 11957 13005 13995 14053 16992 i 1,00 1,01 1,02 1,03 1,04 1,06 1,07 1,08 1,09 1,12 1,13 1,16 1,17 1,22 1,23 1,32 1,33 1, over 1,51 2 3 3600 4 0 0,.00 0,26 0,26 0,31 0,32 0,35 0,44 0,38 0,46 0,48 0,53 0,60 0,66 0, 0,26 0,30 0,32 0,44 0,51 0,53 0,62 0,63 0,70 0,79 0,88 0,31 0,37 0,55 0,64 0,66 0,77 0,79 0,88 0,99 1,10 0,37 0,45 0,48 0,66 0,77 0,80 0,93 0,96 1,06 1, 1,33 0,31 0,43 0,47 0,53 0,56 0,78 0,90 0,93 1,09 1,12 1,24 1,40 1,55 0, 0,32 0,35 0,49 0,53 0,60 0,64 0,88 1,02 1,06 1,24 1,27 1,41 1,59 1,76 0,36 0,56 0,59 0,67 0,71 0,99 1,15 1,19 1,39 1,43 1,59 1,78 1,98 * Belt speed is greater than 30 m/s then is necessary to use dynamically balanced pulleys. A reduction in belt life can be expected. Suggested a smaller section. 16

OLEOSTATIC C 33 3/4 C 37 1/2 C 39 3/4 C 43 C 45 C 46 C 48 C 49 C 51 C 52 C 53 C 54 C 55 C 56 1 400 600 7 0 2 3 858 9 1013 1090 11 1168 12 10 1295 13 13 1372 14 C SECTION C 59 C 60 C 61 C 62 1/4 C 63 C 65 C 67 C 68 C 70 C 71 C 75 C 78 C 80 C 81 1524 1560 1583 16 1727 1778 1798 1 1978 32 57 C 83 C 84 C 85 C 86 C 87 C 88 C 89 C 90 C 93 C 94 C 95 C 96 C 97 C 97 1/2 2108 2134 2159 2184 28 2235 2261 2286 2360 2388 2413 2438 2462 2477 C 98 C 99 C C 101 C 102 C 104 C 105 C 106 C 108 C 110 C 111 C 112 C 112 1/2 C 114 TABLE 4 - P b (kw) referred to d () 40 60 91 2642 2667 2692 27 2800 2818 2845 2858 2888 C 115 C 116 C 117 C 118 C 1 C 124 C 126 C 128 C 130 C 132 C 134 C 136 C 138 C 140 2921 29 2965 3048 31 3 30 3302 33 3404 3456 3498 35 180 190 212 236 265 300 335 375 400 4 4 0,97 1,07 1,17 1,29 1,53 1,81 2,15 2,48 2,86 3,10 3,33 3,56 1,36 1, 1,65 1,82 2,17 2,58 3,07 3,55 4,10 4,44 4,78 5,11 1,72 1,91 2,10 2,33 2,77 3,30 3,94 4,57 5,28 5,72 6,15 6,59 3,02 3,37 3,72 4,14 4,97 5,96 7,13 8,29 9,59 10,39 11,18 11,96 4,13 4,64 5,14 5,74 6,92 8,31 9,97 11,58 13,38 14,48 15,56 16,62 4,64 5,22 5,79 6,47 7,81 9,40 11,27 13,08 15,10 16,32 17,51 18,68 4,88 5,49 6,10 6,82 8,24 9,92 11,89 13,80 15,91 17,18 18,43 19,64 5,56 6,27 6,98 7,81 9,45 11,38 13,63 15,79 18,14 19,55,90 22, 5,98 6,76 7,52 8,43 1 12,28 14,69 16,99 19,46,92 22,32 23,64 7,37 8,37 9,34 10,49 12,71 15,23 18,06,61 23,17 24,56,79* 26,84* 7,65 8,69 9,71 10,90 13, 15,80 18,66 21,19 23,66 24,95* 26,04* 8,12 9,24 1 11,60 14,01 16,69 19,53 21,92 24,05* 8,31 9,46 10,58 11,88 14,33 17,01 19,80 22,06* 8,59 9,79 10,96 12,30 14,78 17,40 19,97* 8,69 9,94 11,11 12,42 14,66* 16,68* 8,09 9,27 10,34* 11,46* 7,84 8,99 1* 11,05* 7,21 8,26* 9,16* C 142 C 144 C 147 C 148 C 1 C 153 C 158 C 160 C 161 1/2 C 162 C 165 C 166 C 168 C 173 3607 3658 3733 37 3808 3902 4064 4 4115 4193 4216 4267 4394 C 177 C 180 C 187 C 195 C 197 C 4 C 8 C 210 C 216 C 2 C 222 C 2 C 228 C 236 4 4572 47 4953 0 5182 5300 5334 5486 55 5600 5678 5753 6000 C 238 C 240 C 248 C 0 C 5 C 265 C 270 C 276 C 280 C 285 C 297 C 300 C 303 C 314 P d (kw) referred to i 6045 6062 6263 6300 6438 6 6822 6973 7 73 7 7582 76 7976 C 316 C 330 C 336 C 345 C 360 C 394 C 4 C 424 8000 8382 8 8723 9107 0 10632 10733 i 1,00 1,01 1,02 1,03 1,04 1,06 1,07 1,08 1,09 1,12 1,13 1,16 1,17 1,22 1,23 