Customized Pricing Recommender System Simple Implementation and Preliminary Experiments

Σχετικά έγγραφα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

Collaborative Filtering

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Kenta OKU and Fumio HATTORI

A High-speed Scheduling Method of Virtual Machine Placement with Search Parameter Estimation by Collaborative Filtering

y = f(x)+ffl x 2.2 x 2X f(x) x x p T (x) = 1 Z T exp( f(x)=t ) (2) x 1 exp Z T Z T = X x2x exp( f(x)=t ) (3) Z T T > 0 T 0 x p T (x) x f(x) (MAP = Max

Buried Markov Model Pairwise

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.


Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

Simplex Crossover for Real-coded Genetic Algolithms

Quick algorithm f or computing core attribute

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Probabilistic Approach to Robust Optimization

ER-Tree (Extended R*-Tree)

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Web. Web p OutDegree(p) log 7 1/OutDegree(p) A New Difinition of Subjective Distance between Web Pages

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

Anomaly Detection with Neighborhood Preservation Principle

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA

Applying Markov Decision Processes to Role-playing Game

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

{takasu, Conditional Random Field

Stabilization of stock price prediction by cross entropy optimization

Reading Order Detection for Text Layout Excluded by Image

Detection and Recognition of Traffic Signal Using Machine Learning

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

DECO DECoration Ontology

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo


ΓΗΑΠΑΝΔΠΗΣΖΜΗΑΚΟ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΧΝ ΠΟΤΓΧΝ ΣΔΥΝΟΛΟΓΗΔ ΣΖ ΠΛΖΡΟΦΟΡΗΑ ΚΑΗ ΣΖ ΔΠΗΚΟΗΝΧΝΗΑ ΓΗΑ ΣΖΝ ΔΚΠΑΗΓΔΤΖ ΓΙΠΛΧΜΑΣΙΚΗ ΔΡΓΑΙΑ

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

Η Διδακτική Ενότητα «Γνωρίζω τον Υπολογιστή», στα πλαίσια των Προγραμμάτων Σπουδών της Πληροφορικής: μια Μελέτη Περίπτωσης.

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Recommendation συστήματα

Terabyte Technology Ltd

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

High order interpolation function for surface contact problem

Secure Cyberspace: New Defense Capabilities

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Automatic extraction of bibliography with machine learning

Πέτρος Γ. Οικονομίδης Πρόεδρος και Εκτελεστικός Διευθυντής

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΛΕΥΚΑΔΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

Compound Reinforcement Learning: Framework and Application

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΙΟΙΚΗΣΗ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Η χρήση του MOODLE από την οπτική γωνία του ιαχειριστή

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

ΑΛΕΧΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΑΡΚΕΤΙΓΚ ΑΛΕΧΑΝΔΡΕΙΟ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

Architecture for Visualization Using Teacher Information based on SOM

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Homomorphism in Intuitionistic Fuzzy Automata

Assalamu `alaikum wr. wb.

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

Development of a basic motion analysis system using a sensor KINECT

þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â

-,,.. Fosnot. Tobbins Tippins -, -.,, -,., -., -,, -,.

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Bayesian Discriminant Feature Selection

Αναζήτηση και ανάκτηση δεδοµένων από το διαδίκτυο, προσωποποιηµένη παρουσίαση πληροφορίας και προτυποποίηση χρηστών.

Big Data/Business Intelligence

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Η Διαδραστική Τηλεδιάσκεψη στο Σύγχρονο Σχολείο: Πλαίσιο Διδακτικού Σχεδιασμού

Online Social Networks: Posts that can save lives. Dimitris Gritzalis, Sotiria Giannitsari, Dimitris Tsagkarakis, Despina Mentzelioti April 2016

Πρόσκληση. DOSSIER-Cloud DevOpS-based Software engineering for the cloud

Transcript:

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE., 305-8568 1 1 1 2 305 8571 1 1 1 102 8666 5 3,,, Customized Pricing Recommender System Simple Implementation and Preliminary Experiments Toshihiro KAMISHIMA, Shotaro AKAHO, and Jun SAKUMA, National Institute of Advanced Industrial Science and Technology (AIST) AIST Tsukuba Central 2, Umezono 1 1 1, Tsukuba, Ibaraki, 305-8568 Japan Graduate School of SIE, University of Tsukuba 1 1 1 Tennodai, Tsukuba, Ibaraki, 305-8577 Japan Japan Scienece and Technology Agency 5 3, Yonban-cho, Chiyoda-ku, Tokyo, 102 8666 Japan Abstract Recommender systems suggests items that would be preferred to customers. Here, we propose to add new function, price discounting, to these systems. This new system determines whether it offers discounting for each customer, and thus this price-setting scheme is called price customization. We discuss the benefits that this customized pricing recommender system will bring for both customers and dealers. We propose to realize such systems by combining standard recommendation algorithm and multi-armed bandit approaches. We implemented a simple system and performed preliminary experiments on semi-simulated data. Key words recommender system, collaborative filtering, price customization, multi-armed bandit 1. (recommender system) [1][3]GroupLens [4] 90 [3] Bergemann Ozmen 1

[5] [6] [7] 2. 3. 4. 5. 6. 2. (price customization) [8], [9] (dynamic pricing) (price personalization) 1 Dahana [8] 1CNN.com - Web sites change prices based on customers habits: http://edition.cnn.com/2005/law/06/24/ramasastry.website.prices/ 2

