2004 62 24, 2403 2406 ACTA CHIMICA SINICA Vol. 62, 2004 No. 24, 2403 2406 / TiO 2 Pt Ξ, a a a a b Ξ ( a 241000) ( b 361005) / TiO 2 Pt (CNT/ nano2tio 2 / Pt)., CNT/ nano2tio 2 / Pt, 13 ma/ cm 2, ;,,,., TiO 2,, Pt,, Electrocatalytic Oxidation of Glucose on Carbon Nanotube/ Nanocrystalline TiO 2 Film Loaded Pt Complex Electrode CHU, Dao2Bao 3, a LI, Xiao2Hua a FENG, De2Xiang a GU, Jia2Shan a SHEN, Guang2Xia b ( a College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000) ( b Department of Chemistry, Xiamen University, Xiamen 361000) Abstract Electrocatalytic oxidation of glucose on carbon nanotube/ nanocrystalline TiO 2 film loaded Pt (CNT/ nano2 TiO 2 / Pt) complex electrode was investigated by cyclic voltammetry and chronopotentiometry. The results indicated that CNT/ nano2tio 2 / Pt complex electrode has high catalytic activity to the electrochemical oxidation of glucose in alkaline media, and the peak current density of oxidation of glucose is up to 13 ma/ cm 2, which is one time higher than that on a platinum electrode. The complex electrode performance is stable, and it is strong resistant to poisoning and difficult to oxidize oscillatory. It is a highly catalytic electrode for using in glucose fuel cell and glucose sensor. Keywords carbon nanotube, nanocrystalline TiO 2, glucose, Pt loaded complex electrode, electrocatalytic oxidation, fuel cell, [1,2]., [3 8].,., ;, [9 11],,.,,,. 60 [12],,.,Lei [13] 011 mol dm - 3 NaOH Pt. Becerik [14] Pt, (1 ma/ cm 2 ). Ξ E2mail : dbchu @sina. com. cn ; Fax : 055323869303 Received March 12, 2004 ; revised July 14, 2004 ; accepted September 16, 2004. (No. 00045317) (Nos. 2003kj141, 2004kj164zd).
2404 Vol. 62, 2004. TiO 2, [15]. / TiO 2 Pt (CNT/ nano2tio 2 2Pt),,. 1 1. 1 CHI660A ( USA CH Instruments), 8511B / ( ). H 2 PtCl 6,. ( ), Ti TA 1 ( 9915 %). 1. 2 CNT/ nano2tio 2 2Pt Ti ( OEt) 4 [16 18 ], [19,20 ] Ti (OEt) 4 TiO 2,, 10 min 2TiO 2, Ti, 20 min, 723 K 30 min,. 4 5, CNT/ nano2tio 2., 5 mmol dm - 3 H 2 PtCl 6-0105 V Pt CNT/ nano2tio 2, CNT/ nano2tio 2 2Pt ( 0. 04 cm 2 ). 1. 3, CNT/ nano2tio 2 2Pt (0104 cm 2 ),, ( SCE), 015 mol dm - 3 NaOH ;, CHI660A.. 2 2. 1 CNT/ nano2tio 2 2Pt 1 CNT/ nano2tio 2 2Pt 014 mol dm - 3 + 015 mol dm - 3 NaOH ( 1a) ( 1b). 1a, CNT/ nano2tio 2 2Pt, - 019 014 V 3 (A, B, C). E 2 (D, F). [7,8,13 ]. A, B A. C. D, C. E,F., CNT/ nano2tio 2 2Pt, A B,. TiO 2, [15,21],,, TiO 2 CNT/ nano2tio 2, [22,23], ;, CNT/ nano2tio 2 Pt,,Pt CNT/ nano2tio 2 CNT/ nano2tio 2 2Pt. 1 ; 100 mv s - 1 Figure 1 Cyclic voltammograms of glucose electrooxidation on different electrodes at scan rate 100 mv s - 1 a CNT/ nano2tio 2 2Pt complex electrode ; b Pure Pt electrode 2. 2 CNT/ nano2tio 2 2Pt CNT/ nano2tio 2 2Pt 011 mol dm - 3 + 015 mol dm - 3 NaOH 20, CNT/ nano2tio 2 2Pt,,,,. 2 CNT/ nano2tio 2 2Pt ( 015 mol dm - 3 + 015 mol dm - 3 NaOH)., (011 ma/ cm 2 ), ( 2a), (400 s)