1,32 1,33 1, over 1,51 300 400 600 800 0 2 3 0,30 0,29 0,32 0,34 0,38 0,48 0,55 0,61 0,26 0,29 0,43 0,49 0,52 0,72 0,83 0,86 0,92 0,30 0,34 0,38 0,53 0,65 0,68 0,76 0,95 1,10 1,14 1,22 0,29 0,38 0,43 0,48 0,67 0,71 0,81 0,86 0,95 1,19 1,38 1,43 1,52 0,34 0,45 0,51 0,79 0,85 0,96 1,02 1,13 1,42 1,64 1,70 1,81 0,26 0,46 0,53 0,60 0,66 0,93 0,99 1,13 1,19 1,32 1,66 1,92 1,99 2,12 0,30 0,45 0,53 0,60 0,68 0,76 1,06 1,13 1,28 1,36 1,51 1,89 2,19 2,27 2,42 0, 0,34 0,51 0,59 0,68 0,76 0,85 1,19 1,27 1,44 1,53 1,70 2,12 2,46 2,55 2,72 D 98 D 104 D 110 D 118 D 1 D 124 26 2800 3048 31 D SECTION D 128 D 136 D 137 D 140 D 144 D 154 31 3454 3475 35 3658 3914 D 158 D 162 D 170 D 173 D 177 D 180 4013 4115 4310 4394 4 4572 D 187 D 195 D 197 D 4 D 5 D 7 TABLE 4 - P b (kw) referred to d () 47 4953 0 5182 59 59 D 210 D 223 D 2 D 236 D 238 D 240 5334 5600 5659 5940 6244 6039 Ø 300 315 355 375 400 4 560 630 710 800 1 300 400 600 7 1 1 0 1,66 3,00 4,21 5,34 7,41 9,29 11,01 12,57 14,63 16,36 17,31 18,71 19,40 19,45 18,91 18,31 17,47 16,38* 1,81 3,27 4,61 5,86 8,15 1 12,16 13,90 16,21 18,15 19,22,79 21,54 21,59,95, 19,28* 18,02* 2,19 4,00 5,66 7,22 1 12,75 15,18 17,40,33 22,77 24,10,99 26,77 26,70,54* 24,43* 2,39 4,36 6,18 7,90 11,08 13,99 16,67 19,11 22,33 24,99 26,42 28,41 29,09 28,90 27,35* 2,62 4,81 6,83 8,74 12,28 15,52 18, 21,22 24,77 27,67 29,21 31,23 31,71 31,31* 3,10 5,70 8,12 1 14,65 18,54 22,10,31 29,47 32,74 34,38 36,23 35,94* 3,57 6,59 9,39 12,04 16,98 21,49,59 29, 33,89 37,36 38,97 4* 4,12 7,63 10,90 13,98 19,72 24,94 29,63 33,76 38,81 42,30 43,66 4,77 8,84 12,63 16,22 22,86 28,85 34,15 38,71 43,99 47,13 47,88* 5, 1 14,59 18,73 26,36 33,14 39,03 43,91 49,09 51,31* 6,31 11,72 16,76 21, 3 37,76 44,14 49,15 53,71* 7, 13,38 19,13 24,51 34,27 42,60 49,31 54,15 D 248 D 0 D 5 D 266 D 270 D 282 6244 6294 6424 6 6804 7 D 285 D 298 D 300 D 314 D 316 D 326 7184 7 7565 7924 7974 8224 D 330 D 345 D 360 D 390 D 394 D 4 P d (kw) referred to i 8329 8709 9090 9849 0 10624 D 441 D 480 D 510 D 540 D 600 11 12139 12897 13659 15184 i 1,00 1,01 1,02 1,03 1,04 1,06 1,07 1,08 1,09 1,12 1,13 1,16 1,17 1,22 1,23 1,32 1,33 1, over 1,51 1 300 400 600 7 1 1 0 0,26 0,34 0,43 0,48 0,51 0,54 0,29 0,34 0,43 0,51 0,69 0,80 0,86 0,97 1,03 1,09 1,14 0,26 0,34 0,43 0,52 0,64 0,77 0,86 1,03 1, 1,29 1,46 1,55 1,63 1,72 0,34 0,46 0,68 0,86 1,03 1,14 1,37 1,60 1,71 1,94 2,05 2,17 2,28 0,43 0,71 0,85 1,07 1,28 1,42 1,71 1,99 2,14 2,42 2,56 2,71 2,85 0,26 0,34 0,52 0,69 0,86 1,03 1,29 1,55 1,72 2,07 2,41 2,58 2,93 3,10 3,27 3,44 0,30 0,60 0,80 1,00 1, 1,51 1,81 2,01 2,41 2,81 3,01 3,41 3,61 3,82 4,02 0,34 0,46 0,69 0,91 1,14 1,37 1,71 2,06 2,29 2,74 3, 3,43 3,89 4,11 4,34 4,57 0,26 0,39 0,51 0,77 1,03 1,28 1,54 1,93 2,31 2,57 3,08 3,60 3,85 4,37 4,62 4,88 5,14 * Belt speed is greater than 30 m/s then is necessary to use dynamically balanced pulleys. A reduction in belt life can be expected. Suggested a smaller section. 17

