21 2 No.2 Vol.21 2007 4 Journal of Chemical Engineering of Chinese Universities Apr. 2007 1003-9015(2007)02-0334-07 PET/ATO,, (, 200237) (ATO) (EG) EG (TPA) (PET)/ATO SEM DSC XRD FTIR TGA ATO PET PET/ATO PET/ATO ATO PET 100~150 nm ATO PET PET ATO PET PET PET ATO PET 1%ATO PET 4.9 10 9 Ω cm ATO TQ342.21 TQ340.471 TQ342.94 TQ314.247 A Preparation and Crystalline Behavior of PET/ATO Nanocomposites Prepared by In-Situ Polymerization CHEN Xiao-lei, SHAO Wei, LI Chun-zhong (School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China) Abstract: Poly(ethylene terephathalate) / antimony doped tin oxide (PET/ATO) nanocomposites were prepared by means of esterization and condensation reactions of terephathalic acid and ethyl glycol in the presence of ATO nanoparticles. The dispersion of ATO in PET matrix and the effects of ATO on the intrinsic viscosity of PET, the crystallization and thermal behavior of PET were investigated by SEM, DSC, XRD, FTIR and TGA. It was found that ATO nanoparticles are well dispersed in the PET matrix, and the introduction of ATO increases the intrinsic viscosity of PET nanocomposites. ATO nanoparticles behave as the nucleating agent. Compared with the neat PET, adding ATO nanoparticles, the crystallization rate and crystallization temperature of the PET nanocomposites increase, in addition, the crystallinity of the nanocomposites also increases and their crystallite size decreases. The thermal stability of the nanocomposites is slightly enhanced by the addition of ATO nanoparticles. The specific resistance of the fibers prepared by the PET/ATO nanocomposites (with 1 wt% of ATO) is about 4.9 10 9 Ω cm, which is much lower than that of the neat PET fibers (about 2.7 10 13 Ω cm), and the hybrid fibers show a better anti-static property. Key words: poly(ethylene terephathalate); antimony doped tin oxide; in-situ polymerization; crystallization; anti-static; nanocomposites 1 (PET) 2006-01-12 2006-06-15 (20236020) (04DZ14002) (04DZ05622 05DZ22302) (0452nm001 0452nm047 05nm05001) (1980-) E-mail czli@ecust.edu.cn
21 2 PET/ATO 335 [1~3] PET PET PET [4] / 22% 10 5 Ω cm [5] / 2% PET 10 14 10 2 Ω cm PET (ATO) ATO [6] [7] ATO >10 12 Ω 10 10 Ω PET PET ATO PET PET PET PET PET ATO PET ATO PET 2 2.1 ATO [8] 20 nm 65 m 2 g -1 1~5 Ω cm (TPA) (EG) (TMP) ( ) 2.2 PET 830 g TPA 403 g EG 14 µl 0.2820 g 0.0173 g 2 L N 2 2 0.25 MPa 240 1.5 h 280 100 Pa 3.5 h PET/ATO ATO EG PET/ATO 1 EG with modified ATO TPA Catalyst Stabilizing agent Agitating for 15 min at 25 Mixture 0.25 MPa, 240 Esterifying for 1 h Fractionating H 2 O PET/ATO nanocomposite Cooling and cutting Condensation polymerization for 3h 70 Pa 280 Ethylene terephthalate 1 PET/ATO Fig.1 Flow chart of in-situ polymerizing PET/ATO nanocomposites 2.3 1:1 0.5 g dl 1 25 PET
336 2007 4 PET/ATO (JEM-6700F JEOL ) ATO PET (WRT-2 ) 10 min 1 650 ATO PET (Model CRY-Y ) N 2 10 min 1 40 300 10 min 10 min 1 100 10 min -1 300 (1) Hc X c (%) = 100 (1) (1 Φ ) Hm H m 100% PET H m 140 J g 1 H c Ф [9] X (D/MAX-2550PC ) Cu K α 40 kv 100 ma 5 min 1 XRD PET PET/ATO (Nicolet Fq Irsx ) PET ABE-25 YG321 10 3 3.1 PET/ATO TPA/EG PET/ATO 1 1 PET/ATO ATO PET/ATO PET ATO PET ATO 65 m 2 g 1 PET PET ATO ATO PET (2a) ATO Sn PET ATO PET ( (2b) ) PET [10~12] ATO ATO OH RO C O Sn O RO C O...... HO Sn (2) 1 ATO PET/ATO Table 1 Effect of ATO on intrinsic viscosity of nanocomposites Mass fraction of ATO / % 0 0.5 1 2.5 Intrinsic viscosity / dl g -1 0.648 0.675 0.695 0.710 3.2 ATO PET ATO PET 2 2 ATO PET 2 ATO PET 100~150 nm ATO ATO EG