No. 24 : / TiO 2 Pt 2405,.,,,,. - 011 V,,,. ( 2b, 2c). 110 ma/ cm 2 ( 2b),,,,, ; 215 ma/ cm 2 ( 2c), 110 ma/ cm 2 [24]. 2d,., CNT/ nano2tio 2 2Pt. CNT/ nano2tio 2 2Pt,,. [25],.,015 mol dm - 3,. 3 CNT/ nano2tio 2 2Pt, 100 mv s - 1 Figure 3 Cyclic voltammograms of the CNT/ nano2tio 2 2Pt complex electrode in different concentration glucose solution at scan rate 100 mv s - 1 concentration of glucose (mol dm - 3 ) : a 0. 1 ; b 0. 5 ; c 0. 6. Inset : i p (peak A) c(glucose) plot 3 2 CNT/ nano2tio 2 2Pt Figure 2 Glucose oxidation on CNT/ nano2tio 2 2Pt electrode under different current densities a 0. 1 ma/ cm 2 ; b 1. 0 ma/ cm 2 ; c 2. 5 ma/ cm 2 ; d 5. 0 ma/ cm 2 2. 3,,.,,. CNT/ nano2tio 2 2Pt. 3 015 mol dm - 3 NaOH,, 011 015 mol dm - 3 ( 3a, b),, 015 mol dm - 3 ( 3b), ( A 13 ma/ cm 2 ) ; 015 mol dm - 3 ( 016 mol dm - 3 ), ( 3c),., 1. CNT/ nano2tio 2 / Pt, 015 mol dm - 3, 13 ma/ cm 2,. 2. CNT/ nano2tio 2 / Pt,,,,. References 1 Shen, P. 2K. ; Tseung, A. C. C. J. Electrochem. Soc. 1994, 141, 3082. 2 Shen, P.2K. ; Chen, K.2Y. ; Tseung, A. C. C. J. Electroanal. Chem. 1995, 389, 219. 3 Skou, E. Electrochim. Acta 1977, 22, 313. 4 (a) Ernst, S. ; Heitbaum, J. ; Hamann, C. H. J. Electroanal. Chem. 1979, 100, 173. ( b ) Ernst, S. ; Heitbaum, J. ; Hamann, C. H. Ber. Bunsenges. Phys. Chem. 1980, 84, 50. 5 ( a ) De Mele, M. F. L. ; Videla, H. A ; Arvia, A. J. Bioelectrochem. Bioenerg. 1982, 9, 469. (b) De Mele, M. F. L. ; Videla, H. A ; Arvia, A. J. Bioelectrochem. Bioenerg. 1983, 10, 239.
2406 Vol. 62, 2004 (c ) De Mele, M. F. L. ; Videla, H. A ; Arvia, A. J. Bioelectrochem. Bioenerg. 1986, 13, 213. 6 Vassilyev, Y. B. ; Khazova, O. A. ; Nikolaeva, N. N. J. Electroanal. Chem. 1985, 196, 105. 7 Essis Yei, L. H. ; Beden, B. ; Lamy, C. J. Electroanal. Chem. 1988, 246, 349. 8 Larew, L. A. ; Johnson, D. C. J. Electroanal. Chem. 1989, 262, 167. 9 Zhang, X. ; Chan, K.2Y. ; Tseung, A. C. C. J. Electroanal. Chem. 1995, 386, 241. 10 Gebhardt, U. ; Luft, G. ; Richter, G. J. ; Sturm, F von. Bioelectrochem. Bioenerg. 1978, 5, 607. 11 Giner, J. ; Holleck, G. ; Malachesky, P. A. Ber. Bunsenges. Phys. Chem. 1973, 77, 782. 12 Bagotzky, V. S. ; Vassilyev, Y. B. Electrochem. Acta 1964, 9, 1329. 13 Lei, H.2W. ; Wu, B.2L. ; Cha, C.2S. ; Hideaki, K. J. Electroanal. Chem. 1995, 382, 103. 14 Becerik, I. ; Kadirgan, F. J. Electroanal. Chem. 1997, 436, 189. 15 Gu, J.2S. ; Chu, D.2B. ; Zhou, X.2F. ; Shen, G.2X. Acta Chim. Sinica 2003, 61, 1405 (in Chinese). (,,,,, 2003, 61, 1405). 16 Chu, D.2B. ; Zhou, X.2F. ; Lin, C.2J. Chem. J. Chin. Univ. 2000, 21, 133 (in Chinese). (,,,, 2000, 21, 133. ) 17 Zhou, X. 2F. ; Chu, D. 2B. ; Lin, C. 2J. Acta Chim. Sinica 2000, 58, 1327 (in Chinese). (,,,, 2000, 58, 1327. ) 18 Zhou, X. 2F. ; Chu, D. 2B. ; Lin, C. 2J. Electrochim. Acta 2002, 47, 2769. 19 Chu, D.2B. ; Shen, G.2X. ; Zhou, X.2F. ; Lin, C.2J. Electrochemistry 2001, 7, 249 (in Chinese). (,,,,, 2001, 7, 249. ) 20 Chu, D.2B. ; Shen, G.2X. ; Zhou, X.2F. ; Lin, C.2J. Chem. J. Chin. Univ. 2002, 23, 678 (in Chinese). (,,,,, 2002, 23, 678. ) 21 Regan, B. O. ; Gratzel, M. Nature 1991, 353, 737. 