OLEOSTATIC E SECTION E 180 E 197 E 210 4575 0 5335 E 2 E 226 E 240 5600 5660 6015 E 248 E 5 E 270 62 6400 6780 E 280 E 285 E 295 TABLE 4 - P b (kw) referred to d () 7 7160 7 Ø 4 560 630 710 800 11 10 1 0 300 400 600 7 1 1 1300 14 3,29 5,97 8,41 10,67 12,80 14,80 18,47 21,69 24,46 26,76 27,71 29,77 3 3 29,71 28,28* 26,07* 24,65* 3,88 7,08 1 12,73 15,30 17,72 22,15 26,04 29,35 32,04 33,14 35,35 35,85 35, 34,23* 31,96* 4,58 8,39 11,89 15,17 18, 21,16 26,46 31,06 34,91 37,94 39,12 41, 41,26 4* 5,39 9,91 14,07 17,97 21,64,08 31,33 36,65 40,97 44,18 45,33 46,75 45,85* 6,31 11,63 16,53 21,12,42 29,45 36,66 42,66 47,29,39 51,31 51,* 7,32 13,53 19, 24,59 29,58 34,21 42,37 48,90 53,56 56,10 56,49* 8,44 15,62 22,22 28,36 34,06 39,31 48,33 55,14 59,39 60,69* 9,55 17,68,14 32,05 38,41 44,19 53,85 60,59 63,91* 10,87 2 28,58 36,36 43,43 49,75 59,85 65,99 12,28 22,72 32,23 40,88 48,63 55,40 65,54 70,32* E 300 E 316 E 330 7540 79 8305 E 345 E 354 E 360 8685 0 9065 E 394 E 4 E 441 9930 10600 11 E 480 E 492 E 540 P d (kw) referred to i 12115 1 13635 E 600 15160 Ø i 1,00 1,01 1,02 1,03 1,04 1,06 1,07 1,08 1,09 1,12 1,13 1,16 1,17 1,22 1,23 1,32 1,33 1, over 1,51 1 0 300 400 600 7 1 1 1300 14 0,35 0,42 0,47 0,52 0,56 0,61 0,66 0,68 0,38 0,47 0,66 0,71 0,85 0,95 1,04 1,14 1,23 1,32 1,37 0,36 0,43 0,71 0,85 1,00 1,07 1,28 1,42 1,56 1,71 1,85 1,99 2,06 0,38 0,47 0,76 0,94 1,13 1,32 1,42 1,70 1,89 2,08 2,27 2,46 2,64 2,74 0,35 0,47 0,59 0,71 0,94 1,18 1,42 1,65 1,77 2,12 2,36 2,60 2,83 3,07 3,30 3,42 0,29 0,43 0,71 0,86 1,14 1,43 1,71 2,00 2,14 2,57 2,85 3,14 3,42 3,71 3,99 4,14 0, 0,67 0,83 1,00 1,33 1,66 2,00 2,33 2, 2,99 3,33 3,66 3,99 4,32 4,66 4,82 0,38 0,76 0,95 1,14 1,51 1,89 2,27 2,65 2,84 3,41 3,79 4,17 4,54 4,92 5,30 5,49 0,43 0,64 0,85 1,06 1,28 1,70 2,13 2,55 2,98 3,19 3,83 4, 4,68 5,11 5,53 5,96 6,17 SECTION 1875 1 19 19 0 21 2 2240 2360 TABLE 4 - P b (kw) referred to d () 2600 26 2800 Ø 140 160 180 224 236 0 280 315 355 400 600 800 1 0 2300 2600 2 0,34 0,6 1,05 1,79 2,4 2,67 2,92 3,15 3,38 3,76 4,09 4,36 4,57 4,73 4,86 4,85 4,68 4,6 0,41 0,73 1,31 2,24 3,04 3,4 3,72 4,04 4,34 4,86 5,3 5,68 6,04 6,2 6,39 6,39 6,18 6,07 0,49 0,88 1,55 2,69 3,66 4,1 4,51 4,9 5, 5,91 6,47 6,93 7,28 7,55 7,74 7,69 7,36 7,19 0,56 1,01 1,79 3,13 4,27 4,79 5,27 5,73 6,15 6,92 7,56 8,09 8,5 8,77 8,93 8,74 8,2 7,95 0,64 1,16 2,08 3,64 4,99 5,6 6,16 6,7 7,19 8,08 8,81 9,38 9,8 1 1 9,65 8,74 8,31 0,68 1,24 2,22 3,9 5,34 5,99 6,6 7,17 7,7 8,63 9,39 10 10,4 10,62 10,54 9,95 0,73 1,34 2,39 4,19 5,74 6,45 7,1 7,71 8,27 9,26 1 10,66 11,05 11,2 10,99 0,84 1,52 2,73 4,81 6,6 7,4 8,14 8,82 9,46 10,54 11,37 11,94 12,23 12,21 11,55 0,96 1,74 3,13 5,52 7,56 8,47 9,29 1 10,75 11,89 12,71 13,17 13,24 12,89 1,09 1,99 3,58 6,3 8,61 9,63 10,55 11,38 12,11 13,27 13,97 14,2 13,89 12,99 31 30 33 34 35 36 37 40 4 47 0 P d (kw) referred to i 5300 5600 6000 Ø i 1,00 1,01 1,02 1,03 1,04 1,06 1,07 1,08 1,09 1,12 1,13 1,16 1,17 1,22 1,23 1,32 1,33 1, over 1,51 400 600 800 1 0 2300 2600 2 0,1 0,2 0, 0,1 0,31 0,34 0,39 0,44 0,5 0,51 0,1 0,26 0,31 0,36 0,41 0,47 0,51 0,59 0,67 0,75 0,77 0,31 0,34 0,41 0,48 0,55 0,61 0,68 0,79 0,89 0,99 1,03 0,26 0,3 0,34 0,39 0,43 