21 2 PET/ATO 337 ATO ATO ATO ATO ATO PET ATO PET [13,14] 2 PET/ATO Fig.2 FESEM micrographs of PET/ATO nanocomposites. PET/1%ATO PET/2.5%ATO 3.3 PET/ATO 3 PET PET/ATO DSC 3 2 t 1/2 (2) t1/2 = ( Ton Tc )/ χ (2) T on T c χ 2 PET/ATO (d) T c PET ATO 2.5% 170 180 190 200 210 220 PET/ATO 198 Temperature / o C 3 PET/ATO DSC Fig.3 Cooling measurement of DSC trace for PET/ATO nanocomposites pure PET PET/1%ATO PET/0.5%ATO (d) PET/2.5%ATO ATO PET PET/ATO 2 PET/ATO Table 2 DSC Data for PET/ATO nanocomposites Nanocomposite Melting Crystallization (PET/ATO) T m / T m / H m / J g 1 T onset / T c / T c / t 1/2 / min H c / J g 1 X c / % T c / 100/0 252 61 30.5 207 192 30 1.5 35.7 21.8 60 99.5/0.5 252 69 32.5 208 194 28 1.4 37.5 23.3 58 99/1 253 69 33.6 207 195 24 1.2 38.9 24.2 58 97.5/2.5 252 73 34.7 206 198 16 0.8 40.8 25.4 54 T c 2 PET/ATO T c PET (30 ) ATO T c ATO 2.5% PET/ATO T c 16 T c T c PET/ATO ATO PET PET Endo
338 2007 4 H c t 1/2 T c H c H c t 1/2 t 1/2 T c T m T c T c T c 2 PET/ATO t 1/2 T c PET ATO t 1/2 T c ATO 2.5% t 1/2 T c PET 1.5 min 60 C 0.8 min 54 PET/ATO H c PET (35.7 J g 1 ) ATO H c 2.5% PET/ATO H c (40.8 J g 1 ) ATO PET [15,16] 4 PET PET/ATO DSC 4 2 2 ATO T m PET/ATO PET 3.6% ATO PET 4 ATO PET/ATO ATO PET [17,18] Groeninckx [19] PET (100~150 ) (220 230 240 ) DSC DSC 4 Ι ATO PET ATO Endo (d) Intensity / CPS I II (d) 190 200 210 220 230 240 250 260 270 Temperature Temperature / / o C 10 20 30 40 50 60 2-Theta / o 4 PET/ATO DSC Fig.4 Heating measurement of DSC trace for PET/ATO nanocomposites pure PET PET/0.5%ATO PET/1%ATO (d) PET/2.5%ATO 5 PET/ATO XRD Fig.5 XRD patterns of PET and PET/ATO nanocomposites pure PET PET/0.5%ATO PET/1%ATO (d) PET/2.5%ATO 3.4 ATO PET XRD PET PET/ATO 5 5 PET ATO PET ATO PET
21 2 PET/ATO 339 ATO PET 1% 2.5% ATO PET 6 PET [20] 6 1% 2.5%ATO PET 974 875 846 cm 1 1% 2.5%ATO PET 2.5%ATO PET 1174 1041 cm 1 1%ATC PET ATO PET/ATO ATO PET 100 80 Weight / % 60 40 20 6 PET/ATO Fig 6 FTIR spectra of PET/ATO nanocomposites PET/1%ATO PET/2.5%ATO 0 300 350 400 450 500 550 Temperature / o C 7 PET PET/ATO Fig.7 TG curves of PET/ATO nanocomposites pure PET PET/2.5%ATO PET/5%ATO 3.5 PET/ATO 7 PET PET/ATO 7 PET 1%ATO PET 5%ATO PET 402 405 409 ATO PET ATO PET 3.6 ATO PET PET ATO 8 8 ATO ATO ATO 10 9 10 8 0 2 4 6 8 ATO / %(wt) 8 ATO PET Fig.8 Effect of ATO contents on the specific resistance of the hybrid fibers ATO ATO ATO ATO ATO 8 1%ATO PET 4.9 10 9 Ω cm PET (2.7 10 13 Ω cm) 4 Specific resistance / Ω cm 10 14 10 13 10 12 10 11 10 10 4 (1) ATO EGPET/ATO
340 2007 4 ATO PET 100~150 nm (2) ATO PET PET PET ATO PET PET PET (3) ATO PET/ATO 1%ATO PET 4.9 10 9 Ω cm [1] Mahendrasingam A, Martin C, Fuller W et al. Observation of a transient structure prior to strain-induced crystallization in poly(ethylene terephthalate) [J]. Polymer, 2000, 41(3): 1217-1221. [2] Blundell D J, Mahendrasingam A, Martin C et al. Orientation prior to crystallisation during drawing of poly(ethylene terephthalate) [J]. Polymer, 2000, 41(21): 7793-7802. [3] Welsh G E, Blundell D J, Windle A H. A transient liquid crystalline phase as a precursor for