Solar Hydrogen: The Hydrosol Technology and its Implications Athanasios G. Konstandopoulos Aerosol & Particle Technology Laboratory, CPERI/CERTH, and Dept Chemical Eng., Aristotle University Greece The Challenge of Sustainable Development,...,, 360.. The land must be sufficient to support no more than a certain number of people living with moderation Plato, Laws, 360 B.C.
Routes to Sustainable Development,...,, 360.. The land must be sufficient to support no more than a certain number of people living with moderation CO Plato, Laws, 360 B.C. 2 reduction (efficiency improvement, CO 2 capture and management) Renewable fuels (H 2, biofuels?) Sustainable transport (energy & environmental friendly mobility: clean diesel/hybrid/electrification?) CO2-SINK H 2 Technologies: Commercial/Near-commercial
Sustainable Commercialization Needs Sustainable H 2 Production Technologies Where will hydrogen come from? Fossil fuel derived hydrogen is not sustainable, even with Carbon Sequestration and Storage (CSS) Only hydrogen from renewable sources is sustainable. Most promising renewable option is Solar Hydrogen Solar Hydrogen may be a disruptive technology Solar Hydrogen 2 2 + O 2 2 + 2 + O 2
Renewable Hydrogen Pathways Lorentzou and Konstandopoulos, in Solar Hydrogen and Nanotechnology, in press The basic idea behind HYDROSOL: Coated monolithic reactor Combination of Technologies Solar thermal technology Catalytic reactors (catalytic converters and Diesel soot filters) Ceramic Honeycomb Monoliths Nanoparticles & Coatings
Redox Compounds: Water-splitting via thermochemical cycles Water-splitting MO reduced H O MO 2 oxidized H 2 (Exothermic) Regeneration MO oxidized MO reduced O 2 (Endothermic) MO redox material : Typical redox pairs : FeO-Fe 3 O 4 /Fe 2 O 3, MnO/Mn 3 O 4, Zn/ZnO Ferrites doped with Mn, Ni and Zn Redox Material Synthesis Techniques at APT Lab Methods Precursor Materials Solid Phase (Metal/Oxide powders) Liquid Phase (Solutions of metal salts) Sintering of powders Combustion of powders Combustion of Gels Pyrolysis of Droplets Solid State Synthesis (SSS) Solid Phase Selfpropagating Hightemperature Synthesis (SPSHS) Liquid Phase Selfpropagating Hightemperature Synthesis (LPSHS) Aerosol Spray Pyrolysis (ASP) Aerosol spray pyrolysis synthesis of water-splitting ferrites for solar Hydrogen production, Granular Matter, 2008, 10(2), 113-122.
Effect of Synthesis Method on H 2 yield 5000 Hydrogen Yield ( mol H 2 /g solid) 4500 4000 3500 3000 2500 2000 1500 1000 500 0 ASP LPSHS SPSHS SSS ASP LPSHS SPSHS SSS Solar Hydrogen: The HYDROSOL Process Renewable energy sources and raw materials Zero greenhouse gas emissions Long-term potential Descartes Prize (Mar. 7, 2007) IPHE Inaugural Technical Achievement Award (Jun. 13, 2006) 100 Global Ecotech Award-EXPO Japan (Sept. 1, 2005)
Solar Hydrogen: The HYDROSOL Process HYDROSOL Awards The 2006 Descartes Research Prize from the European Commission The 2006 Technical Achievement Award from the International Partnership for the Hydrogen Economy (IPHE) The Global 100 Eco- Tech Award at the 2005 EXPO in Japan
The HYDROSOL Story July 2001: December 2001: November 2002: October 2004: December 2004 : September 2005: October 2005: November 2005: June 2006: March 2007: March 2008: HYDROSOL reactor concept is proposed by APTL during SOLAIR project meeting in Almeria, leading to formation of HYDROSOL-I consortium (APTL, DLR, JM, STOBBE). HYDROSOL proposal is submitted HYDROSOL project starts First Solar H 2 production by HYDROSOL-I reactor at the DLR solar furnace CIEMAT/PSA joins in and HYDROSOL-II proposal is submitted 100 Global Ecotech Award at Aichi EXPO Japan HYDROSOL project is completed HYDROSOL-II project starts IPHE Inaugural Technical Achievement Award Descartes Prize for Research Hydrosol-II reactor is inaugurated HYDROSOL Technology Scale-Up 2008: 100 kw 2, World s largest STC H 2 reactor (at the Plataforma Solar de Almeria) 2005: 3 kw x 2, continuous STC 2 production 2004: 3 kw, World s first solar thermochemical (STC) 2 production (at the DLR solar furnace in Cologne)