0,52 0,6 0,68 0,77 0,86 0,98 1,11 1,24 1,29 0,1 0,31 0,36 0,41 0,46 0,51 0,61 0,71 0,81 0,92 1,02 1,17 1,32 1,48 1,53 0,36 0,41 0,48 0,54 0,59 0,72 0,84 0,95 1,07 1,19 1,37 1,55 1,73 1,79 0,41 0,48 0,54 0,61 0,68 0,82 0,95 1,08 1,22 1,36 1,56 1,77 1,97 2,04 0,31 0,46 0,53 0,61 0,68 0,77 0,92 1,07 1,22 1,38 1,53 1,76 1,99 2,21 2,3 * Belt speed is greater than 30 m/s then is necessary to use dynamically balanced pulleys. A reduction in belt life can be expected. Suggested a smaller section. 18

OLEOSTATIC SECTION 400 600 800 1 0 2 2400 1 19 0 224 236 0 280 315 335 400 4 560 0,71 1,29 2, 3,88 5,21 6,22 6,78 7,19 7,84 8, 8,36 8,4 8,37 8,27 7,85 7,11 6,02 5,33 0,8 1,43 2,53 4,38 5,92 7,2 7,75 8,24 9,13 9,54 9,68 9,75 9,74 9,65 9,21 8,39 7,18 6,42 0,88 1,59 7,94 4,96 6,73 0,34 8,87 9,45 10,37 10,99 11,17 11,26 11,26 11,16 10,67 9,73 8,33 7,45 21 2 2240 23 2360 1,06 1,94 3,5 6,17 8,46 10,38 11,22 11,95 12,13 13,92 14,15 14,24 14,22 14,06 13,32 12 1,28 2,35 4, 7,58 10,41 12,81 13,84 14,75 16,17 17,02 17,22 17, 17,11 16,78 15,56 1,52 2,81 5,12 9,15 12,6 15,48 16,69 17,74 19,31 2 2 2 19,61 24 26 2 2800 1,8 3,32 6,07 10,89 14,98 18,33 19,7,84 22,41 22,91 22,71 TABLE 4 - P b (kw) referred to d () 2,09 3,88 7,12 12,78 17,52 21,3 22,77 23,94,29,13 24,44 2,39 4,44 8,15 14,62 19,96 24,04,54 26,63 27,5 29 31 3300 33 2,74 5,09 9,37 16,77 22,74 27,02 28,43 29,29 29,18 35 37 39 40 44 4 47 0 5300 5600 5 6000 6300 6 i 1,00 1,01 1,02 1,03 1,04 1,06 1,07 1,08 1,09 1,12 1,13 1,16 1,17 1,22 1,23 1,32 1,33 1, over 1,51 400 600 800 1 0 2 2400 0,1 0,1 0, 0,26 0,3 0,32 0,35 0,37 0,42 0,46 0,51 0,53 0, 0,29 0,32 0,44 0,47 0,51 0,54 0,63 0,69 0,76 0,79 0, 0,3 0,37 0,42 0,58 0,63 0,67 0,72 0,75 0,84 0,92 1,00 1,05 0,32 0,36 0,42 0,47 0,53 0,74 0,78 0,84 0,89 0,95 1,05 1,15 1,26 1,31 0, 0,37 0,44 0,5 0,56 0,63 0,87 0,94 0,99 1,06 1,12 1,24 1,37 1,5 1,56 0,29 0,44 0,51 0,58 0,66 0,73 1,02 1,09 1,17 1,24 1,31 1,45 1,6 1,75 1,83 0,5 0,58 0,66 0,75 0,84 1,17 1,24 1,32 1,41 1,5 1,66 1,83 2,00 2,08 0,37 0,56 0,65 0,75 0,84 0,94 1,31 1,4 1,49 1,58 1,68 1,87 2,05 2,24 2,33 P d (kw) referred to i 6 7 7 8000 8 0 9 0 45 SECTION 45 45 0 2300 45 45 26 45 45 27 28 45 45 31 45 45 30 3300 45 45 3 37 45 SECTION 0 21 2300 26 27 28 2870 31 30 3 3670 37 39 19

GOLD LABEL COG BELT section AX BX CX DX a () 13 17 22 32 s () 8 11 14 19 pitch - internal = i () 33 43 62 76 external - pitch = e () 17 26 26 43 weigth (gr/m) 114 162 297 584 min. pulley diam. () 63 90 140 210 working temperature -30 C +90 C relevant standards RMA/MPTA IP - DIN 2215 materials CR blend - polyester cord NEW AND IMPROVED POWER WEDGE COG BELT Higher power ratings and greater design flexibility: the new Gold Label Cog Belt can reduce space, weight and drive costs, transmitting a higher torque with less slippage and reducing energy costs. The Power Wedge Cog Belt is heat and oil resistant. Higher power ratings Longer life Improved dimensional control/matching High efficiency molded cogs Improved belt flexibility, reduced bending stress Improved wedging, less slip Smooth running More tolerant of low tension More energy savings Controlled response to shock loads