crystallization in random co-polyester fibers [J]. Macromolecules, 1998, 31(21): 7562-7565. [4] GAO Guang-yan( ), AN Shu-lin( ), YU Jun-lin ( ) et al. Research on conductive group in carbon black/poly ester composite fibers ( / ) [J]. Journal of Tianjin Polytechnic University( ), 2005, 24(2): 12-15. [5] HUANG Yi( ), LI Zhi-fei( ), LUO Guo-hua( ) et al. Study on structure and properties of polyester/carbon nanotube conductive fiber( / ) [J]. China Synthetic Fiber Industry ( ), 2004, 27(6): 1-3. [6] Rajpure K Y, Kusumade M N, Neumann-Spallart M N et al. Effect of Sb doping on properties of conductive spray deposited SnO 2 thin films [J]. Mater Chem Phys, 2000, 64(3): 184-188. [7] WU Yue( ), CHI Yan-bo( ), NIE Jia-xiang( ) et al. Preparation and application of novel fabric finishing agent containing nano ATO( ) [J]. Journal of Functional Polymers ( ), 2002, 15(1): 43-47. [8] QIN Chang-yong( ), LUO Mei-fang( ), GU Hong-chen( ) et al. Effect of preparation technique on the conductive properties of ultra-fine ATO powders ( ATO ) [J]. Journal of East China University of Science and Technology ( ), 2001, 27(3): 261-264. [9] QIU Gao, TANG Zhi-lian, HUANG Nan-xun et al. Dual melting endotherms in the thermal analysis of poly(ethylene terephthalate) [J]. J Appl Poly Sci, 1998, 69(4): 729 742. [10] Li X, Liu R T, Zhong L L et a1. Antielectrostatic poly(ether ester) block copolymer of poly(ethylene terephthalate-co-isophthalate) -poly(ethylene glycol) [J]. J Appl Poly Sci, 2003, 89(6): 1696-1701. [11] BAO Yong-zhong( ), HUANG Zhi-ming( ), WENG Zhi-xue( ). Preparation and crystalline properties of PET/ZnO nano-meter composite (PET/ZnO ) [J]. China Plastics Industry( ), 2004, 32(10): 21-23. [12] HU Ke-fang( ), QIAN Hui-he( ), WANG Rui( ) et al. The thickening effect of nano-sio 2 on PET melt and the improvement method ( SiO 2 PET ) [J]. Polymer Industry( ). 2004, 17(1): 16-18. [13] NIE Peng( ), ZHAO Xue-zeng( ), CHEN Fang( ) et al. Study on SiO 2 /epoxy nano-composites preparation method based on under-expanding jet ( SiO 2 / ) [J]. J Chem Eng of Chinese Univ( ). 2005, 19(6): 834-838. [14] ZENG Xiao-fei( ), CHEN Jian-feng( ), WANG Guo-quan( ). Relationship between the structure and impact property of nano-caco 3 /PVC composite ( CaCO 3 /PVC ) [J]. J Chem Eng of Chinese Univ( ). 2002, 16(2): 203-206. [15] Taniguchi A, Cakmak M. The suppression of strain induced crystallization in PET through sub micron TiO 2 particle incorporation [J]. Polymer, 2004, 45(19): 6647-6654. [16] Wu Z G, Zhou C X, Zhu N. The nucleating effect of montmorillonite on crystallization of nylon 1212/montmorillonite nanocomposite [J]. Polym Testing, 2002, 21(4): 479-483. [17] Lu X F, Hay J N. Crystallization orientation and relaxation in uniaxially drawn poly(ethylene terephthalate) [J]. Polymer, 2001, 42(19): 8055-8067. [18] Kong Y, Hay J N. Multiple melting behaviour of poly(ethylene terephthalate) [J]. Polymer, 2003, 44(3): 623-633. [19] Groeninckx G, Reynaers H J. Morphology and melting behavior of semicrystalline poly(ethylene terephthalate). ΙΙ Annealed PET [J]. J Polym Sci, Polym Phy Ed, 1980, 18(8): l325-1334. [20] Wan T, Chen L, Chua Y C et al. Crystalline morphology and isothermal crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites [J]. J Appl Poly Sci, 2004, 94(4): 1381-1388.