HYDROSOL- Reactor 100 kw (inaugurated March 31, 2008) SSPS Tower of Plataforma Solar Almeria, Spain Chemistry World, March 28, 2008
HYDROSOL Technology: The Future In Progress: Project HYDROSOL-3D Integrated design of 1 W plant
A Renewable Future for Europe Mare Nostrum (Reloaded) Solar thermal HYDROSOL Photovoltaic Wind Hydroelectric Biomass Geothermal Adapted from DESERTEC White Paper (2007)
Solar Fuels from CO 2 and Solar H 2 4 2 + CO 2 C 4 +2H 2 O (methane) 3 2 + CO 2 C 3 + H 2 O (methanol) 2 2 Cycle 2 2 + ½ 2 C + O 2 CO 2 CO 2 Cycle 2 CO 2 From sequestration Fuels from CO 2 and solar H 2 Exploit Sabatier Reaction 4 2 + CO 2 C 4 +2H 2 O The proposed combined cycle of H 2 O and CO 2 consists of Sustainable method for CO 2 sequestration Sustainable method for 2 storage Paul Sabatier Nobel Prize in Chemistry (1912)
Tomorrow s Solar Thermochemical Plant Production of Solar Fuels (renewable H 2 and CH 4 / CH 3 OH), Recycling of CO 2, Production of Electricity and Desalinated H 2 O H 2 O Captured CO 2 H 2 CH 4, CH 3 OH Heat Electricity Sea water Desalinated H 2 O A. G. Konstandopoulos. No reproduction without permission. Contact agk@cperi.certh.gr Today s Engine Technology Fuel Internal Combustion Engine Emission Control Device Exhaust Emissions e N
What makes metals interesting as fuels? In Progress: Project COMETNANO Metal Nanoparticles as Fuel and their Recycling Using Solar Hydrogen Internal Oxidized Metal Combustion Nanoparticles Nanoparticles Engine Oxidized Nanoparticle Collector No Exhaust Emissions e N Recycling of Metal Oxide Nanoparticles to Metal Nanoparticles using Solar Hydrogen
Regeneration of Metal Oxide by Solar H 2 2 + MO x M +H 2 O (metal reduction) 2 2 Cycle 2 2 + ½ 2 M + O 2 MO x Metal Cycle 2 MO x From automobile exhaust Conclusion
Acknowledgments European Commission for supporting our Solar Hydrogen research with projects: HYDROSOL, HYDROSOL-II, HYDROSOL-3D, SOLAIR, SOLREF, SOLHYCARB, HYCYCLES & COMETNANO HYDROSOL I & II consortium members from CPERI, DLR, STC, JM, CIEMAT For Further Information Athanasios G. Konstandopoulos agk@cperi.certh.gr http://www.hydrosol-project.org http://apt.cperi.certh.gr
Συντονιστής: Καθ. Αθανάσιος Καϊσης, Μέλος Δ.Ε. ΔΙΠΑΕ 20.00 Ηλιακό Υδρογόνο: Η Τεχνολογία HYDROSOL και οι προεκτάσεις της Αθανάσιος Γ. Κωνσταντόπουλος Επικεφαλής Εργ. Τεχν. Σωματιδίων & Αερολυμάτων Διευθυντής Ινστ. Τεχν. Χημ. Διεργασιών του ΕΚΕΤΑ 20.20 Παρουσίαση του νέου Μεταπτυχιακού Προγράμματος του Διεθνούς Πανεπιστημίου σε Ενεργειακά Συστήματα Ιωάννης Βλαχάβας Κοσμήτορας Σχολής Επιστημών και Τεχνολογίας Δι.Πα.Ε. Καθηγητής, Τμήμα Πληροφορικής, ΑΠΘ 20.30 Προοπτικές Εξοικονόμησης Eνέργειας με έμφαση στις Μεταφορές και το Δομημένο Περιβάλλον Νικόλαος Μουσιόπουλος Κοσμήτορας Πολυτεχνικής Σχολής ΑΠΘ Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών, ΑΠΘ 20.50 Περιβάλλον και Ενέργεια Χριστόφορος Κουτίτας Αντιπρόεδρος της Διοικούσας Επιτροπής Δι.Πα.Ε. Καθηγητής, Τμήμα Πολιτικών Μηχανικών, ΑΠΘ 8
ΔΙΕΘΝΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΑΔΟΣ Πρακτικά Ημερίδας με θέμα: Ζητήματα της Πράσινης Ενέργειας Θεσσαλονίκη Θέρμη Φεβρουάριος 2010
Ημερίδα με θέμα: Ζητήματα της Πράσινης Ενέργειας Παρασκευή 27 Νοεμβρίου 2009 Αμφιθέατρο Διεθνούς Πανεπιστημίου