GOLD LABEL COG BELT AX SECTION AX 21 AX 22 AX 23 AX 24 AX AX 26 AX 27 AX 28 AX 29 AX 30 585 610 635 665 690 710 7 765 800 815 AX 31 AX 32 AX 33 AX 34 AX 35 AX 36 AX 37 AX 38 AX 39 AX 40 8 865 915 9 965 10 1045 1075 AX 41 AX 42 AX 43 AX 44 AX 45 AX 46 AX 47 AX 48 AX 49 AX 1095 11 11 1170 1195 1230 1245 1270 1300 13 AX 51 AX 52 AX 53 AX 54 AX 55 AX 56 AX 57 AX 58 AX 59 AX 60 13 1375 14 14 1475 15 15 1585 AX 61 AX 62 AX 63 AX 64 AX 65 AX 66 AX 67 AX 68 AX 69 AX 70 1630 1655 1680 1710 1730 1760 1790 1810 1830 AX 71 AX 72 AX 73 AX 74 AX 75 AX 76 AX 77 AX 78 AX 79 AX 80 1865 1890 1905 1935 1965 1985 10 30 60 80 AX 81 AX 82 AX 83 AX 84 AX 85 AX 86 AX 87 AX 88 AX 89 AX 90 21 2140 2160 2190 22 2240 2260 2290 2310 23 AX 91 AX 92 AX 93 AX 94 AX 95 AX 96 AX 97 AX 98 AX AX 103 2360 2390 24 2440 2470 40 2600 2670 AX 105 AX 110 AX 112 AX 1 AX 128 AX 136 AX 144 AX 158 AX 173 AX 180 2730 28 2910 3110 3310 3510 3710 4070 44 46 BX SECTION BX 28 BX 30 BX 32 BX 34 BX 35 BX 36 BX 38 BX 40 BX 41 BX 42 BX 43 785 835 885 935 960 990 1040 1090 11 1140 1165 BX 44 BX 45 BX 46 BX 47 BX 48 BX 49 BX BX 51 BX 52 BX 53 BX 54 1190 1215 10 1265 1295 13 1345 1370 14 1445 BX 55 BX 56 BX 57 BX 58 BX 59 BX 60 BX 61 BX 62 BX 63 BX 64 BX 65 1470 15 1545 1570 16 16 1675 17 BX 66 BX 67 BX 68 BX 69 BX 70 BX 71 BX 72 BX 73 BX 74 BX 75 BX 76 17 1775 18 18 1875 1 1930 1955 1980 0 BX 77 BX 78 BX 79 BX 80 BX 81 BX 82 BX 83 BX 84 BX 85 BX 86 BX 87 30 80 2110 2130 2160 2180 2210 2240 2260 2280 BX 88 BX 89 BX 90 BX 91 BX 92 BX 93 BX 94 BX 95 BX 96 BX 97 BX 98 2310 2330 2360 2390 2410 2440 2460 10 40 60 BX 99 BX BX 103 BX 105 BX 106 BX 108 BX 112 BX 113 BX 115 BX 116 BX 1 90 26 2690 2740 2770 28 29 2940 2990 30 3130 BX 123 BX 124 BX 126 BX 128 BX 133 BX 136 BX 140 BX 144 BX 148 BX 1 BX 154 3 32 3270 3330 34 3530 3630 3740 3830 3880 3990 BX 158 BX 162 BX 173 BX 180 BX 191 BX 195 4090 4 4480 46 4930 40 CX SECTION CX 51 CX 55 CX 60 CX 68 1630 1830 CX 72 CX 75 CX 78 CX 81 1935 0 90 2160 CX 85 CX 90 CX 96 CX 2270 2390 40 26 CX 101 CX 105 CX 109 CX 111 2670 2770 2870 29 CX 112 CX 115 CX 1 CX 128 29 3030 31 33 CX 136 CX 144 CX 148 CX 1 35 3760 3860 39 CX 158 CX 162 CX 173 CX 180 41 42 4 4680 21

SP BELT CHARACTERISTICS section SPZ SPA SPB SPC 19 a () 9,7 12,7 16,3 22 18,6 s () 8 10 13 18 15 pitch - internal = i () external - pitch = e () 39 47 61 86 72 13 18 22 30 22 weigth (gr/m) 70 1 195 365 270 min. pulley diam. () 63 90 140 224 180 working temperature -30 C +80 C relevant standards DIN 7753 - ISO 4184 relevant antistatic standard materials ISO 1813 CR blend - polyester cord - cotton/polyester fabric 38 a s TABLE 3 - CORRECTION FACTOR C L according to type and of the belt 512 630 710 732 800 11 10 0 2240 2800 31 35 4 0 5600 6300 7 8000 0 0 11 1 SPZ 0,81 0,82 0,84 0,85 0,86 0,88 0,90 0,93 0,94 0,96 1,00 1,01 1,02 1,05 1,07 1,09 1,11 1,13 SPA 0,80 0,81 0,83 0,85 0,87 0,89 0,91 0,93 0,95 0,96 0,98 1,00 1,02 1,04 1,06 1,08 1,09 SPB 0,82 0,84 0,86 0,88 0,90 0,92 0,94 0,96 0,98 1,00 1,02 1,04 1,06 1,08 1,10 1,12 1,14 SPC 0,81 0,83 0,86 0,88 0,90 0,92 0,94 0,96 0,98 1,00 1,02 1,04 1,06 1,08 1,10 1,12 1,14 TABLE 5 - INSTALLATION AND TAKE UP ALLOWANCE L () Y () SPZ SPA SPB SPC 19 X () 512 670 15 15 10 670 15 14 10 18 10 30 23 2240 30 40 32 28 2240 30 35 45 36 36 3 30 30 40 45 36 44 22