1 α β 0 0 0 γ 1 B A 3. 2. 1 1 A A B B A B (A B) A (CPRS; Customized Pricing Recommender System) CPRS CPRS CPRS CPRS CPRS 2 α β β < α 1 (standard) 2 (discount) 3 (indifferent) α β 0 γ 1 3. 1 2 3

3 CPRS 2 2 (class imbalance problem) [7] 2 1 α β - (exploit-explore) (multi-armed bandit) [10], [11] softmax UCB1Gittins 4. 4. 1 3 2 1. plsa 2 1. 4

- 3 CPRS 2 CPRS 2 4. 2 Movielens 100 2 5 45 100 plsa 2 5 4 5 4 3.5% 1.4% αβ γ 1.00.5 0.01 0.5 F 25468 22028 12074 22028 5000 2Grouplens research lab: http://www.grouplens.org/ 2 plsa 21982 20857 1% ɛ plsa 21925 20843 5. Web [12][14]Web Web Weng [15] 5

Shani [6] Baydar [16] 6. (CPRS) CPRS CPRS CPRS CPRS CPRS (attendant system) CPRS 21500154 [1] (1)(3),, Vol. 22, No. 6 Vol. 23, No. 2 (2007 2008). [2] P. Resnick and H. R. Varian: Recommender systems, Communications of The ACM, 40, 3, pp. 56 58 (1997). [3] J. Ben Schafer, J. A. Konstan and J. Riedl: E-commerce recommendation applications, Data Mining and Knowledge Discovery, 5, pp. 115 153 (2001). [4] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J. Riedl: GroupLens: An open architecture for collaborative filtering of Netnews, Proc. of The Conf. on Computer Supported Cooperative Work, pp. 175 186 (1994). [5] D. Bergemann and D. Ozmen: Optimal pricing with recommender system, ACM Conference on Electronic Commerce, pp. 43 51 (2006). [6] G. Shani, D. Heckerman and R. I. Brafman: An mdpbased recommender system, Journal of Machine Learning Research, 6, pp. 1265 1295 (2005). [7] N. Japkowicz: Learning from imbalanced data sets: A comparison of various strategies, AAAI Workhop: Learning from Imbalanced Data Sets, pp. 10 15 (2000). [8] N. Terui and W. D. Dahana: Price customization using price thresholds estimated from scanner panel data, Journal of Interactive Marketing, 20, pp. 58 70 (2006). [9],, 37, 2, pp. 261 277 (2008). [10] R. S. Sutton and A. G. Barto:, (2000).. [11] P. Auer, N. Cesa-Bianchi and P. Fischer: Finite-time analysis of the multiarmed bandit problem, Machine Learning, 47, pp. 235 256 (2002). [12] N. Abe and A. Nakamura: Learning to optimally schedule internet banner advertisements, Proc. of The 16th Int l Conf. on Machine Learning, pp. 12 21 (1999). [13] D. Agarwal, B.-C. Chen and P. Elango: Explore/exploit schemes for web content optimization, Proc. of The 9th IEEE Int l Conf. on Data Mining, pp. 1 10 (2009). [14] L. Li, W. Chu, J. Langford and R. E. Shapire: A contextual-bandit approach to personalized news article recommendation, Proc. of The 19th Int l Conf. on World Wide Web, pp. 661 670 (2010). [15] L.-T. Weng, Y. Xu, Y. Li and R. Nayak: Towards information enrichment through recommendation sharing, Data mining and Multi-agent Integration (Ed. by L. Cao), Springer, chapter 7, pp. 103 125 (2009). [16] C. Baydar: Agent-based modeling and simulation of store performance for personalized pricing, proc. of the Winter Simulation Conf. (2003). [17] T. Hofmann and J. Puzicha: Latent class models for collaborative filtering, Proc. of the 16th Int l Joint Conf. on Artificial Intelligence, pp. 688 693 (1999). [18] A. Das, M. Datar, A. Garg and S. Rajaram: Google news personalization: Scalable online collaborative filtering, Proc. of The 16th Int l Conf. on World Wide Web, pp. 271 280 (2007). [19] R. M. Bell and Y. Koren: Scalable collaborative filtering with jointly derived neighborhood interpolation weights, Proc. of The 7th IEEE Int l Conf. on Data Mining, pp. 43 52 (2007). [20] Y. Koren: Collaborative filtering with temporal dynamics, Proc. of The 15th Int l Conf. on Knowledge Discovery and Data Mining, pp. 447 455 (2009). 1. (collaborative filtering; CF) ; active user ; sample user CF x {1,..., n} y {1,..., m} x y s xy 5 D = {(x k, y k, s xk y k )}, k = 1,..., N 6

x y ŝ xy = f(x, y) D x Y x = {y (x, y, s) D s.t. x = x} plsa plsa CF [17]Google News [18] [17] 3 z {1,..., K} K x y z s z D L(D; Θ) = X log X Pr[z] Pr[x z] Pr[y z]n (s; µ z, σz) 2 z (x,y,s) D loss(d; Θ) = X (s xy ŝ xy ) 2 + λr (x,y,s) D R L 2 λ (A 1) EM x y P z ŝ xy = E[s x, y] = µz Pr[z] Pr[x z] Pr[y z]n (s; 0, σ2 z) Pr[z] Pr[x z] Pr[y z] P z K = 10 0.1 [19] D b s xy = s xy b y d y s xy = s xy d y x s xy c x s xy = s xy c x D s xy plsa ŝ xy ŝ xy = ŝ xy + b + c x + d y [20] (4) ŝ xy = b + c x + d y + u y h v x + 1 p Yx X y Y x w y i (A 1) bc x d y u y v x w y K K = 5 u y v x w y 7