22 Guang, C. ; Brinda, B. L. ; Ellen, R. F. ; Charles, R. M. Nature 1998, 393, 346. 23 Dahu, J. R. ; Zhenag, T. ; Liu, Y. ; Xue, J.2S. Science 1995, 270, 590. 24 Wei, X.2L. ; Shen, P.2K. Chin. J. Chem. Phys. 2003, 16, 395 (in Chinese). (,,, 2003, 16, 395. ) 25 Paulina, S. ; Shun, S.2G. ; Wu, H.2H. Chin. J. Sci. Bull. 1991, 36, 1707 (in Chinese). (Paulina Suarez,,,, 1991, 36, 1707. ) (A0403128 SHEN, H. ; LING, J. )
Graphical Abstract Vol. 62, 2004 QSPR cmc Calculations for AE 3 SO 3 and the Contribution of EO in Micellization WANG, Zhong2Ni ; WANG, Zheng2Wu ; GAO, Yan2An ; ZHENG, Li2Qiang ; LIU, Jie ; LI, Gan2 Zuo ; ZHANG, Gao2Yong Acta Chimica Sinica 2004, 62 (24), 2391 Degradation of RhB Catalyzed by TiO 2 Bulk Porous Nanosolids LIU, Xiu2Lin ; YU, Li2Li ; XU, Hong2Yan ; LI, Mei ; WANG, Cheng2Jian ; J IANG, Min2Hua ; CUI, De2Liang Acta Chimica Sinica 2004, 62 (24), 2398 Electrocatalytic Oxidation of Glucose on Carbon Nanotube/ Nanocrystalline TiO 2 Film Loaded Pt Complex Electrode CHU, Dao2Bao ; LI, Xiao2Hua ; FENG, De2Xiang ; GU, Jia2Shan ; SHEN, Guang2Xia Acta Chimica Sinica 2004, 62 (24), 2403 Molecular Dynamics Simulation of Magnesium2 Montmorillonite Hydrates FANG, Qin2Hua ; HUANG, Shi2Ping ; LIU, Zhi2 Ping ; WANG, Wen2Chuan Acta Chimica Sinica 2004, 62 (24), 2407 Three homologous trioxyethylenated fatty alcoholsulfonates AE 3 SO 3 [ C n H 2 n + 1 (OE) 3 SO 3 Na ( n = 12, 14, 16 ) ] anionic surfactants were synthesized and purified. Firstly, their critical micelle concentration ( cmc ) predictions were done on an optimum Quantitative Structure2Property Relationship (QSPR) model, and the cmc values were experimentally measured by use of surface tension method at the same time. Secondly, both hydrophilicity and hydrophobicity of the EO segment within AESO 3 moiety have been analyzed upon the QSPR calculation, Klevens equation, organic concept diagram, and the calculation of the thermodynamic parameters in micellization. TiO 2 / RhB composite was synthesized by assembling RhB into the channels of TiO 2 porous nanosolids. Its catalytic efficiency was affected by both temperature and time of exchange process. CNT/ nano2tio 2 / Pt complex elec2 trode has high catalytic activity to the electrochemical oxidation of glucose in alkaline media, and the peak current density of glucose oxidation is up to 13 ma/ cm 2 ( curve a ), which is one time higher than that on a platinum electrode (curve b). A water molecule is adsorbed on the siloxane surface. The water molecule is located in the upper of the ring and the hydroxyl is below the ring. The structural and dynamical properties of Mg2montmorillonite have been investigated by molecular dynamics simulation. The simulation results indicate that a few water molecules are adsorbed on the siloxane surface and hydrogen bonds are formed.