SP SPZ 587 SPZ 607 SPZ 612 SPZ 630 SPZ 637 SPZ 662 SPZ 670 SPZ 687 SPZ 710 SPZ 722 SPZ 737 SPZ 7 SPZ 762 SPZ 772 2 3400 3600 0 6000 600 6 6 643 6 675 683 723 735 7 763 775 785 SPZ 787 SPZ 800 SPZ 812 SPZ 8 SPZ 837 SPZ 8 SPZ 862 SPZ 875 SPZ 887 SPZ SPZ 912 SPZ 922 SPZ 9 SPZ 937 800 813 8 838 8 863 875 888 913 9 935 938 9 SPZ 9 SPZ 962 SPZ 975 SPZ 987 SPZ SPZ 1010 SPZ 1012 SPZ 1024 SPZ 1037 SPZ 1047 SPZ 1060 SPZ 1077 SPZ 1087 SPZ 1112 963 975 988 1013 1023 10 1037 10 1060 1073 1090 1 11 SPZ 11 SPZ 1137 SPZ 1140 SPZ 1147 SPZ 11 SPZ 1162 SPZ 1180 SPZ 1187 SPZ 1 SPZ 12 SPZ 1212 SPZ 1237 SPZ 10 SPZ 1262 1133 11 1153 1160 1163 1175 1193 1 1213 1215 12 10 1263 1275 SPZ 1270 SPZ 1287 SPZ 1312 SPZ 13 SPZ 1337 SPZ 1340 SPZ 1347 SPZ 1362 SPZ 1387 SPZ SPZ 1412 SPZ 14 SPZ 1437 SPZ 1462 63 71 80 90 112 1 140 1 160 170 180 0,39 0,51 0,62 0,67 0,87 0,91 1,00 1,04 1,31 1,44 1,47 1,58 1,63 1,72 1,88 1,94 0,52 0,69 0,85 0,92 1,21 1,28 1,41 1,47 1,88 2,09 2,14 2,32 2,41 2,57 2,87 3,03 SPZ SECTION TABLE 4 - P b (kw) referred to d () 0,30 0,67 0,89 1,10 1, 1,59 1,68 1,86 1,95 2,52 2,81 2,88 3,14 3,26 3,49 3,93 4,18 0,37 0,83 1,11 1,38 1,51 2,01 2,13 2,36 2,47 3,21 3,59 3,68 4,02 4,18 4,47 5,04 5,35 0,44 0,99 1,34 1,66 1,82 2,42 2,57 2,85 2,99 3,89 4,35 4,46 4,87 5,06 5,41 6,07 6,39* 0,52 1,19 1,60 1,99 2,18 2,92 3,09 3,43 3,60 4,68 5,23 5,36 5,85 6,07 6,47 7,19 0,61 1,39 1,88 2,35 2,57 3,44 3,65 4,05 4, 5,52 6,16 6,31 6,86 7,11 7,55 8,26* 0,38 0,71 1,63 2, 2,75 3,02 4,03 4,28 4,75 4,98 6,45 7,17 7,34 7,95 8,22 8,67 0,41 0,78 1,79 2,42 3,02 3,31 4,43 4,69 5,21 5,46 7,05 7,82 8,00 8,63 8,90 9,35* 0,45 0,85 1,94 2,63 3,28 3,60 4,81 5,10 5,66 5,93 7,63 8,44 8,63 9,27 9,54 9,97* 0,48 0,91 2,10 2,84 3,55 3,89 5,19 5, 6,10 6,39 8,19 9,04 9,22 9,87 1* 1283 1300 13 1333 13 1353 1360 1375 1413 14 1433 14 1475 0,52 0,98 2, 3,05 3,81 4,17 5,57 5,90 6,54 6,84 8,74 9,60 9,79 10,43* 10,68* SPZ 1470 SPZ 1487 SPZ SPZ 1512 SPZ 15 SPZ 1537 SPZ 1562 SPZ 1587 SPZ SPZ 1612 SPZ 1637 SPZ 16 SPZ 1662 SPZ 1687 1483 1513 15 1533 15 1575 1613 16 16 1663 1675 SPZ SPZ 1737 SPZ 17 SPZ 1762 SPZ 1787 SPZ SPZ 1812 SPZ 1837 SPZ 18 SPZ 1862 SPZ 1887 SPZ 1 SPZ 1937 SPZ 1962 1713 17 1763 1775 1813 18 18 1863 1875 1 1913 19 1975 SPZ 1987 SPZ 0 SPZ 19 SPZ 30 SPZ 37 SPZ 62 SPZ 87 SPZ 21 SPZ 2137 SPZ 2160 SPZ 2187 SPZ 2240 SPZ 2262 SPZ 2287 P d (kw) referred to i 0 13 32 43 75 2 2133 21 2173 2 23 2275 2300 SPZ 2360 SPZ 2410 SPZ 2437 SPZ 2487 SPZ SPZ 40 SPZ 26 SPZ 2800 SPZ SPZ 31 SPZ 33 SPZ 35 2373 2423 24 13 53 2663 2813 3013 3163 3363 3563 i 1,00 1,01 1,02 1,05 1,06 1,11 1,12 1,18 1,19 1,26 1,27 1,38 1,39 1,57 1,58 1,94 1,95 3,38 over 3,39 2 3400 3600 0 6000 0,26 0,31 0,36 0,46 0,55 0,32 0,38 0,44 0,55 0,66 0,32 0,37 0,39 0,44 0,47 0,52 0,65 0,78 0, 0,26 0,36 0,42 0,44 0,49 0,52 0,58 0,73 0,87 0,29 0,46 0,48 0,54 0,63 0,79 0,95 0, 0,29 0,30 0,42 0,49 0, 0,60 0,67 0,84 1,01 * Belt speed is greater than 30 m/s then is necessary to use dynamically balanced pulleys. A reduction in belt life can be expected. Suggested a smaller section. 23

SP SPA 657 SPA 707 SPA 732 SPA 757 SPA 782 SPA 800 SPA 807 SPA 832 SPA 8 SPA 857 SPA 882 SPA SPA 907 SPA 9 SPA 932 TABLE 4 - P b (kw) referred to d () 2 3 3600 4600 0 675 7 7 775 800 818 8 8 868 875 918 9 943 9 90 106 112 118 132 1 170 190 212 236 0 0,42 0,90 1,18 1,43 1,56 2,01 2,11 2,30 2,40 2,96 3,21 3,27 3,49 3,52 3,62 3,66 3,59 0,29 0,54 1,17 1,55 1,90 2,07 2,70 2,85 3,13 3,27 4,11 4, 4,58 4,95 5,01 5, 5,34 5,32 SPA SECTION SPA 9 SPA 957 SPA 967 SPA 982 SPA SPA 7 SPA 1032 SPA 1060 SPA 1082 SPA 1107 SPA 11 SPA 1132 SPA 11 SPA 1157 SPA 1180 0,61 1,33 1,77 2,18 2,38 3,12 3,29 3,63 3,79 4,78 5, 5,35 5,80 5,87 6,11 6,29 6,28 968 975 985 1018 10 10 1078 1 11 1138 11 1168 1175 1198 0,37 0,68 1, 1,99 2,46 2,69 3,53 3,73 4,11 4,30 5,45 5,99 6,11 6,63 6,71 6,99 7, 7,19 SPA 17 SPA 1232 SPA 10 SPA 17 SPA 1272 SPA 1282 SPA 1307 SPA 13 SPA 1332 SPA 1357 SPA 1382 SPA SPA 1407 SPA 14 SPA 1432 0,74 1,66 2,21 2,74 2,99 3,94 4,17 4,60 4,80 6,10 6,71 6,85 7,43 7,53 7,84 8,07 8,04* 0,49 0,90 2,03 2,72 3,38 3,69 4,89 5,17 5,71 5,97 7,59 8,35 8,52 9,22 9,34 9,69 9,89* 9,79* 12 10 1268 1275 1290 1300 13 1338 13 1375 1418 14 1443 14 0,59 1,11 2,51 3,37 4,19 4,59 6,08 6,43 7,11 7,43 9,43 10,34 10,53 11,33 11,45 11,78* SPA 14 SPA 1457 SPA 1482 SPA SPA 17 SPA 1532 SPA 15 SPA 1557 SPA 1582 SPA SPA 1607 SPA 1632 SPA 1657 SPA 1682 SPA 0,71 1,33 3,03 4,08 5,08 5,56 7,38 7,80 8,62 9,00 11,35 12,37 12,58 13,38* 13,49* 0,83 1,55 3,55 4,78 5,96 6,52 8,64 9,13 1 10,52 13,15 14,21 14,42 15,11* 1468 1475 1518 15 15 1568 1575 1618 16 16 1675 1718 0,95 1,80 4,11 5,55 6,91 7,56 1 10,56 11,62 12,12 14,96 15,99* 16,17* SPA 1707 SPA 1732 SPA 17 SPA 1757 SPA 1782 SPA SPA 1807 SPA 1832 SPA 1857 SPA 1882 SPA 1 SPA 1907 SPA 19 SPA 1932 SPA 19 1,09 2,06 4,72 6,37 7,93 8,67 11,43 12,05 13,23 13,77 16,72* 17 17 1768 1775 1818 18 18 1875 1 1918 19 1943 19 1968 1,17 2,21 5,08 6,84 8,51 9,31 12,24 12,90 14,13 14,70 17,63* SPA 1957 SPA 1982 SPA 0 SPA 32 SPA 57 SPA 82 SPA 21 SPA 2132 SPA 2182 SPA 27 SPA 2232 SPA 2240 SPA 2282 SPA 2300 SPA 2307 1975 0 18 75 2 2138 21 2 22 28 2300 2318 23 SPA 2332 SPA 2360 SPA 2382 SPA 2432 SPA 2482 SPA SPA 32 SPA 82 SPA 2607 SPA 2632 SPA 26 SPA 2682 SPA 2732 SPA 2782 SPA 2800 23 2378 2400 24 18 2600 26 26 2668 2 27 2800 2818 SPA 2832 SPA 2847 SPA 2882 SPA 2 SPA 2932 SPA 2982 SPA SPA 3032 SPA 3082 SPA 31 SPA 3182 SPA 30 SPA 3282 SPA 33 SPA 3382 P d (kw) referred to i 28 2865 2 2918 29 3018 30 3 3168 3 3268 3300 3368 3400 SPA 35 SPA 36 SPA 37 SPA SPA 40 SPA 4 SPA 47 SPA 5 3568 3668 3768 4018 4268 4518 4768 5218 i 1,00 1,01 1,02 1,05 1,06 1,11 1,12 1,18 1,19 1,26 1,27 1,38 1,39 1,57 1,58 1,94 1,95 3,38 over 3,39 2 3 3600 4600 0 0,26 0,31 0,32 0,36 0,41 0,45 0,39 0,45 0,47 0,55 0,56 0,63 0,72 0,78 0,30 0,32 0,36 0,38 0,53 0,62 0,64 0,75 0,77 0,85 0,98 1,07 0,26 0,36 0,39 0,44 0,47 0,65 0,75 0,78 0,90 0,93 1,03 1,19 1,29 0,30 0,42 0,45 0,51 0,54 0,76 0,88 0,91 1,06 1,09 1,21 1,39 1,51 0,31 0,34 0,48 0,51 0,58 0,61 0,85 0,99 1,02 1,19 1,23 1,36 1,57 1,70 0,26 0,37 0,52 0,56 0,63 0,67 0,93 1,08 1,11 1,30 1,34 1,48 1,71 1,86 0,35 0,39 0,55 0,59 0,67 0,71 0,98 1,14 1,18 1,38 1,42 1,57 1,81 1,97 SPB 10 SPB 13 SPB SPB 1410 SPB 14 SPB SPB SPB 16 1272 1342 1422 1432 1472 1522 1622 1672 SPB SECTION SPB SPB 17 SPB SPB 18 SPB 1860 SPB 1 SPB 19 SPB 0 1722 1772 1822 1872 1882 1922 1972 22 SPB SPB 60 SPB 98 SPB 21 SPB 21 SPB 2180 SPB 2240 SPB 2264 42 82 21 2142 2172 22 2262 2286 SPB 2280 SPB 2300 SPB 2360 SPB 2391 SPB 2410 SPB 2430 SPB SPB 30 TABLE 4 - P b (kw) referred to d () 0 2 3 3600 4600 2302 2322 2382 2413 2432 2452 22 32 SPB 80 SPB 2600 SPB 26 SPB 2680 SPB 27 SPB 2800 SPB 2840 SPB 28 140 1 160 170 180 224 0 280 315 355 400 0,66 1, 2,60 3,43 4,19 4,56 5,88 6,19 6,75 7,02 7,51 8,51 9,05 9,15 9,40 9,40 9,21 8,33* 0,75 1,38 3,02 4,00 4,92 5,35 6,95 7,31 8,00 8,32 8,92 1 10,82 10,94 11,27 11,27 11,06* 0,85 1,56 3,45 4,58 5,64 6,14 8,00 8,43 9,23 9,60 10,30 11,73 12,52 12,66 13,02 13,02 12,75* 0,94 1,74 3,87 5,15 6,35 6,93 9,04 9,53 10,44 10,86 11,66 13,27 14,14 14,30 14,65* 14,64* 1,04 1,92 4,29 5,72 7,06 7,71 1 10,61 11,63 12,10 12,98 14,76 15,69 15,85 16,16* 16,12* 1,22 2,28 5,12 6,85 8,47 9,24 12,09 12,73 13,95 14,51 15,55 17,58 18,55* 18,69* 1,45 2,70 6,11 8,18 1 11,05 14,44 15, 16,62 17,27 18,46,65 21,52* 1,69 3,16 7,16 9,61 11,89 12,98 16,90 17,77 19,38 2 21,39 23,58* 1,96 3,68 8,37 11,23 13,88 15,14 19,62,60 22,36 23,13 24,47 2,28 4,29 9,76 13,08 16,15 17,59 22,62 23,68,54 26,33 27,60* 2,64 4,97 11,33 15,16 18,66,29,81 26,92 28,77* 29,49* 2602 2622 2672 2702 2742 2822 2862 2872 3,04 5,74 13,06 17,43 21,38 23,18 29,05 3* SPB 2 SPB 29 SPB SPB 3070 SPB 31 SPB 3170 SPB 30 SPB 33 0 2 3 3600 4600 i 2922 2972 3022 3092 3172 3192 3272 3342 SPB 33 SPB 34 SPB 35 SPB 36 SPB 37 SPB SPB 40 SPB 4 3372 3472 3572 3672 3772 4022 4272 4522 SPB 47 SPB 0 SPB 5300 SPB 5600 SPB 6000 SPB 6300 SPB 6 SPB 7 P d (kw) referred to i 4772 22 5322 5622 6022 6322 6722 7122 SPB 7 SPB 8000 7522 8022 1,00 1,01 1,02 1,05 1,06 1,11 1,12 1,18 1,19 1,26 1,27 1,38 1,39 1,57 1,58 1,94 1,95 3,38 over 3,39 0, 0,26 0,29 0,30 0,34 0,36 0,49 0,59 0,69 0,71 0,79 0,91 0,31 0,34 0,48 0,52 0,59 0,62 0,69 0,86 1,00 1,03 1,21 1,24 1,38 1,59 0,42 0,47 0,66 0,70 0,80 0,84 0,94 1,17 1,36 1,41 1,64 1,69 1,88 2,16 0,51 0,80 0,85 0,97 1,02 1,14 1,42 1,65 1,71 1,99 2,05 2,27 2,62 0,47 0,60 0,67 0,93 1,00 1,13 1, 1,33 1,66 1,93 2,00 2,33 2,40 2,66 3,06 0,37 0,52 0,67 0,75 1,05 1,12 1,27 1,35 1, 1,87 2,17 2, 2,62 2,70 3,00 3,45 0,41 0,73 0,82 1,14 1,22 1,39 1,47 1,63 2,04 2,37 2,45 2,86 2,94 3,27 3,76 0,43 0,61 0,78 0,86 1,21 1,30 1,47 1,56 1,73 2,16 2,51 2,59 3,03 3,11 3,46 3,98 * Belt speed is greater than 30 m/s then is necessary to use dynamically balanced pulleys. A reduction in belt life can be expected. Suggested a smaller section. 24